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Abstract

Signature verification task needs relevant signature rep-

resentations to achieve low error rates. Many signature rep-

resentations have been proposed so far. In this work we

propose a hybrid user-independent/dependent offline sig-

nature verification technique with a two-channel convolu-

tional neural network (CNN) both for verification and fea-

ture extraction. Signature pairs are input to the CNN as

two channels of one image, where the first channel always

represents a reference signature and the second channel

represents a query signature. We decrease the image size

through the network by keeping the convolution stride pa-

rameter large enough. Global average pooling is applied

to decrease the dimensionality to 200 at the end of locally

connected layers.

We utilize the CNN as a feature extractor and report

4.13% equal error rate (EER) considering 12 reference

signatures with the proposed 200-dimensional representa-

tion, compared to 3.66% of a recently proposed technique

with 2048-dimensional representation using the same ex-

perimental protocol. When the two methods are combined

at score level, more than 50% improvement (1.76% EER) is

achieved demonstrating the complementarity of them. Sen-

sitivity of the model to gray-level and binary images is in-

vestigated in detail. One model is trained using gray-level

images and the other is trained using binary images. It is

shown that the availability of gray-level information in train

and test data decreases the EER e.g. from 11.86% to 4.13%.

1. Introduction

Signature verification is the task of determining whether

a query signature is signed by the claimed identity or some-

one else. It can be online (dynamic) or offline (handwrit-

ten). Forgery signatures can be broadly divided into two

categories as random and skilled forgeries. Skilled forgeries

are signed by forgers after an enough effort of training on

genuine samples. Random forgeries are signed without any

information about the claimed identity and they can usually

be detected with very small error rates.

Our focus in this work is offline signature verifica-

tion where the query is either genuine signature or skilled

forgery. Format of the signature image can be binary, gray-

level or color. To the best of our knowledge, no public color

signature database is available. However the distinction be-

tween binary and gray-level image is critical, as a gray-level

image carries more information than the binary one such as

the pressure of the stroke.

Performance of signature verification systems is gener-

ally measured by equal error rate (EER) which is the error

rate when the false accept (FA) and false reject (FR) rates

are equal. If the EER is not reported, distinguishing error

rate (DER) can be calculated which is simply the average of

FA and FR.

2. Related works

There are many methods proposed for the problem of

offline signature verification. However, a direct comparison

between these works is usually not possible because of ex-

perimental protocol inconsistencies in various aspects. Dif-

ferences include the databases, image formats (gray-level or

binary), subsets of the databases reserved for training and

testing purposes, selection of reference samples, number of

reference samples, to use skilled forgeries in training or not,

to use random forgeries in testing or not, calculation of de-

cision thresholds, hyper-parameter choice and many other

factors. In order to be able to directly compare different

works, one should have their implementations or at least

the outputs at which level to compare (preprocessing, fea-

ture, classifier, score or decision).

Recent works that utilize pre-determined (handcrafted)

signature representations achieve EER of 7%, with binary

GPDS-160 [3] subset using 12 reference signatures per

subject [17]. Scores of user-based and user-independent

classifiers utilizing different features such as histogram of

oriented gradients (HoG), local binary patterns (LBP) and

scale invariant feature transform (SIFT) are fused to obtain
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a final decision on query signatures [17].

Hu et al. consider gradient based LBP, statistical gray-

level co-occurrence matrix (SGLCM) and simplified HoG

for user-independent offline signature verification [7]. Ran-

dom forest is utilized as the classifier. A fusion of the pro-

posed features achieves 7.42% EER when random 140 sub-

jects are tested in gray-level GPDS with 12 references per

user.

Sparse dictionary learning and coding are employed to

provide a feature space for offline signature verification

[21]. K-SVD dictionary learning algorithm is employed in

order to create a writer-oriented lexicon. Gray-level GPDS-

300 is used to evaluate the method. When 5 references are

considered per user, 7.21% EER is achieved. If user-based

ideal decision thresholds are calculated from test scores,

EER drops to 2.70%.

One of the early works on deep offline signature verifica-

tion extracts conventional features such as width, height, tri-

surface, six-fold surface, modified direction feature to feed

into a deep belief network [12]. However, results are re-

ported only using conventional classifiers such as feed for-

ward neural network and support vector machine (SVM).

Khalajzadeh et al. use CNN for Persian signature recogni-

tion to discriminate between different subjects’ signatures

[9].

The first work to discuss and report results on deep of-

fline signature verification in the presence of skilled forg-

eries considers a basic deep structure called PCANet [16].

Signature representation is learnt by PCANet from a sep-

arate set of users. EER of around 20% is reported with 5

reference signatures using binary GPDS-160.

A novel classification method called deep multitask met-

ric learning (DMML) is proposed for offline signature veri-

fication [13]. Using the idea of multitask and transfer learn-

ing, DMML trains a distance metric for each class together

with other classes simultaneously. DMML has a structure

with a shared layer acting as a user-independent approach,

followed by separated layers which learn user-dependent

factors. It is compared with SVM on various offline sig-

nature datasets including gray GPDS- 960 using HoG and

Discrete Radon Transform (DRT) features. Around 0.5%

improvement is reported with skilled forgeries, compared

to [4]. Their best result of 15% error on this dataset is ob-

tained with 75 users and 10 references per user.

Comparing image pairs via CNN is a well-studied topic.

Siamese network is commonly used for this task. In siamese

network there are two branches that share the same param-

eters. This architecture takes two input images, one image

for each branch, concatenate the outputs of these branches

and apply some fully connected layer to decide whether

these two images are similar or not. Siamese network is

applied to the problem of online signature verification in an

early work [1]. During training the two sub-networks ex-

tract features from two signatures, while the joining neuron

measures the distance between the two feature vectors. Ver-

ification consists of comparing an extracted feature vector

with a stored feature vector for the signer. Signatures closer

to this stored representation than a chosen threshold are ac-

cepted, all other signatures are rejected as forgeries.

Siamese network is recently applied to user-independent

offline signature verification task [2]. Binary GPDS-

300 database is used for evaluation among some other

databases. Randomly selected 150 subjects are used to train

the network. For testing, there is no explicit notion of ref-

erence signature. From each of the writers, 276 genuine-

genuine and genuine- forgery signature pairs are selected to

report an EER of 23.17%.

Signature image representations are learned in a user-

independent format by Hafemann et al. using CNN [6].

A novel formulation is proposed to include knowledge of

skilled forgeries from a subset of users in the feature learn-

ing process. This aims to capture visual cues that dis-

tinguish genuine signatures and forgeries regardless of the

user. Main objective of the CNN is to discriminate between

the users in the development set. To drive the features to be

good in distinguishing skilled forgeries, a multi-task frame-

work is proposed by considering two terms in the cost func-

tion for feature learning. The first term drives the model to

distinguish between different users, while the second term

drives the model to distinguish between genuine signatures

and skilled forgeries. After training, the CNN is used to

extract feature representations of 2048 dimensions for sig-

natures from the test set and train user-dependent classifiers.

For the evaluation, GPDS960-gray [4] is utilized with gray-

level signature images. Last 531 subjects are considered for

training whereas first 160 subjects are considered for test-

ing. When SVM with radial basis function (RBF) learns

user-dependent features, 3.61% EER is reported with 12

reference signatures per user. If user-based ideal thresholds

are calculated from the test scores, EER drops to 1.72%.

This work is useful for user-dependent verification, as the

output of the CNN just represents one of the subjects in the

training set as either genuine or forgery.

Zhang et al. use deep convolutional generative adversar-

ial networks to learn signature representations from train-

ing data [20]. After training the network, they use the dis-

criminator’s convolutional features from all layers as sig-

nature features and then train hybrid user-dependent/user-

independent classifier. Results show that user-dependent

approach performs better than user-independent approach.

They report around 14% DER with gentle Adaboost classi-

fier on gray-level GPDS-960 database with a combination

of user-dependent/independent approaches.

Other than offline signature verification, CNN has been

used to learn similarity measure on image patches for stereo

matching by Zbontar and LeCun [15]. Two types of net-
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works are examined, one tuned for speed and the other for

accuracy. Fast architecture is a siamese network. The simi-

larity score is obtained by extracting a vector from each of

the two input patches and computing the cosine similarity

between them. Accurate architecture is derived from the

first by replacing the cosine similarity measure with a num-

ber of fully connected layers. The last fully-connected layer

produces a single number which, after being transformed

with the sigmoid nonlinearity, is interpreted as the similar-

ity score between the input patches. The fast architecture

can compute the disparity maps up to 90 times faster than

the accurate architecture with only a small increase in error.

Zagoruyko and Komodakis offer a two-channel CNN for

comparing two images [18]. Input of this network is cre-

ated via concatenating two images as a two-channel image.

Unlike the siamese network there are no shared branches

thus it is faster to train, but at test time it is more expensive

than siamese network. The reason is in a siamese network

one can extract features via shared branches for each im-

age and then create all combination of pairs to give decision

applying some fully connected layers. In two-channel net-

work it can not be done since it starts applying operations to

concatenated image from first layer. Although this process

makes the network slower at test time, it is faster to train

and it can achieve better accuracy.

In a more recent work, some further improvements are

offered for using two-channel CNNs [19]. Improvements

include using a global average pooling (GAP) layer and nor-

malized cross-correlation with a similar model proposed in

[18]. GAP layer is placed only once before the softmax

layer [11]. Max-pooling layers are replaced by convolu-

tions of increasing stride [14]. In traditional CNNs, the fea-

ture maps of last convolutional layer are vectorized and fed

into fully connected layer. GAP layer take the average of

each feature map. While fully connected layer has a lot of

parameters, there is no parameter in the GAP layer. Thus it

has great regularization effect and can avoid overfitting. In

this work we extract the feature maps after the GAP layer

to learn user-based representations, in addition to [19].

3. Proposed method

Siamese networks are used for distance metric learning

by utilizing the same set of weights in both sub-networks.

However they do not learn to treat reference and query sig-

nature samples in different ways. During the training pro-

cess, reference should somehow be dictated to the network

as the ground truth. Query input may or may not look like

the reference and it is either genuine or forgery.

In this work, we propose using a two-channel CNN to

perform concurrent user-independent verification and sig-

nature feature extraction instead of metric learning. First

image channel is always used to input a (genuine) reference

signature and second channel is used to input a query sig-

(a) Original signature (b) Preprocessed form

Figure 1: An example signature image from GPDS-960 and

its preprocessed form.

nature. Our model allows concurrent feature extraction and

user-independent verification at a single forward propaga-

tion, allowing robust and efficient verification. Extracted

features can then be used to train user-dependent models if

there are enough reference samples for the user of interest.

3.1. Two­channel CNN

3.1.1 Preprocessing

CNN needs fixed size images as its input, so signature im-

ages should somehow be resized to be in a uniform size. In

this work we apply a simple preprocessing. We first invert

the gray-level values by extracting them from 255, so that

background is represented by 0 values instead of 255 values

of a white paper in original image. Next we binarize the

signature image temporarily to detect and eliminate small

connected components (components with less than 40 pix-

els) with an assumption that so small components are sim-

ply noise.

Before input to the CNN, query signature on the sec-

ond channel is always aligned to the reference signature on

the first channel. Alignment is achieved by applying dif-

ferent rotations and translations to the query, and choosing

the transformation which gives the lowest difference metric.

As the metric; we extract basic 8-neighbor LBP histograms

both from the reference and the aligned query and look at

the Euclidean distance between the histograms.

We then crop the bounding box by finding the mini-

mum and maximum x and y coordinates of on-pixels (pen-

cil strokes) and deleting the empty rows and columns before

and after them. At last we resize the image to 100 × 150.

An example original signature image and its preprocessed

form are shown in Figure 1.

3.1.2 CNN structure

We learn how to decide if a query signature Q is genuine or

not in existence of a reference R (known to be genuine) with

the help of a two-channel CNN φ(R,Q). We use two simi-

lar architectures for user-independent gray-level and binary

signature verification. For both architectures, input size is

100× 150× 2 containing the reference and the query.

In contrast to traditional CNN models, our gray-level

network is similar to the network architecture proposed in

[14]. We replace max-pooling layers by convolutional lay-

ers of increasing stride. It is shown in [14] that, for p-norm
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Figure 2: Two-channel CNN model proposed in this work.

subsampling applied to the feature map f produced by some

layer of a CNN, max-pooling is just a special case of us-

ing convolutional layers for dimensionality reduction where

p → ∞.

The network φ(R,Q) consists of 14 convolutional lay-

ers, 1 global average pooling layer and 1 fully connected

layer. It is regularized by 5 dropout layers of probability

0.5. At the end there is a two-way softmax layer to decide

whether the input is a genuine-genuine or genuine-forgery

pair. We use Adam optimizer [10] to train the network.

Batch normalization [8] is utilized before each rectified lin-

ear unit (ReLU) activation function.

We observe that with binary images, the above-

mentioned CNN starts overfitting after some iterations. For

this reason, we train another network with binary images

after training and testing the gray-level model. We reduce

the capacity of the network by replacing the convolutional

layers of stride 2 with max-pooling layers along with the

number of hidden units of some layers. Two-channel CNN

model used in this work is illustrated in Figure 2. Details of

CNN structures for gray-level and binary models are given

in Table 1.

3.2. User­independent verification

User-independent verification (UI) is performed with the

goal of obtaining the probability of a query signature Q be-

longing to user y in the presence of a reference signature

Ry
n ∈ R

y, where R
y is the reference set of user y. We

show this probability as P (y|Ry
n, Q). Output of the CNN

with a reference and a query as the input is assumed to esti-

mate this probability:

P (y|Ry
n, Q) ≈ φ(Ry

n, Q). (1)

Suppose that N = |Ry| is the cardinality of set Ry. We

have as many scores from the CNN as N , input to match

the query Q with each reference separately. We calculate

the average score to make a decision on Q as follows:

Table 1: Gray-level and binary CNN models. Convolutions

C3, C6, C9 and C12 of gray-level model are replaced with

MaxPooling in binary model. C4, C5, C7, C8, C10 and C11

have the more number of hidden units in gray-level model,

and the less in binary model.

Layers Hidden

units

Filter

size

Stride

Convolution C1 & C2 30 3 1

C3 or MaxPooling 30 (C3) 3 2

Dropout (0.5)

Convolution C4 & C5 60 or 30 3 1

C6 or MaxPooling 60 (C6) 3 2

Dropout (0.5)

Convolution C7 & C8 100 or 60 3 1

C9 or MaxPooling 100 (C9) 3 2

Dropout (0.5)

Convolution C10 & C11 150 or 100 3 1

C12 or MaxPooling 150 (C12) 3 2

Dropout (0.5)

Convolution C13 200 3 1

Convolution C14 200 1 1

GAP

FullyConnected 200

Dropout (0.5)

FullyConnected (softmax) 2

Pui(y|R
y, Q) ≈

N∑

n=1

φ(Ry
n, Q)/N. (2)

If Pui(y|R
y, Q) ≥ θui, then Q is decided as a genuine

signature where θui is a decision threshold for UI verifica-

tion. UI approach has the advantage that no user-specific

model has to be trained and stored so that the system can

be queried infinitely many individual test subjects as long

as some reference set is provided along with. There is no

concern of model management and update when a user pro-

vides new reference signatures over time. Another advan-

tage is that when the number of reference signatures is only

one, we can still obtain an effectual verification score.

3.3. User­dependent verification

User-dependent verification (UD) is performed by train-

ing UD classifiers. Signature representations are obtained

as the output of the GAP layer before the fully-connected

layer of CNN with a reference and a query as the input. In

this case we have as many representations for a query sig-

nature as the number of references.

3.3.1 Feature extraction

Output of the global average pooling layer φGAP is used to

represent a query image Q paired with Ry
n of the claimed
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identity y as φGAP (R
y
n, Q). We have as many representa-

tions (features) for a query signature as N where the feature

set becomes FQ = ∪N
n=1φGAP (R

y
n, Q). Note that the di-

mensionality is 200 after GAP layer.

3.3.2 UD model training

We utilize SVM with RBF kernel to train UD models.

During training, all N × (N − 1) genuine-genuine inter-

reference pairs are used as positive samples where the sec-

ond reference pretends a genuine query:

S
+ = ∪N

n=1φGAP (R
y
n, R

y
m)∀m 6= n. (3)

Genuine-forgery pairs from other users are randomly se-

lected as negative training samples:

S
− =

⋃

y′

M⋃

m=1

φGAP (R
y′

m, Qy′

) for some y′ 6= y, (4)

where Qy′

is known to be a forgery signature of some user

y′ other than y. Note that we can always assume that we

have some training subjects for whom we have both gen-

uine and forgery samples. This way SVM can learn a tight

decision boundary between the pair representations of cur-

rent user and other users.

During testing, we have N different representations for

an unknown query signature Q, so we have as many scores

from the SVM decision function of user y (fy(.), R200 ⇒
R) as N , matching each reference separately. We obtain

separate scores for each of such representations and find the

average score to make decision on Q:

Pud(y|R
y, Q) ≈

N∑

n=1

fy(φGAP (R
y
n, Q))/N. (5)

If Pud(y|R
y, Q) ≥ θud then Q is decided as a genuine

signature where θud is UD decision threshold.

We normalize the features in a user-based manner by di-

viding each feature to the maximum value (scalar) Smax

observed in training samples S+∪S
−. Before training with

SVM, all values are divided to Smax. Similarly, all query

features are divided to Smax during testing.

3.4. Concurrent user­independent/dependent veri­
fication

We also explore the results obtained by score level fusion

of UI and UD classifiers. This corresponds to a classifier

combination of UI neural network and UD SVM. We have

linear combination of the scores obtained in sections 3.2 and

3.3 as follows:

Puid(y|R
y, Q) = αPui(y|R

y, Q)+(1−α)Pud(y|R
y, Q),

(6)

where the weight α ∈ [0, 1] is a real number learnt from a

validation set, as detailed in Section 4.2.

4. Experimental results

4.1. Database

We use the publicly available largest signature database

GPDS960-gray to evaluate our system [4]. We investigate

the sensitivity of the proposed method to gray-level and bi-

nary signature images in detail. Database is manually con-

verted into binary (from gray-level) to investigate the effect

of image format. In summary we use both gray-level and

binary signatures in training and testing.

GPDS960-gray signature database consists of 881 users,

21144 genuine signatures and 26317 imitations. The signa-

tures are in png format and have been scanned at 600 dpi. In

Section 4.2 we explicitly provide the first and last subjects’

IDs that constitute different subsets. Each subject has 24

genuine samples and at most 30 forgery samples. Number

of forgery samples is less than 30 for a few subjects.

4.2. Experimental protocol

4.2.1 Training and validation sets of two-channel CNN

We use the last 475 subjects of GPDS-960 (with respect to

their user IDs inclusive [460 - 960]) for training the pro-

posed multi-channel CNN, defined as set τ . For validation,

we use the previous 100 subjects (with IDs inclusive [358 -

459]), defined as V1. CNN structure and hyper-parameters

are determined by looking at the accuracy of the CNN on

V1.

We consider genuine-genuine and genuine-forgery pairs

from each training subject. For each subject we have 24 ×
23 = 552 genuine-genuine pairs and at most 24 × 30 =
720 genuine-forgery pairs. During training, we randomly

select 552 of genuine-forgery pairs to prevent overfitting to

training subjects and make the training process faster. In

total we have 552 × 2 × 475 training pairs. Both τ and V1

are either gray-level or binary during training.

4.2.2 Selecting UD model hyper-parameters

We use a second validation set consisting of the previous

146 subjects (with IDs [205 - 357]) to select user-dependent

SVM hyper-parameters (cost (C) of error and γ of RBF

kernel), defined as V2. We learn the SVM parameters by

training UD SVMs with the first 5 genuine samples as ref-

erence set and testing with the remaining genuine samples

and skilled forgeries, for each user. We calculate the EER
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for each hyper-parameter setting and select the SVM param-

eters that minimize the EER. V2 is utilized as either gray-

level or binary, whichever the test set is.

4.2.3 Selecting the combination parameter α

We use V2 to learn the combination weight α and combine

our UI and UD model scores. Similarly we use V2 to learn

combination weights of our final score (UD model scores

trained with two-channel CNN’s 200-dimensional features

combined with UI CNN score) and UD scores obtained by

2048-dimensional features proposed in [6], at their score

level.

4.2.4 Selecting signature pair representations from

other users

In UD model, genuine-forgery signature pairs belonging to

other subjects are utilized as negative samples. This way

the characteristics of one subject can be distinguished from

other subjects. We exclude the subject of interest from the

test set and get 5 genuine-forgery pair samples from each

of the remaining subjects. This way it is guaranteed that

no negative training sample is used from the same subject.

Another option is to use one-class SVMs [5] which is not

considered in this work.

4.2.5 Test set

We evaluate the performance of UI CNN, UD SVM and

combination of them using the test set T . Test set consists

of the first 160 subjects of GPDS-960 (with IDs [2 - 204]). It

is divided into two disjoint parts as T1 and T2. T1 represents

the set of candidate genuine reference samples whereas T2

represents the unseen query samples.

We randomly generate two partitions of genuine sam-

ples, each having 12 samples per user. For each partition,

we randomly select N genuine samples three times. In total,

we perform 6 tests for each such T1 and T2 distinction.

This protocol is repeated with UI CNN and UD SVM

but the partitions and reference samples are randomly de-

termined once ahead of time for both approaches, and for

all users. We consider N=1, 5 and 12 in this work. For

N=12, reference set is exactly the overall partition so there

is no random reference set selection. Remaining 12 genuine

samples and all skilled forgeries (varying between 24 and at

most 30 per user) constitute T2 as unseen query samples to

measure the performance of the system. We do not consider

any random forgeries during testing.

T is utilized either in gray-level or binary form. We test

gray-level and binary CNN models with both kinds of for-

mats to investigate the effect of image format on the verifi-

cation performance. Separation of the database into subsets

is shown in Figure 3.

Figure 3: Separation of the database into subsets.

4.2.6 Calculation of EER

We first investigate global and then user-based thresholds

for user-independent verification (θui) and user-dependent

verification (θud). These thresholds are determined directly

from the test scores. In the third scenario, θui and θud are

calculated from V2 to explore the adaptability of it on dif-

ferent test subjects. In that case we report DER (average

of FA and FR). Generalization of global verification EER

threshold to another dataset is a challenge. Estimation of

user-based ideal thresholds is itself a research topic and is

not explored in this work. The most realistic choice is thus

the third threshold which is calculated from V2.

4.3. Results

Results with the described test protocol where τ and V1

(training) are both gray-level can be found in Table 2 for UI

and UD, Table 3 for the combination of UI and UD. Results

with binary τ and V1 can be found in Table 4 for UI and UD,

Table 5 for the combination of them. Note that UD model

can not be trained with one reference because obtaining a

genuine-genuine training pair is impossible with the excep-

tion of a self-pair when N = 1.

We obtain the best results when both the training and

test images are in gray-level, as such images carry more

information compared to binary. In most cases, UD model

provides better results. However even without dealing with

UD model training, UI alone can perform well in particular

cases.

UI model seems to be robust against the number of ref-

erences; even with 1 reference it can provide acceptable re-

sults for gray-level model. UD model performs better as the

number of references increases. As expected, user-based

thresholds always give the best results. However, obtaining

such thresholds is a difficult problem itself. Using a global

EER threshold gives the second best results in most cases.

In order to measure the generalizability of such a threshold,

we also explore calculating a global threshold from verifi-

cation data. In this case results tend to worsen a bit.

In order to compare the results with a recently proposed

similar work, UD results with the features extracted using

the CNN model (SigNet-F) proposed in [6] are shown in Ta-

ble 6. UD model is trained as described in Section 3.3, only

with the difference that single-input SigNet-F extracts the

representations instead of the proposed two-channel CNN.
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Table 2: Results with gray-level τ and V1 for UI and UD.

N
Global threshold (V2) DER Global threshold(T ) EER User-based thresholds EER

UI UD UI UD UI UD

Gray

V2 and T

1 12.76± 0.19% - 8.74± 0.34% - 6.81± 0.17% -

5 12.19± 0.24% 5.96± 0.26% 7.39± 0.22% 6.52± 0.68% 5.75± 0.75% 4.72± 0.33%
12 12.00± 0.05% 8.79± 0.08% 7.20± 0.24% 4.29± 0.14% 5.78± 0.67% 2.88± 0.18%

Binary

V2 and T

1 37.10± 0.50% - 32.74± 0.44% - 29.74± 0.64% -

5 36.58± 0.29% 34.49± 0.42% 31.92± 0.31% 23.49± 0.65% 27.26± 0.35% 19.65± 0.42%
12 36.63± 0.03% 17.64± 0.13% 31.22± 0.42% 17.95± 0.50% 26.80± 1.07% 15.03± 0.21%

Table 3: Results with gray-level τ and V1 for the combination of UI and UD.

N Global threshold (V2) DER Global threshold(T ) EER User-based thresholds EER

GrayV2 and T
5 5.23± 0.21% 5.38± 0.14% 3.92± 0.28%

12 4.82± 0.06% 4.13± 0.31% 2.94± 0.28%

BinaryV2 and T
5 40.68± 0.45% 21.57± 0.35% 18.21± 0.46%

12 20.81± 0.75% 18.08± 0.43% 14.73± 0.02%

Table 4: Results with binary τ and V1 for UI and UD.

N
Global threshold (V2) DER Global threshold(T ) EER User-based thresholds EER

UI UD UI UD UI UD

Gray

V2 and T

1 32.11± 0.58% - 32.15± 0.61% - 28.69± 0.69% -

5 30.52± 0.46% 14.21± 0.43% 30.38± 0.44% 14.03± 0.24% 25.90± 0.60% 11.01± 0.42%
12 30.52± 0.18% 13.44± 0.30% 30.18± 0.36% 11.15± 0.22% 25.75± 0.62% 8.30± 0.08%

Binary

V2 and T

1 25.87± 0.59% - 24.97± 0.80% - 21.22± 0.77% -

5 24.45± 0.37% 23.43± 0.56% 22.32± 0.36% 15.46± 0.37% 18.95± 0.34% 11.41± 0.20%
12 24.20± 0.22% 12.33± 0.05% 21.64± 0.56% 12.14± 0.10% 18.47± 0.33% 9.31± 0.26%

Table 5: Results with binary τ and V1 for the combination of UI and UD.

N Global threshold (V2) DER Global threshold(T ) EER User-based thresholds EER

GrayV2 and T
5 14.20± 0.43% 14.10± 0.32% 10.85± 0.39%

12 13.86± 0.23% 11.12± 0.29% 8.26± 0.08%

BinaryV2 and T
5 23.30± 0.55% 15.40± 0.35% 11.31± 0.21%

12 12.15± 0.13% 11.86± 0.02% 9.22± 0.15%
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For comparison and combination, V2 and T are consid-

ered only as gray-level when SigNet-F is taken into account.

We report the results obtained by the score-level combina-

tion of the two-channel CNN method’s final score (UI com-

bined with UD) with UD score of the SigNet-F represen-

tation [6] in Table 7. These results are obtained by train-

ing and testing the CNN models (SigNet-F and novel two-

channel CNN) with gray-level images.

SigNet-F UD model provides better results with a 2048-

dimensional representation but when the threshold is calcu-

lated from a validation set as it is done in a real-life scenario,

proposed UI+UD combination score can give competing re-

sults only with a 200-dimensional representation. Proposed

200-dimensional representation even provide a better result

when the threshold is determined from V2 and N = 5. Total

input size of two-channel CNN is 100× 150× 2, less than

150× 220 of single-channel SigNet-F. When the two meth-

ods are combined at score level, around 50% improvement

is achieved over the state-of-the-art system [6].

5. Conclusions and future work

We propose a two-channel CNN model to take as the

input a reference and a query signature. It gives compa-

rable results to the state-of-art only with 200 features pro-

duced by GAP layer, compared to 2048 features obtained

with a single-input SigNet-F CNN model [6]. It is possi-

ble to extract signature features and obtain UI score in a

single forward pass of the CNN model. We fuse UI CNN

score with UD SVM score to perform a robust verification.

It is possible to get reasonable results even when N = 1,

only with UI model (CNN output). Further combination of

the proposed method’s final score (UI + UD) with the UD

Table 6: UD results with the features extracted using

SigNet-F CNN [6].

N Global thresh-

old (V2) DER

Global thresh-

old (T ) EER

User-based

thresholds

EER

5 5.81± 0.63% 4.44± 0.19% 2.66± 0.40%
12 3.82± 0.55% 3.66± 0.58% 2.08± 0.64%

Table 7: Score-level combination results of two-channel

CNN method’s final score (UI combined with UD) with UD

score of the SigNet-F representation [6].

N Global thresh-

old (V2) DER

Global thresh-

old (T ) EER

User-based

thresholds

EER

5 2.90± 0.31% 2.33± 0.17% 1.16± 0.21%
12 1.75± 0.36% 1.76± 0.37% 0.88± 0.36%

score obtained by SigNet-F is explored. State-of-the-art re-

sults are achieved (more than 50% improvement, as low as

0.88% EER) with this combination. The two representa-

tions are shown to be complementary. In future it would

be interesting to propose a CNN which takes reference and

query input signatures and outputs a user ID plus a sepa-

rate forgery indicator neuron. This way a single CNN may

achieve the results obtained by the fusion of two different

CNN representations.

Effect of image format either as binary or gray-level is

investigated. Binary CNN model is simpler compared to

the gray-level model. However, UI EER increases when the

binary model is tested with gray-level signatures. This can

easily be compensated by binarization of the input when

the binary model is in use. Nevertheless in a scenario where

gray-level and binary signature images are frequently en-

countered, both types of models can be trained beforehand

to be used accordingly.

It is interesting that even when the EER is higher for

binary UI model tested with gray-level images compared

to binary test images, UD model can perform better than

testing with binary images. In general if UD and UI mod-

els’ combination is incorporated when working with binary

images, there is an increase in EER e.g. from 4.13% to

11.86%; compared to working only with gray-level images.

This difference is much more obvious for UI model (Table

2 gray-level test results versus other test results).
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