This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Hybrid User-Independent and User-Dependent Offline Signature Verification
with a Two-Channel CNN

Mustafa Berkay YILMAZ

berkayyilmaz@akdeniz.edu.tr

Kagan OZTURK

kaganozturkl1992@gmail.com

Akdeniz University, Antalya, Tiirkiye

Abstract

Signature verification task needs relevant signature rep-
resentations to achieve low error rates. Many signature rep-
resentations have been proposed so far. In this work we
propose a hybrid user-independent/dependent offline sig-
nature verification technique with a two-channel convolu-
tional neural network (CNN) both for verification and fea-
ture extraction. Signature pairs are input to the CNN as
two channels of one image, where the first channel always
represents a reference signature and the second channel
represents a query signature. We decrease the image size
through the network by keeping the convolution stride pa-
rameter large enough. Global average pooling is applied
to decrease the dimensionality to 200 at the end of locally
connected layers.

We utilize the CNN as a feature extractor and report
4.13% equal error rate (EER) considering 12 reference
signatures with the proposed 200-dimensional representa-
tion, compared to 3.66% of a recently proposed technique
with 2048-dimensional representation using the same ex-
perimental protocol. When the two methods are combined
at score level, more than 50% improvement (1.76% EER) is
achieved demonstrating the complementarity of them. Sen-
sitivity of the model to gray-level and binary images is in-
vestigated in detail. One model is trained using gray-level
images and the other is trained using binary images. It is
shown that the availability of gray-level information in train
and test data decreases the EER e.g. from 11.86% to 4.13%.

1. Introduction

Signature verification is the task of determining whether
a query signature is signed by the claimed identity or some-
one else. It can be online (dynamic) or offline (handwrit-
ten). Forgery signatures can be broadly divided into two
categories as random and skilled forgeries. Skilled forgeries
are signed by forgers after an enough effort of training on
genuine samples. Random forgeries are signed without any

information about the claimed identity and they can usually
be detected with very small error rates.

Our focus in this work is offline signature verifica-
tion where the query is either genuine signature or skilled
forgery. Format of the signature image can be binary, gray-
level or color. To the best of our knowledge, no public color
signature database is available. However the distinction be-
tween binary and gray-level image is critical, as a gray-level
image carries more information than the binary one such as
the pressure of the stroke.

Performance of signature verification systems is gener-
ally measured by equal error rate (EER) which is the error
rate when the false accept (FA) and false reject (FR) rates
are equal. If the EER is not reported, distinguishing error
rate (DER) can be calculated which is simply the average of
FA and FR.

2. Related works

There are many methods proposed for the problem of
offline signature verification. However, a direct comparison
between these works is usually not possible because of ex-
perimental protocol inconsistencies in various aspects. Dif-
ferences include the databases, image formats (gray-level or
binary), subsets of the databases reserved for training and
testing purposes, selection of reference samples, number of
reference samples, to use skilled forgeries in training or not,
to use random forgeries in testing or not, calculation of de-
cision thresholds, hyper-parameter choice and many other
factors. In order to be able to directly compare different
works, one should have their implementations or at least
the outputs at which level to compare (preprocessing, fea-
ture, classifier, score or decision).

Recent works that utilize pre-determined (handcrafted)
signature representations achieve EER of 7%, with binary
GPDS-160 [3] subset using 12 reference signatures per
subject [17]. Scores of user-based and user-independent
classifiers utilizing different features such as histogram of
oriented gradients (HoG), local binary patterns (LBP) and
scale invariant feature transform (SIFT) are fused to obtain
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a final decision on query signatures [17].

Hu et al. consider gradient based LBP, statistical gray-
level co-occurrence matrix (SGLCM) and simplified HoG
for user-independent offline signature verification [7]. Ran-
dom forest is utilized as the classifier. A fusion of the pro-
posed features achieves 7.42% EER when random 140 sub-
jects are tested in gray-level GPDS with 12 references per
user.

Sparse dictionary learning and coding are employed to
provide a feature space for offline signature verification
[21]. K-SVD dictionary learning algorithm is employed in
order to create a writer-oriented lexicon. Gray-level GPDS-
300 is used to evaluate the method. When 5 references are
considered per user, 7.21% EER is achieved. If user-based
ideal decision thresholds are calculated from test scores,
EER drops to 2.70%.

One of the early works on deep offline signature verifica-
tion extracts conventional features such as width, height, tri-
surface, six-fold surface, modified direction feature to feed
into a deep belief network [12]. However, results are re-
ported only using conventional classifiers such as feed for-
ward neural network and support vector machine (SVM).
Khalajzadeh et al. use CNN for Persian signature recogni-
tion to discriminate between different subjects’ signatures
[9].

The first work to discuss and report results on deep of-
fline signature verification in the presence of skilled forg-
eries considers a basic deep structure called PCANet [16].
Signature representation is learnt by PCANet from a sep-
arate set of users. EER of around 20% is reported with 5
reference signatures using binary GPDS-160.

A novel classification method called deep multitask met-
ric learning (DMML) is proposed for offline signature veri-
fication [13]. Using the idea of multitask and transfer learn-
ing, DMML trains a distance metric for each class together
with other classes simultaneously. DMML has a structure
with a shared layer acting as a user-independent approach,
followed by separated layers which learn user-dependent
factors. It is compared with SVM on various offline sig-
nature datasets including gray GPDS- 960 using HoG and
Discrete Radon Transform (DRT) features. Around 0.5%
improvement is reported with skilled forgeries, compared
to [4]. Their best result of 15% error on this dataset is ob-
tained with 75 users and 10 references per user.

Comparing image pairs via CNN is a well-studied topic.
Siamese network is commonly used for this task. In siamese
network there are two branches that share the same param-
eters. This architecture takes two input images, one image
for each branch, concatenate the outputs of these branches
and apply some fully connected layer to decide whether
these two images are similar or not. Siamese network is
applied to the problem of online signature verification in an
early work [1]. During training the two sub-networks ex-

tract features from two signatures, while the joining neuron
measures the distance between the two feature vectors. Ver-
ification consists of comparing an extracted feature vector
with a stored feature vector for the signer. Signatures closer
to this stored representation than a chosen threshold are ac-
cepted, all other signatures are rejected as forgeries.

Siamese network is recently applied to user-independent
offline signature verification task [2]. Binary GPDS-
300 database is used for evaluation among some other
databases. Randomly selected 150 subjects are used to train
the network. For testing, there is no explicit notion of ref-
erence signature. From each of the writers, 276 genuine-
genuine and genuine- forgery signature pairs are selected to
report an EER of 23.17%.

Signature image representations are learned in a user-
independent format by Hafemann ef al. using CNN [6].
A novel formulation is proposed to include knowledge of
skilled forgeries from a subset of users in the feature learn-
ing process. This aims to capture visual cues that dis-
tinguish genuine signatures and forgeries regardless of the
user. Main objective of the CNN is to discriminate between
the users in the development set. To drive the features to be
good in distinguishing skilled forgeries, a multi-task frame-
work is proposed by considering two terms in the cost func-
tion for feature learning. The first term drives the model to
distinguish between different users, while the second term
drives the model to distinguish between genuine signatures
and skilled forgeries. After training, the CNN is used to
extract feature representations of 2048 dimensions for sig-
natures from the test set and train user-dependent classifiers.
For the evaluation, GPDS960-gray [4] is utilized with gray-
level signature images. Last 531 subjects are considered for
training whereas first 160 subjects are considered for test-
ing. When SVM with radial basis function (RBF) learns
user-dependent features, 3.61% EER is reported with 12
reference signatures per user. If user-based ideal thresholds
are calculated from the test scores, EER drops to 1.72%.
This work is useful for user-dependent verification, as the
output of the CNN just represents one of the subjects in the
training set as either genuine or forgery.

Zhang et al. use deep convolutional generative adversar-
ial networks to learn signature representations from train-
ing data [20]. After training the network, they use the dis-
criminator’s convolutional features from all layers as sig-
nature features and then train hybrid user-dependent/user-
independent classifier. Results show that user-dependent
approach performs better than user-independent approach.
They report around 14% DER with gentle Adaboost classi-
fier on gray-level GPDS-960 database with a combination
of user-dependent/independent approaches.

Other than offline signature verification, CNN has been
used to learn similarity measure on image patches for stereo
matching by Zbontar and LeCun [15]. Two types of net-
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works are examined, one tuned for speed and the other for
accuracy. Fast architecture is a siamese network. The simi-
larity score is obtained by extracting a vector from each of
the two input patches and computing the cosine similarity
between them. Accurate architecture is derived from the
first by replacing the cosine similarity measure with a num-
ber of fully connected layers. The last fully-connected layer
produces a single number which, after being transformed
with the sigmoid nonlinearity, is interpreted as the similar-
ity score between the input patches. The fast architecture
can compute the disparity maps up to 90 times faster than
the accurate architecture with only a small increase in error.

Zagoruyko and Komodakis offer a two-channel CNN for
comparing two images [18]. Input of this network is cre-
ated via concatenating two images as a two-channel image.
Unlike the siamese network there are no shared branches
thus it is faster to train, but at test time it is more expensive
than siamese network. The reason is in a siamese network
one can extract features via shared branches for each im-
age and then create all combination of pairs to give decision
applying some fully connected layers. In two-channel net-
work it can not be done since it starts applying operations to
concatenated image from first layer. Although this process
makes the network slower at test time, it is faster to train
and it can achieve better accuracy.

In a more recent work, some further improvements are
offered for using two-channel CNNs [19]. Improvements
include using a global average pooling (GAP) layer and nor-
malized cross-correlation with a similar model proposed in
[18]. GAP layer is placed only once before the softmax
layer [11]. Max-pooling layers are replaced by convolu-
tions of increasing stride [14]. In traditional CNNs, the fea-
ture maps of last convolutional layer are vectorized and fed
into fully connected layer. GAP layer take the average of
each feature map. While fully connected layer has a lot of
parameters, there is no parameter in the GAP layer. Thus it
has great regularization effect and can avoid overfitting. In
this work we extract the feature maps after the GAP layer
to learn user-based representations, in addition to [19].

3. Proposed method

Siamese networks are used for distance metric learning
by utilizing the same set of weights in both sub-networks.
However they do not learn to treat reference and query sig-
nature samples in different ways. During the training pro-
cess, reference should somehow be dictated to the network
as the ground truth. Query input may or may not look like
the reference and it is either genuine or forgery.

In this work, we propose using a two-channel CNN to
perform concurrent user-independent verification and sig-
nature feature extraction instead of metric learning. First
image channel is always used to input a (genuine) reference
signature and second channel is used to input a query sig-

(a) Original signature

(b) Preprocessed form

Figure 1: An example signature image from GPDS-960 and
its preprocessed form.

nature. Our model allows concurrent feature extraction and
user-independent verification at a single forward propaga-
tion, allowing robust and efficient verification. Extracted
features can then be used to train user-dependent models if
there are enough reference samples for the user of interest.

3.1. Two-channel CNN
3.1.1 Preprocessing

CNN needs fixed size images as its input, so signature im-
ages should somehow be resized to be in a uniform size. In
this work we apply a simple preprocessing. We first invert
the gray-level values by extracting them from 255, so that
background is represented by 0 values instead of 255 values
of a white paper in original image. Next we binarize the
signature image temporarily to detect and eliminate small
connected components (components with less than 40 pix-
els) with an assumption that so small components are sim-
ply noise.

Before input to the CNN, query signature on the sec-
ond channel is always aligned to the reference signature on
the first channel. Alignment is achieved by applying dif-
ferent rotations and translations to the query, and choosing
the transformation which gives the lowest difference metric.
As the metric; we extract basic 8-neighbor LBP histograms
both from the reference and the aligned query and look at
the Euclidean distance between the histograms.

We then crop the bounding box by finding the mini-
mum and maximum z and y coordinates of on-pixels (pen-
cil strokes) and deleting the empty rows and columns before
and after them. At last we resize the image to 100 x 150.
An example original signature image and its preprocessed
form are shown in Figure 1.

3.1.2 CNN structure

We learn how to decide if a query signature Q is genuine or
not in existence of a reference R (known to be genuine) with
the help of a two-channel CNN ¢(R, ()). We use two simi-
lar architectures for user-independent gray-level and binary
signature verification. For both architectures, input size is
100 x 150 x 2 containing the reference and the query.

In contrast to traditional CNN models, our gray-level
network is similar to the network architecture proposed in
[14]. We replace max-pooling layers by convolutional lay-
ers of increasing stride. It is shown in [14] that, for p-norm
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Reference
)

I Conv layer filter size 3 stride 1

Conv layer filter size 3 stride 2 in gray-level model,

max pooling in binary model
3 Conv layer filter size 1 stride 1
[ Global average pooling layer
3 Fully connected layer

Figure 2: Two-channel CNN model proposed in this work.

subsampling applied to the feature map f produced by some
layer of a CNN, max-pooling is just a special case of us-
ing convolutional layers for dimensionality reduction where
p — 00.

The network ¢(R, Q) consists of 14 convolutional lay-
ers, 1 global average pooling layer and 1 fully connected
layer. It is regularized by 5 dropout layers of probability
0.5. At the end there is a two-way softmax layer to decide
whether the input is a genuine-genuine or genuine-forgery
pair. We use Adam optimizer [10] to train the network.
Batch normalization [£8] is utilized before each rectified lin-
ear unit (ReLLU) activation function.

We observe that with binary images, the above-
mentioned CNN starts overfitting after some iterations. For
this reason, we train another network with binary images
after training and testing the gray-level model. We reduce
the capacity of the network by replacing the convolutional
layers of stride 2 with max-pooling layers along with the
number of hidden units of some layers. Two-channel CNN
model used in this work is illustrated in Figure 2. Details of
CNN structures for gray-level and binary models are given
in Table 1.

3.2. User-independent verification

User-independent verification (UI) is performed with the
goal of obtaining the probability of a query signature () be-
longing to user y in the presence of a reference signature
RY ¢ RY, where RY is the reference set of user y. We
show this probability as P(y|RY, Q). Output of the CNN
with a reference and a query as the input is assumed to esti-
mate this probability:

P(ylRy, Q) = ¢(R}, Q). (D

Suppose that N = |RY| is the cardinality of set RY. We

have as many scores from the CNN as NV, input to match

the query @) with each reference separately. We calculate
the average score to make a decision on () as follows:

Table 1: Gray-level and binary CNN models. Convolutions
Cs, Cg, Cy and C12 of gray-level model are replaced with
MaxPooling in binary model. Cy, C5, C7, Cs, C19 and C14
have the more number of hidden units in gray-level model,
and the less in binary model.

Layers Hidden Filter | Stride
units size
Convolution C; & Cy 30 3 1
C5 or MaxPooling 30 (Cs3) 3 2
Dropout (0.5)
Convolution Cy & Cf 60 or 30 3 1
Cg or MaxPooling 60 (Cq) 3
Dropout (0.5)
Convolution C; & Cy 1000or60 | 3 1
Cy or MaxPooling 100 (Cy) 3
Dropout (0.5)
Convolution Cy & Cyy 1500r 100 | 3 1
C12 or MaxPooling 150 (C12) | 3 2
Dropout (0.5)
Convolution Cy3 200 3 1
Convolution C14 200 1 1
GAP
FullyConnected 200
Dropout (0.5)
FullyConnected (softmax) | 2

N
Pui(y|RY, Q) ~ Z )

If P,;(y|RY,Q) > 0y, then Q is decided as a genuine
signature where 6,,; is a decision threshold for UI verifica-
tion. UI approach has the advantage that no user-specific
model has to be trained and stored so that the system can
be queried infinitely many individual test subjects as long
as some reference set is provided along with. There is no
concern of model management and update when a user pro-
vides new reference signatures over time. Another advan-
tage is that when the number of reference signatures is only
one, we can still obtain an effectual verification score.

3.3. User-dependent verification

User-dependent verification (UD) is performed by train-
ing UD classifiers. Signature representations are obtained
as the output of the GAP layer before the fully-connected
layer of CNN with a reference and a query as the input. In
this case we have as many representations for a query sig-
nature as the number of references.

3.3.1 Feature extraction

Output of the global average pooling layer ¢ 4p is used to
represent a query image () paired with RY of the claimed
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identity y as ¢gap(RY, Q). We have as many representa-
tions (features) for a query signature as /N where the feature
set becomes Fo = UN_ dgap(RY, Q). Note that the di-
mensionality is 200 after GAP layer.

3.3.2 UD model training

We utilize SVM with RBF kernel to train UD models.
During training, all N x (N — 1) genuine-genuine inter-
reference pairs are used as positive samples where the sec-
ond reference pretends a genuine query:

St =UN_ ¢cap(RY, RY,)Vm # n. 3)

Genuine-forgery pairs from other users are randomly se-
lected as negative training samples:

dcap(RY, Q) forsomey’ #y, (4)

1

ﬁC:

’

Yy

where Q¥ is known to be a forgery signature of some user
y’ other than y. Note that we can always assume that we
have some training subjects for whom we have both gen-
uine and forgery samples. This way SVM can learn a tight
decision boundary between the pair representations of cur-
rent user and other users.

During testing, we have N different representations for
an unknown query signature (), so we have as many scores
from the SVM decision function of user y (f¥(.), R?%0 =
R) as N, matching each reference separately. We obtain
separate scores for each of such representations and find the
average score to make decision on @:

N
Pa(yRY,Q) = z (paap(RY,Q))/N. (5

If Pa(y|RY, Q) > 6,4 then @ is decided as a genuine
signature where 6,4 is UD decision threshold.

We normalize the features in a user-based manner by di-
viding each feature to the maximum value (scalar) S, 4.
observed in training samples ST US ™. Before training with
SVM, all values are divided to S,,4,. Similarly, all query
features are divided to S, 4, during testing.

3.4. Concurrent user-independent/dependent veri-
fication

We also explore the results obtained by score level fusion
of Ul and UD classifiers. This corresponds to a classifier
combination of Ul neural network and UD SVM. We have
linear combination of the scores obtained in sections 3.2 and
3.3 as follows:

Puid(y|Rya Q) = aRLi(y|Ry7 Q) + (1 7a)Pud(y|Ry7 Q)a
(6)

where the weight o € [0, 1] is a real number learnt from a
validation set, as detailed in Section 4.2.

4. Experimental results
4.1. Database

We use the publicly available largest signature database
GPDS960-gray to evaluate our system [4]. We investigate
the sensitivity of the proposed method to gray-level and bi-
nary signature images in detail. Database is manually con-
verted into binary (from gray-level) to investigate the effect
of image format. In summary we use both gray-level and
binary signatures in training and testing.

GPDS960-gray signature database consists of 881 users,
21144 genuine signatures and 26317 imitations. The signa-
tures are in png format and have been scanned at 600 dpi. In
Section 4.2 we explicitly provide the first and last subjects’
IDs that constitute different subsets. Each subject has 24
genuine samples and at most 30 forgery samples. Number
of forgery samples is less than 30 for a few subjects.

4.2. Experimental protocol
4.2.1 Training and validation sets of two-channel CNN

We use the last 475 subjects of GPDS-960 (with respect to
their user IDs inclusive [460 - 960]) for training the pro-
posed multi-channel CNN, defined as set 7. For validation,
we use the previous 100 subjects (with IDs inclusive [358 -
459]), defined as V;. CNN structure and hyper-parameters
are determined by looking at the accuracy of the CNN on
.

We consider genuine-genuine and genuine-forgery pairs
from each training subject. For each subject we have 24 x
23 = 552 genuine-genuine pairs and at most 24 x 30 =
720 genuine-forgery pairs. During training, we randomly
select 552 of genuine-forgery pairs to prevent overfitting to
training subjects and make the training process faster. In
total we have 552 X 2 x 475 training pairs. Both 7 and V;
are either gray-level or binary during training.

4.2.2 Selecting UD model hyper-parameters

We use a second validation set consisting of the previous
146 subjects (with IDs [205 - 357]) to select user-dependent
SVM hyper-parameters (cost (C) of error and v of RBF
kernel), defined as V5. We learn the SVM parameters by
training UD SVMs with the first 5 genuine samples as ref-
erence set and testing with the remaining genuine samples
and skilled forgeries, for each user. We calculate the EER
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for each hyper-parameter setting and select the SVM param-
eters that minimize the EER. V5 is utilized as either gray-
level or binary, whichever the test set is.

4.2.3 Selecting the combination parameter o

We use V5 to learn the combination weight o and combine
our UI and UD model scores. Similarly we use V5 to learn
combination weights of our final score (UD model scores
trained with two-channel CNN’s 200-dimensional features
combined with UI CNN score) and UD scores obtained by
2048-dimensional features proposed in [0], at their score
level.

4.2.4 Selecting signature pair representations from
other users

In UD model, genuine-forgery signature pairs belonging to
other subjects are utilized as negative samples. This way
the characteristics of one subject can be distinguished from
other subjects. We exclude the subject of interest from the
test set and get 5 genuine-forgery pair samples from each
of the remaining subjects. This way it is guaranteed that
no negative training sample is used from the same subject.
Another option is to use one-class SVMs [5] which is not
considered in this work.

4.2.5 Test set

We evaluate the performance of Ul CNN, UD SVM and
combination of them using the test set 7. Test set consists
of the first 160 subjects of GPDS-960 (with IDs [2 - 204]). It
is divided into two disjoint parts as 77 and T5. T} represents
the set of candidate genuine reference samples whereas 75
represents the unseen query samples.

We randomly generate two partitions of genuine sam-
ples, each having 12 samples per user. For each partition,
we randomly select N genuine samples three times. In total,
we perform 6 tests for each such 77 and 75 distinction.

This protocol is repeated with Ul CNN and UD SVM
but the partitions and reference samples are randomly de-
termined once ahead of time for both approaches, and for
all users. We consider N=1, 5 and 12 in this work. For
N=12, reference set is exactly the overall partition so there
is no random reference set selection. Remaining 12 genuine
samples and all skilled forgeries (varying between 24 and at
most 30 per user) constitute 75 as unseen query samples to
measure the performance of the system. We do not consider
any random forgeries during testing.

T is utilized either in gray-level or binary form. We test
gray-level and binary CNN models with both kinds of for-
mats to investigate the effect of image format on the verifi-
cation performance. Separation of the database into subsets
is shown in Figure 3.

7T3 v, Vi 1
2

160 subjects

Samples

146 subjects | 100 subjects 475 subjects

Subjects

Figure 3: Separation of the database into subsets.

4.2.6 Calculation of EER

We first investigate global and then user-based thresholds
for user-independent verification (6,;) and user-dependent
verification (6,4). These thresholds are determined directly
from the test scores. In the third scenario, 6,; and 6,4 are
calculated from V5 to explore the adaptability of it on dif-
ferent test subjects. In that case we report DER (average
of FA and FR). Generalization of global verification EER
threshold to another dataset is a challenge. Estimation of
user-based ideal thresholds is itself a research topic and is
not explored in this work. The most realistic choice is thus
the third threshold which is calculated from V5.

4.3. Results

Results with the described test protocol where 7 and V;
(training) are both gray-level can be found in Table 2 for UI
and UD, Table 3 for the combination of UI and UD. Results
with binary 7 and V; can be found in Table 4 for Ul and UD,
Table 5 for the combination of them. Note that UD model
can not be trained with one reference because obtaining a
genuine-genuine training pair is impossible with the excep-
tion of a self-pair when N = 1.

We obtain the best results when both the training and
test images are in gray-level, as such images carry more
information compared to binary. In most cases, UD model
provides better results. However even without dealing with
UD model training, Ul alone can perform well in particular
cases.

UI model seems to be robust against the number of ref-
erences; even with 1 reference it can provide acceptable re-
sults for gray-level model. UD model performs better as the
number of references increases. As expected, user-based
thresholds always give the best results. However, obtaining
such thresholds is a difficult problem itself. Using a global
EER threshold gives the second best results in most cases.
In order to measure the generalizability of such a threshold,
we also explore calculating a global threshold from verifi-
cation data. In this case results tend to worsen a bit.

In order to compare the results with a recently proposed
similar work, UD results with the features extracted using
the CNN model (SigNet-F) proposed in [6] are shown in Ta-
ble 6. UD model is trained as described in Section 3.3, only
with the difference that single-input SigNet-F extracts the
representations instead of the proposed two-channel CNN.
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Table 2: Results with gray-level 7 and V; for UI and UD.

Global thres

hold (V) DER

Global threshold(7") EER

User-based thresholds EER

N Ul UD UI UD Ul UD
Gray 1] 12.76 £0.19% - 8.74 +0.34% - 6.81 +0.17% -
Vo and T 12.19+0.24% | 5.96 £0.26% | 7.39+£0.22% | 6.52+£0.68% | 5.75+£0.75% | 4.72+0.33%
12] 12.00 £ 0.05% | 8.79£0.08% | 7.20+£0.24% | 4.29+0.14% | 5.78 £0.67% | 2.88+0.18%
Binary 1| 37.10 +0.50% - 32.74 £+ 0.44% - 29.74 £+ 0.64% -
Vo and T 36.58 £ 0.29% | 34.49 £0.42% | 31.92 £0.31% | 23.49 £ 0.65% | 27.26 £ 0.35% | 19.65 £ 0.42%

36.63 £ 0.03%

17.64 £0.13%

31.22 £ 0.42%

17.95 £+ 0.50%

26.80 + 1.07%

15.03 £0.21%

Table 3: Results with gray-level 7 and V; for the combination of UI and UD.

N | Global threshold (V) DER | Global threshold(T") EER | User-based thresholds EER
GrayVy and T 5 5.23+0.21% 5.38 +0.14% 3.92 +0.28%
12 4.82 + 0.06% 4.13 £ 0.31% 2.94 +0.28%
BinaryVy and T 5 40.68 + 0.45% 21.57 +£0.35% 18.21 4 0.46%
12 20.81 + 0.75% 18.08 +0.43% 14.73 + 0.02%

Table 4: Results with binary 7 and V; for UI and UD.

Global threshold (V5) DER

Global threshold(7") EER

User-based thresholds EER

UI

UD

Ul UD

Ul UD

1| 32.114+0.58%

32.15+0.61%

28.69 + 0.69%

VQC;r;IgT 30.52 £ 0.46% | 14.21 £0.43% | 30.38 £0.44% | 14.03 £0.24% | 25.90 £ 0.60% | 11.01 &+ 0.42%
12} 30.52 +0.18% | 13.44+0.30% | 30.18 £0.36% | 11.15+0.22% | 25.75 £0.62% | 8.30 +0.08%

Binary 1 | 25.87+0.59% - 24.97 + 0.80% - 21.22+0.77% -

Vyand T 24.45+0.37% | 23.43 £0.56% | 22.32 £0.36% | 15.46 £0.37% | 18.95 £0.34% | 11.41 £+ 0.20%

24.20 £ 0.22%

12.33 £ 0.05%

21.64 +0.56% | 12.14 £ 0.10%

18.47£0.33% | 9.31 £0.26%

Table 5: Results with binary 7 and V; for the combination of UI and UD.

N | Global threshold (V5) DER | Global threshold(7") EER | User-based thresholds EER
GravVs and T 5 14.20 £+ 0.43% 14.10 £+ 0.32% 10.85 + 0.39%
yv 12 13.86 +0.23% 11.12 4+ 0.29% 8.26 +0.08%
BinarvVs and T 5 23.30 £ 0.55% 15.40 +0.35% 11.31 £ 0.21%
vz 12 12.15+0.13% 11.86 £+ 0.02% 9.22 £ 0.15%
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For comparison and combination, V5 and T are consid-
ered only as gray-level when SigNet-F is taken into account.
We report the results obtained by the score-level combina-
tion of the two-channel CNN method’s final score (Ul com-
bined with UD) with UD score of the SigNet-F represen-
tation [6] in Table 7. These results are obtained by train-
ing and testing the CNN models (SigNet-F and novel two-
channel CNN) with gray-level images.

SigNet-F UD model provides better results with a 2048-
dimensional representation but when the threshold is calcu-
lated from a validation set as it is done in a real-life scenario,
proposed UI+UD combination score can give competing re-
sults only with a 200-dimensional representation. Proposed
200-dimensional representation even provide a better result
when the threshold is determined from V5 and N = 5. Total
input size of two-channel CNN is 100 x 150 x 2, less than
150 x 220 of single-channel SigNet-F. When the two meth-
ods are combined at score level, around 50% improvement
is achieved over the state-of-the-art system [6].

5. Conclusions and future work

We propose a two-channel CNN model to take as the
input a reference and a query signature. It gives compa-
rable results to the state-of-art only with 200 features pro-
duced by GAP layer, compared to 2048 features obtained
with a single-input SigNet-F CNN model [6]. It is possi-
ble to extract signature features and obtain UI score in a
single forward pass of the CNN model. We fuse Ul CNN
score with UD SVM score to perform a robust verification.
It is possible to get reasonable results even when N = 1,
only with UI model (CNN output). Further combination of
the proposed method’s final score (Ul + UD) with the UD

Table 6: UD results with the features extracted using
SigNet-F CNN [6].

N || Global thresh- | Global thresh- | User-based
old (V) DER | old (1) EER thresholds
EER
5 5.81+0.63% | 4.44+0.19% | 2.66 £ 0.40%
12 || 3.82+0.55% | 3.66 £ 0.58% | 2.08 +0.64%

Table 7: Score-level combination results of two-channel
CNN method’s final score (UI combined with UD) with UD
score of the SigNet-F representation [6].

N || Global thresh- | Global thresh- | User-based
old (V5) DER | old (T)) EER thresholds
EER
5 2.90+0.31% | 2.33+£0.17% | 1.16 £0.21%
12 || 1.75+£0.36% | 1.76 £0.37% | 0.88 = 0.36%

score obtained by SigNet-F is explored. State-of-the-art re-
sults are achieved (more than 50% improvement, as low as
0.88% EER) with this combination. The two representa-
tions are shown to be complementary. In future it would
be interesting to propose a CNN which takes reference and
query input signatures and outputs a user ID plus a sepa-
rate forgery indicator neuron. This way a single CNN may
achieve the results obtained by the fusion of two different
CNN representations.

Effect of image format either as binary or gray-level is
investigated. Binary CNN model is simpler compared to
the gray-level model. However, UI EER increases when the
binary model is tested with gray-level signatures. This can
easily be compensated by binarization of the input when
the binary model is in use. Nevertheless in a scenario where
gray-level and binary signature images are frequently en-
countered, both types of models can be trained beforehand
to be used accordingly.

It is interesting that even when the EER is higher for
binary Ul model tested with gray-level images compared
to binary test images, UD model can perform better than
testing with binary images. In general if UD and UI mod-
els’ combination is incorporated when working with binary
images, there is an increase in EER e.g. from 4.13% to
11.86%; compared to working only with gray-level images.
This difference is much more obvious for UI model (Table
2 gray-level test results versus other test results).
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