
 

 

Abstract 

 

An assortment of review papers as well as newly quoted 

literature indicates that usually, the most important link in 

the chain of designing signature verification systems 

(SV's) is the feature extraction one. These methods are 

divided in two main categories. The first one, includes 

handcrafted features which are methods smanually 

engineered by scientists to be optimal for certain type of 

information extraction-summarization from signature 

images. Examples of this kind include global-local and/or 

grid-texture oriented features. The second feature 

category addresses signature modeling and verification 

with the use of dedicated features, usually learned directly 

from raw signature image data. Typical representatives 

include Deep Learning (DL) as well as Bag of Visual 

Words (BoW) or Histogram of Templates (HOT). Recently, 

sparse representation (SR) methods (dictionary learning 

and coding) have been introduced for signature modeling 

and verification with promising results. In this paper, we 

propose an extension of the SR framework by introducing 

the idea of embedding the atoms of a dictionary in a 

directed tree. This is demonstrated with an l0 tree-

structured sparse regularization norm. The efficiency of 

the proposed method is shown by conducting experiments 

with two popular datasets namely the CEDAR and MCYT-

75. 

 

1. Introduction 

The handwritten signature is a specific outcome of 

handwriting and hence a part of the behavioral biometric 

traits family. Signatures are considered to be the product 

of a personal motoric pattern formed from a combination 

of letters and/or a sophisticated flourish [1, 2]. The 

signature trace, depicted usually onto a sheet of paper or 

an electronic device is considered to be the joint outcome 

of a person's specific motoric procedure and his/hers 

taught scripting customs. In addition, the signature 

production process conveys information related also to 

his/her writing system and psychophysical state [3]. A 

substantial amount of research efforts towards the 

modeling and verification of signatures [4-14] provide 

evidence that the handwritten signature is a member of a 

popular behavioral club for affirming the identity or 

consent of a person in cases like forensics and/or 

administration. Thus, it is considered to be a dynamic and 

open research topic.  

The offline or static SV addresses motionless images as 

a result of a scanning procedure. In this case, computer 

vision and pattern recognition (CVPR) systems complete 

the task of authenticating an individual, by means of 

his/hers signature, with potential applications to a non-

invasive, friendly and secure interface for security oriented 

e-society applications [15]. Static SV's are reported to 

perform inferior when compared to systems which exploit 

dynamic information (i.e. as a function of time) [16, 17]. 

However, their use may sometimes be compulsory 

specifically in forensic cases of interest [18, 19]. This 

makes the offline signature verification problem a 

challenging and hard one [20].  

The problem that a SV system typically addresses is to 

discriminate genuine samples against the following types 

of forgery [21]: a) Random: defined as genuine signatures 

of a writer different from the authentic author, b) 

Simple/Casual/Zero Effort: defined as signature samples 

that are formed by an imitator who owns the name of the 

genuine writer or samples that are formed by someone who 

knows the original signatures but his efforts are without 

practicing, c) Simulated/Skilled: samples that are formed 

by an experienced imitator or a calligrapher after 

practicing unrestricted number of times and d) Disguised: 

samples that actually are not a forgery, but instead they are 

the outcome of an effort of a genuine author to imitate 

his/her own signature in such a way that he/she can deny it 

at a later time. 

The most crucial step in the design of a SV system relies 

on the feature extraction algorithm that assigns any 

signature image into a multidimensional vector space. 

Since signatures are carriers of intrinsic ambiguity, 

expressed with the term variability or with the inverse term 

stability, the feature extraction stage ideally must retain all 

the essential intrapersonal information, which is vital for 

the subsequent verification stage. Review papers as well as 
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recent research efforts [20] state that the offline feature 

extraction methods may be distributed into two major 

categories: a) handcrafted features which are outcomes of 

methods created for other image related applications; 

examples of this branch include methods with global-local 

and/or grid-texture oriented features [22-24] and b) 

signature verification dedicated features, learned directly 

from images, with representatives Deep Learning (DL) 

[9,25,26] as well as Bag of Visual Words (BoW) [27, 28] 

or Histogram of Templates (HOT) [29].  

Methods which learn features directly from image 

pixels, serving as initial data, have also appeared in the 

literature with noteworthy results. In general, these 

methods exploit any spatial associations of pixels that exist 

into the static signature images. Early attempts include the 

use of Restricted Boltzmann Machines (RBMs) in [30] and 

Convolutional Neural Networks (CNNs) in [31]. Lately, in 

[25] Soleimani et al. has proposed the use of Deep Neural 

Networks for Multitask Metric Learning by employing a 

distance metric between pairs of signatures in which LBP's 

were used as an intermediate feature vector. Also quite 

recently, Hafemman et al. in a series of publications, 

proposed methods for learning features from images. 

Specifically, the authors in [32] introduced their 

formulation for learning features from the genuine 

signatures of a development dataset, and then utilized them 

in order to test another set of users. In [33], the authors 

analyzed the learned feature space and optimized their 

CNN architecture, obtaining state-of-the-art results on the 

GPDS dataset. Finally in [20], the previously described 

formulations were extended with supplementary 

experiments on two other datasets (MCYT and CEDAR), 

providing a richer explanation of the method and the 

experimental protocol, as well as a novel formulation that 

leverages knowledge of skilled forgeries for feature 

learning. 

Quite recently also, another method for static SV has 

been presented with the use of parsimonial coding 

techniques. Specifically, sparse representation methods by 

means of the KSVD and OMP were tested successfully to 

local patches of signature images followed by average 

pooling [22]. This was justified by the fact that signatures 

being a particular class of image signals exhibit a 

degenerate structure and lie on a low dimensional 

subspace. On the other, sparse representation is well suited 

for handling this kind of problem by approximating this 

subspace with the sparsity principle and an overcomplete 

set of basis signals. The concept of representing pixel 

intensities as linear combinations of few dictionary 

elements (or atoms) is a popular technique in a number of 

image processing, as well as machine learning applications 

[34-36].  

In this paper, we propose a novel extension of the 

classic SR conceptual framework to the structured SR. 

This is done by introducing the idea of embedding the 

atoms of a dictionary in a directed tree in both dictionary 

learning and SR stages. Justification of this key-concept 

idea comes from the intuition that the structure of any 

problem regarding spatial arrangement of image pixels 

encourages the search for relationships between dictionary 

elements [37]. Structured sparsity has been a main 

research area for quite a long time [37-44]. For the 

purpose of this work, we address a special type of 

structured sparsity, which we will define hereafter as 

hierarchical sparse coding (HSC). In HSC the dictionary 

atoms are embedded in a directed and rooted tree T  which 

is fixed and known beforehand while the sparsity patterns 

expressed by the representation matrix A  are subject to 

the constraint of being members of a connected and rooted 

sub-tree of T [38, 39, 45].  

The conducted experiments with the use of HSC for SV 

employ a 0
treel  tree-structured sparse regularization norm 

which has been found to be useful in a number of cases. 

For comparison purposes, the pooling operation on the 

representation matrix A was chosen to be similar to the 

one presented in [22, 23]. To the best of the author's 

knowledge, this is a new and novel work that exploits a 

type of structured sparsity (SS), namely the hierarchical 

sparsity dedicated for offline signature verification. 

Codebooks have been also proposed for offline SV by 

utilizing first order HOG's and then coding each feature to 

the nearest word in the codebook with K-means [46]. This 

is clearly not our case since we apply hierarchical 

dictionary learning from signature patches instead of K-

means feature cluster algorithms for creating the 

codebook. We justify the use of this method as it is said 

that "whenever using k-means to get a dictionary, if you 

replace it with sparse coding it’ll often work better" [47]. 

The remaining of this paper is organized as follows: 

Section 2 quotes the necessary elements of hierarchical 

sparse dictionary coding and representation. Section 3 

summarizes the method and presents the feature extraction 

while section 4 describes the conducted experiments and 

the corresponding experimental results. Finally, section 6 

draws the conclusions. 

2. Elements of hierarchical sparse coding 

2.1. Terminology 

Following the notation proposed of Jenatton et al. [37] 

vectors are represented with bold lower case letters ( x ) 

while matrices with upper case ones ( X ). The 
ql -norm for 

1q ≥  of a vector mR∈x  as: ( )
1

1

qqm

iq i=x x where 
i

x  

designates the i-th component of x  and 
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1,...,
max ( ) ( )i qi m q

lim
∞ = →∞

=x x x . Let us also denote the 
0

l -

pseudo-norm, or with the slightly abusive term 
0

l -norm, to 

be the number of non-zero elements in a vector:  

0 0
( ) #{j  s.t. [ ] 0, 1: }j j m= ≠ =x x x    (1) 

Finally, the Frobenius norm of a matrix m nR ×∈X  is 

defined as: ( )
1 2

2

,1 1

m n

i jq i j= = X X , with 
,i j

X  to 

denote the (i,j) element of the matrix X . 

2.2. Elements of sparse representation  

In general, SR encodes (or represents) a set of N-

columnwise signals (or patches, or samples) i mR∈x , 

denoted with a patch matrix 1 2,[ , ... ] RN m N×= ∈X x x x  as a 

linear combination of a set of basis vectors (or atoms) 

symbolized with the columns 
j mR∈d  of an overcomplete 

dictionary or lexicon 1 2 K[ , ,..., ]=D d d d R m K×∈ , with 

K n> , that is the number of atoms is greater than the 

number of signal dimensionality. Specific, for one signal 
mR∈x  the formulation of SR is usually expressed with 

the following unconstrained optimization problems (2) or 

(3): 

2

2

1
min( ( ))

2K
R

ψ
∈

− +
α

x Dα α     (2) 

2

2

1
min( ( ))

2K
R

λ
∈

− +
α

x Dα Ω α , with 0λ ≥      (3) 

In eq. (2) 
2

2
−x Dα represents the square loss measure 

for one patch and subsequent signal reconstruction error, 
KR∈α  is the solution or representation vector for the 

patch mR∈x . The decomposition vector α  obeys the 

sparsity property, 
0

s≤α  which states that only a few 

( s K< ) coefficients of α  should be non-zero valued. 

This is expressed with the ( )ψ   norm or the regularizer, a 

term which imposes on the representation solution α  and 

dominates significantly the optimization problem. 

Equation (3) simply replaces the generic term ( )ψ   with 

the sparsity inducing norm Ω  multiplied by an 

appropriate parameter λ  (or Lagrange multiplier). In the 

proposed work the sparsity-inducing norm Ω  embeds a 

fixed and a-priori known hierarchical tree structure 

between the atoms of D  according to the material exposed 

in the sections below.  

2.3. Penalization with hierarchy 

We extend the classic SR problems expressed with eq. 

(3) by emphasizing on specific sets of the nonzero α  

coefficients. Given a tree T, whose p nodes are denoted as 

{1,..., }j p= , we are concentrating on visual patterns that 

the non-zero α  coefficients are forming by enabling the 

hypothesis that they are forced to be part of a connected 

and rooted subtree of a tree structure T. This concept can 

be clarified with the following example depicted also in 

figure 1. Suppose that a solution vector 
8R∈α  exists. Let 

us define the ancestors(j) of a node j  to be the subset of 

indices corresponding to the ancestors of the node j . 

Then, the solution vector 
8R∈α is subject to the following 

condition: 

[ ]for all  in0, 0 ( ) 
j k

k ancestors j≠  ≠a a   (4) 

Intuitively, we code any signal mR∈x  by means of a 

dictionary 8R m×∈D with the representation vector 
8R∈α  

by imposing a rule that the 
j mR∈d atom contributes in the 

reconstruction of the x  signal, only if its ancestors(j) are 

also contributing. For a given s -level of sparsity a 

penalized version of (3) takes the form (5) which has been 

considered by Donoho [45]:  

( )
2

2 0
s.t: eq

1
min(  

2
. 4),

K
R

λ
∈

− +
α

x Dα α      (5) 

Complementary to the non-convex nature of the 

constraint (4) and subsequent eq. (5), Jenatton et al. [37] 

provides a contrapositive description of (4) by providing 

definition for the descendants(j) of a j-node as follows:  

[ ]0,  0 for all  in ( )
j

k descendants j=  =a a   (6) 

The intuition behind this is that if a 
j

d dictionary atom 

does not contribute in the reconstruction of the x  signal 

then, neither its descendants in the tree T should do. To 

summarize, the following rules are equivalent: (i) if a node 

participates, then the same holds for all its ancestors, (ii) if 

a node does not participate, then neither its descendants 

do. To continue and for simplicity purposes let us denote T  

 
Figure 1: a) Map of an example with a solution vector 

8R∈α  embedded within a tree T. b) Solution with non-

zero valued (non-shadowed) nodes in which the ancestor 

property apply: 
8 ( (8 ))0 0ancestors≠  ≠α α . 
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to be a set with elements the descendants(j) of each node: 

)}{ (T descendants j , with { }1, ,j p= … . Each element g 

of T is referred as a group. In this context, an intuitive 

penalization was provided by Baraniuk et al. [38] which 

penalized the number of groups g in G, that participate in 

the representation of x , by using an 
0( ) ( )treelΩ α α  norm 

which records at least one nonzero coefficient of α  as: 

0
( ) ( ) ( ), with

1     if there exists  such that 0

0 otherwise

tree g

g T

jg

l

j g

δ

δ

∈

Ω =

∈ ≠
= 


α α a

α



   (7) 

As a result, eq. (3) along with the constraint of eq. (7) 

results to the following nonconvex optimization problem:  

2

2

1
min( )

2K

g

R
g T

λ δ
∈

∈

− + 
α

x Dα , 0λ ≥     (8) 

The above simplified presentation is in the context of a 

hierarchical norm which contains a single tree equipped 

with one element for each node. However the above 

formulation can be expanded to the case of trees 

comprised with an arbitrary number of atoms at each node. 

Although in this work we will not examine situations of 

this kind, for completeness we provide the definition of 

tree-structured groups according to the following [37]: 

Definition: A set of groups {g}
g G

G ∈  is said to be 

tree structured in { }1, , p…  if { } {1,..., p}
g G

g
∈

=  and if 

for all ( )( , ) ,g h G g h∈ ∩ ≠ ∅ (   h )g h or g ⊆ ⊆ . For 

such a set of groups, there exists a (non-unique) total order 

relation    such that: {    }g h g h or g h ⊆ ∩ = ∅ .  

In this work we employed two different balanced trees 

of depths 4 and 3 with branching factors 

{ } { }1 2 3
,  ,  6,  3,  2p p p =  or { }1 2

,  p p ={ }20,  2  resulting to 

the same total number of dictionary nodes-atoms equal to 

61. Figure 2 presents the structure of both trees. The 

reason for selecting a depth not exceeding four is that in 

this case, the complexity (log( ))O p  of the optimization 

algorithm is almost linear thus providing reasonable 

execution times.  

The optimization problem expressed by eq. (8) for a 

given dictionary D  and for the 
0

treel norm is algorithmically 

tackled in the more general context of approximation from 

dyadic partitions; a method initially introduced by Donoho 

[45]. The algorithm solves the following problem:  

2

2

1
min( ( ))

2K

g

R
g T

λ δ
∈

∈

− + 
α

u a a       (9) 

where 
KR∈u  is a fixed signal, and the other parameters 

retain their previous notions. This problem is considered 

as a proximal operator for the nonconvex 

regularization
0 ( )treelλ ⋅ α . As Jenatton et al., [37] has shown 

this can be solved efficiently, and provides approximate 

solutions for the nonconvex problem presented in eq. (5). 

The algorithm performs a chain of thresholding operations 

on the variable a  by means of the Iterative Shrinkage 

Thresholding Algorithm (ISTA) [48]. In this work, we 

implemented this method as a function within the SPAMS 

toolbox [49] (mexFISTAtree, with ISTA option). 

2.4. Dictionary Learning 

Dictionary learning is one of the key factors in SR. An 

effective dictionary can lead to excellent reconstruction 

results [50]. The framework of dictionary learning 

manages a joint optimization problem with respect to the 

dictionary D , which is now learned, and the coefficient 

matrix K NR ×∈A , with { } { [ ], 1: }i K iR j j K= ∈ = =A α α . 

In the proposed HSC framework dictionary learning is 

expressed with the use of the following mathematical 

notations for a R m N×∈X  patch matrix:  

2

,

2

2,
1

1
min ( ( ))

2

1 1
             min ( ( ))

2

K M

K M

F
C R

N
i i i

C R
iN

λ

λ

×

×

∈ ∈

∈ ∈
=

− + Ω =

− + Ω

D A

D A

X DA A

x Da a

(10) 

Figure 2: An example of a balanced tree of a) depth 4, with branching factors { } { }1 2 3,  ,  6,  3,  2p p p = and b) depth 3 with branching 

factors { } { }1 2,  20, 2p p = . Both cases have a similar number of 61 corresponding nodes-atoms. 
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where C  is a convex set, the convex set of matrices 

satisfying the following constraint: 
n KC R ×∈D , 

1:
s.t: ,  ( ) 1

j T j

j M=∀ ≤d d . As seen, the 
j

d atoms usually 

require their 
2 2
( )j j=d d norm be less than or equal to 

one in order to avoid arbitrarily small values of the A  

coefficients. The replacement of the 
0

treel  norm of eq. (7) 

into eq. (10) embeds the dictionary to the tree structure 

and attempts to exploit possible relations between them. 

Again the implementation was made possible with the use 

of the SPAMS toolbox (mexStructTrainDL, with ISTA 

option). 

3. System design 

In the proposed approach, for each writer a 

population REF
GN , of some genuine reference signature 

samples ,  1:
i

writer REF
G GR i N= , is enrolled in order to create 

the reference signature dataset. Following typical image 

pre-processing steps, which include thresholding and 

thinning the solution of the dictionary learning algorithm 

described by eqs. (7), (10) provides a dictionary D  which 

embeds a balanced tree with branching factors of 

{ }1 2 3
,  ,  p p p = { }6,  3,  2  or { }1 2

,  p p ={ }20,  2 . The 

dictionary learning algorithm is successively activated by 

each one of the writer's genuine reference signatures 

i

writer
GR in order to initialize and further update the writer's 

individual characteristic dictionary 
o

tree

l
D based on the 

entire images. In the dictionary learning phase the patch 

matrix { }i=X x , 1:i N=  with N being the number of 

signature pixels is formed by a) densely placing a 5 × 5 

window centered on the pixels of the preprocessed 

signature, and b) reshaping them into a columnwise format 

thus resulting to 25 NR ×∈X . To familiarize with the 

regularizer parameter λ  we conducted experiments with 

several values of it. Figure 3 presents the dictionary atoms 

for three cases of having low (
45 10λ −= × ), medium 

(
310λ −= ) and high sparsity (

210λ −= ). It is observed that 

as the sparsity level gets higher a) the number of 

dimensions that come into play in order to create an atom 

decrease, thus making the atoms more "distinct"; i.e. there 

is an entropy reduction of quantization levels and b) the 

reconstruction error increases inversely. In the conducted 

experiments we have selected the medium sparsity level. 

Figure 4, also presents a detail of the hierarchical tree with 

the embedded atoms. 

For any other signature, its corresponding patches, the 

claimed writer's hierarchical dictionary and eq. (8) 

provides a structured code by means of the coefficients 

matrix A . Two final signature descriptors 1Ff , 2Ff  are 

formed as the outcome of two predefined types of pooling 

[51] of the hierarchical matrix A : 

1 1

1

1
{ [ ]} { [j]}, 1:

N
F F i

i

f f j j K
N =

= = =α      (12) 

 
Figure 3: Sixty one learned atoms of a dictionary for three levels of sparsity a) low, b) medium, c) high. 

 
Figure 4: Detail of the figure 2 hierarchical tree structure 

with some embedded dictionary atoms. 
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2 2{ [ ]} max( [ ] ),  1: N,  1:F F if f j j i j K= = = =α   (13) 

Further expansion of the feature dimensionality is 

achieved by employing the same pooling strategy to 

specific patches that are parts of image segments 

designated by a specially designed equimass spatial 

pyramid of 2 × 2 or 3 × 3 segments, which apply to images 

of varying size [52], resulting to total dimensionality of 

305 or 610.  

4. Experiments 

4.1. Datasets 

Two popular signature datasets were used in order to 

demonstrate the proposed system architecture. The first 

one was created at CEDAR, Buffalo University [53]. For 

each one of the 55 enrolled writers, a total of forty-eight 

signature specimens (24 genuine and 24 simulated) 

confined in a 50 mm by 50 mm square box were provided 

and digitized at 300 dpi. The simulated signatures found in 

the CEDAR database are composed from a mixture of 

random, simple and skilled forgeries. The second signature 

database used was the off-line version of the MCYT 

signature database [54]. A whole of thirty (15 genuine and 

15 simulated) signature samples were recorded for each 

one of the 75 enrolled writers at a resolution of 600 dpi. 

Due to the diverse acquisition settings for the two 

aforesaid signature databases and given that the patch size 

exploits information within a 5 ×5 grid, the thinning levels 

for the CEDAR, MCYT and datasets have been set to one, 

and two correspondingly in order that primitives strokes fit 

within it. Both datasets have a noteworthy property which 

is that their samples have been acquired with the use of 

only one bounding box.  

4.2. Experimental scenarios 

The experimental setup is quite straightforward as we 

implement a writer dependent SVs, that is a specific model 

is being built for every participant. The number of genuine 

reference samples for each writer REF
GN in this work has 

been set to five, imitating cases in which a limited number 

of samples is available. Then, given the two tree 

topologies the 
0

tree

l
D  hierarchical dictionary is evaluated 

each time and is hereafter regarded to symbolize the 

handwriting model of the specific writer.  

In the training stage, the genuine enrollment set is 

complemented by the negative class representatives in 

order to form the training set. The negative class is 

composed from RFN =10 out of 54 or 74 samples 

(depending on the CEDAR or MCYT75 dataset), by 

selecting one random sample from 10 out of the remaining 

writers. Each one of the REF
GN and RFN  samples is 

analyzed with the use of the SR algorithm expressed with 

eq, (8) and the claimed 
0

tree

l
D  dictionary matrix. Next, the 

corresponding sparse coefficients A are evaluated along 

with their final features 1Ff , 2Ff : in order to provide the 

positive and negative class  dimREF
GN

Rω ×⊕ ∈  and 
2   dimREF

GN
Rω × ×− ∈ . Summarizing, a corresponding training 

feature set 3   dim[ , ]
REF
GNRω ω × ×⊕ − ∈  is used as an input to a 

binary, radial basis SVM classifier. A holdout cross-

validation procedure returns the optimal operation values 

of the margin and the scale parameters with respect to the 

maximum value of the Area Under Curve. Furthermore, 

the cross-validation procedure extracts for each writer its 

output scores conditioned on the positive only ω⊕
 class 

samples CVS⊕
. Concluding, the testing stage makes use of 

TABLE 1.  VERIFICATION ERROR RATES (%) FOR THE CEDAR SIGNATURE DATASET WITH 0

treel -NORM FOR A TREE STRUCTURE OF DEPTH 4 AND 

BRANCH LEVELS EQUAL TO [6 3 2]. NUMBER OF REFERENCE TRAINING SAMPLES EQUALS TO FIVE. 

 

Pooling method 
 Segments: (1+2× 2),  Dim=305 Segments: (1+3 × 3),  Dim=610 

PFAR(S) PFRR EERusertheesh PFAR(R) PFAR(S) PFRR EERusertheesh PFAR(R) 

Average 6.44 7.19 2.56 0.40 6.67 7.42 2.72 0.33 

Max 14.8 18.2 13.6 7.85 15.1 18.1 13.7 7.96 

TABLE 2.  VERIFICATION ERROR RATES (%) FOR THE CEDAR SIGNATURE DATASET WITH 0

treel -NORM FOR A TREE STRUCTURE OF DEPTH 3 AND 

BRANCH LEVELS EQUAL TO [20 2]. NUMBER OF REFERENCE TRAINING SAMPLES EQUALS TO FIVE. 

 

Pooling method 
 Segments: (1+2× 2),  Dim=305 Segments: (1+3 × 3),  Dim=610 

PFAR(S) PFRR EERusertheesh PFAR(R) PFAR(S) PFRR EERusertheesh PFAR(R) 

Average 6.06 6.95 2.30 0.35 6.32 6.41 2.42 0.24 

Max 12.9 17.1 10.2 6.67 13.1 17.2 10.4 6.98 

550



 

the remaining genuine signatures, its associated skilled 

forgeries (S) and a number of 44 or 64 random forgeries 

(R) by taking one random sample from the remaining 

writers which do not participate to the formation of the 

training set. Results are reported by means of the following 

receiver operating characteristic (ROC) probabilities: the 

(S)FAR
P and 

FRR
P error rates which are computed as a 

function of a rolling threshold- value- whose extremes 

exists between the minimum and maximum values of the 

CVS⊕
cross validation procedure. Two different 

verification approaches are reported. In the first, a hard 

threshold is utilized to separate the genuine sample from 

skilled forgeries. The selection of this hard threshold 

depends only on the genuine reference samples as they are 

the only ones available during training. Therefore its 

determination depends only on the values that are obtained 

during the cross validation stage. In a typical scenario, this 

hard threshold is set to 50% of the genuine scores. 

Additionally, we report also the equal error rate per user 

defined as EERuser-threshold: to be the point in which the two 

errors coincide 
(S)FAR FRR

P P= . The experiments were 

repeated ten times and their average values are reported. 

For completeness, at this specific threshold point, the 

random forgery-(R) 
(R)FAR

P error rate is evaluated by 

employing the genuine samples of the remaining writers of 

the testing set.  

4.3. Results 

Tables 1-4 present the verification results derived by the 

realization of the aforementioned experimental protocols. 

Apparently, the optimal error rates for the CEDAR dataset 

are related with the use of a 2 × 2 spatial pyramid while for 

the MCYT-75 this occurs when a 3 × 3 spatial pyramid is 

employed combined with the average pooling operation. 

This is probably due to the fact that CEDAR signatures 

have been scanned with a resolution of 300 dpi, while the 

MCYT-75 ones with a resolution of 600 dpi, leading to 

higher pixel density inside the segments. Another 

observation is that there is a consistent drop, although 

small, in the verification error for the 0

treel associated with a 

tree of depth 3 compared to the ones derived with a tree of 

depth 4. It is the intuition of the authors however that this 

effect relates to the selection of the average and max 

pooling techniques which does not convey the tree 

structure to the feature extraction method.  

Finally, Table 5 presents a comparative summary 

between the proposed method and a number of state of the 

art approaches for offline signature verification. Table 5 

provides evidence that the proposed method achieves a 

low verification error when a few genuine samples are 

available. This is considered to be at least comparable to 

other state-of-the-art methods for static signature 

verification. Comparing to classical SR methods as 

presented in [22] the method seems to slightly outperform 

in all cases. 

5. Conclusions 

In this work hierarchical dictionary learning and sparse 

coding which is a particular instance of structured sparsity 

has been applied, as a novel extension of the classic SR 

conceptual framework, for modeling and consequent 

verifying offline signatures. This concept introduces for 

the first time the idea of embedding the atoms of a 

dictionary in a rooted and directed tree in both dictionary 

learning and SR stages of an offline signature verifier. In 

the conducted experiments we employed a   regularizer 

upon two different tree structures of depths 3 and 4 and 

different branch factors. The verification results expressed 

with the user specific EER at CEDAR and MCYT 

signature datasets indicate that this method seems to 

outperform the classic SR approach and constitutes a 

TABLE 3.  VERIFICATION ERROR RATES (%) FOR THE MCYT75 SIGNATURE DATASET WITH 0

treel -NORM FOR A TREE STRUCTURE OF DEPTH 4 AND 

BRANCH LEVELS EQUAL TO [6 3 2]. NUMBER OF REFERENCE TRAINING SAMPLES EQUALS TO FIVE. 

 

Pooling method 
 Segments: (1+2× 2),  Dim=305 Segments: (1+3 × 3),  Dim=610 

PFAR(S) PFRR EERusertheesh PFAR(R) PFAR(S) PFRR EERusertheesh PFAR(R) 

Average 10.3 9.80 4.29 0.40 10.4 7.38 3.70 0.18 

Max 26.3 25.7 21.3 8.02 20.2 19.8 15.1 11.0 

TABLE 4.  VERIFICATION ERROR RATES (%) FOR THE MCYT75 SIGNATURE DATASET WITH 0

treel -NORM FOR A TREE STRUCTURE OF DEPTH 3 AND 

BRANCH LEVELS EQUAL TO [20 2]. NUMBER OF REFERENCE TRAINING SAMPLES EQUALS TO FIVE. 

 

Pooling method 
 Segments: (1+2× 2),  Dim=305 Segments: (1+3 × 3),  Dim=610 

PFAR(S) PFRR EERusertheesh PFAR(R) PFAR(S) PFRR EERusertheesh PFAR(R) 

Average 9.78 9.67. 4.01 0.32 9.67 9.41 3.52 0.11 

Max 24.4 26.1 21.2 8.38 26.3 25.5 21.8 10.2 

551



 

potential candidate for offline signature verification. We 

plan to expand this work as follows: First, in addition to 

the 
0

tree
l  norm, we plan to extend our study by applying a 

number of other tree structured norms such as: the 
2

tree
l and 

the tree
l∞  as well as the multi-task tree-structured sum of 

l∞ norms. Second, we plan to pursue a line of research 

which will employ optimization tools for structured norms 

with general overlapping groups or particular instances of 

other group-oriented norms such as the sparse group 

Lasso. Third, we also plan to study the effect of positivity 

of the coefficients or the dictionary atoms. Fourth, we plan 

to explore the effect to the verification performance of 

selecting various tree depth levels with several branch 

factors; although it has been already pointed out that a 

large depth level may result into pointless execution times. 

Another important option will be to explore specific 

pooling which will also exploit the structure of the 

problem instead of using unstructured pooling styles like 

the averages. Finally we intend to incorporate several other 

signature datasets with parameters like different bounding 

boxes in order to simulate actual life conditions. 
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