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Abstract

Power reduction and speed-up of image processing al-

gorithms remain of high interest as image resolutions con-

tinue to increase. Neuromorphic-circuits are inspired by

the nervous system aiming to reduce power consumption

and speed-up. This paper presents a neuromorphic smart

image sensor designed by the pixel-parallel 3D hierarchical

architecture with an on-chip attention module. The module

dynamically detects regions with relevant information and

produces a feedback path to sample those regions at high

speed. On the other hand, by sampling non-relevant regions

with a low-speed, the sensor can reduce redundancy and

enable high-performance computing by ensuring low-power

operation. The image sensor is comprised of several hier-

archical planes and each plane has small and independent

reconfigurable computational units (XPU). In each plane,

all XPUs operate in parallel with a different operating speed

which gives a pixel-parallel architecture. When the raw im-

age passes through the hierarchical planes, necessary image

processing algorithms are performed in parallel on different

planes at a variable clock rate for saving power and reduc-

ing redundancy. The goal of this work is to prototype the

focal plane image sensor which emulates the brain features.

The results show that the prototype achieves remarkable

power saving and speed-up at different stages.

1. Introduction

Cameras are pervasively used for surveillance and mon-

itoring applications and can capture a substantial amount

of image data [1, 2]. The processing of this data is either

performed a-posteriori or at powerful back-end server. On

the other hand, most camera systems are used as data collec-

tion and relaying units while the processing happens at those

servers. Posteriori and non-real-time video analysis may be

sufficient for certain groups of applications. However, it does

not suffice for applications such as accident determination

and distracted driving detection image analysis using cam-

eras on drones, that require near real-time video and image

analysis, sometimes under SWAP (Size Weight and Power)

constraints. Given the raw amount of data captured from

cameras and the lack of reliable high bandwidth wireless

connectivity that can facilitate the transfer of image data to

back-end servers, we hypothesize that future data challenges

in camera sensors can be overcome by pushing computation

close to the image sensor. Such systems will exploit the mas-

sively parallel nature of sensor arrays to reduce the amount

of data analyzed at the processing unit. To this end, vertically

integrated technology, such as focal plane sensor processors

(FPSP) [3, 4], have been developed to overcome the limita-

tions of conventional image processing systems. FPSP refers

to a block which includes a photoreceptor along with a local

pixel processor. Figure 1 illustrates the focal plane process-

ing where each block represents an FPSP and works on only

the pixel received by its photoreceptor. Research on FPSPs

has mostly focused on technology aspects with some proof

of concepts. Vision sensors that incorporate general-purpose

digital processors on the focal plane have been a subject

of a number of commercial developments. While these de-

vices are re-programmable and offer the benefits of in-sensor

processing such as performance and bandwidth reduction,

they exhibit many drawbacks. For instance, each column of

pixels is handled by a single processor, which reduces the

parallelism and all pixels are treated equally and processed

at the same rate, despite differences in input relevance for

the application at hand. Consequently, systems spend more

time spinning on non-relevant data, which increases sensing,

computation time, and power consumption. System-on-chip

designs that incorporate hardware accelerators have been

considered a viable solution in recent years to provide in-situ

efficiency in image processing applications [5–8].

However, the conventional hardware accelerators execute

in a sequential pixel read-out manner, which restricts the

architecture from exploiting the full extent of the image’s

parallel nature. In those areas where high-speed image ac-

quisition is required, a fast collection of image pixels and
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processing should be ensured at the minimum span of time.

In order to achieve this goal, highly parallel architecture

design is inevitable.

To overcome the limitations of existing architectures, in

this paper, we present the design of a highly parallel, hierar-

chical, reconfigurable and vertically-integrated 3D sensing-

computing architecture for real-time, and low-power video

analysis. To increase performance, while reducing power,

the proposed architecture leverages the concept of the biolog-

ical vision systems to reduce redundancy and deploy more

resources on an important part of scene images. Visual atten-

tion is used by the brain to rapidly detect and deploy more

resources to salient parts of a given scene [9], more precisely,

it allows the brain to remove redundancy and transfer only

useful information to high-level parts of the brain for further

processing. The paradigm is implemented in the brain in a

chain of fast feedforward signals that carry information to

high-level part of the brain, while feedback signal provides

configuration to the lower part of the visual cortex [10].

As shown in Figure 2, our presented architecture exploits

saliency-based visual attention found in the brain, along

with maximal parallelism, which results in a hierarchical im-

age processing hardware architecture made of computational

units that reside in three inter-twined logical planes. The first

plane in the figure consists of fine-grained reconfigurable

components that collaboratively analyze a collection of pix-

els to detect the early visual feature of the input image. The

results of this step are fed into the next plane where relatively

higher-level image processing (for instance line, circle, trian-

gle, motion detection, feature extraction for recognition, etc.)

is performed and mapped on salient events in an image. The

map is then searched for events and objects in the third plane

of computation. The higher sampling frequency is used in

relevant regions, which are dynamically detected with rele-

vant information, and produces a feedback path. In order to

detect saliency, we extract the early visual features such as

the number of edges or corner pixels in different regions of

the image. We combined this knowledge of features for a

region to calculate visual saliency. To check the viability of

our design, we simulated our architecture on Virtex-7 [11]

Figure 1. Focal Plane Image Processing; Each block in the image

corresponds to an Focal Plane Sensor Processor.

Figure 2. Overview of the 3D bottom up architecture of the smart

image sensor. The computational units are organized in planes,

where the output of each layer serves input for the next one.

FPGA and we extracted the basic constraints of each module

from Design Compiler [12] and Innovus [13]. The results

show that by trading off resource overhead we can obtain

high throughput while reducing redundancy and power con-

sumption. The proposed architecture can be applied to a

large set of image processing applications where real-time

operation is needed.

The remaining sections of the paper are organized as fol-

lows. Section 2 presents related work. We discuss about our

proposed architecture in Section 3 . A real-time application

is demonstrated as a case study and we analyze it in Section

4. Section 5 provides the implementation and experimental

results that justify the viability of our design. Finally, we

conclude the paper in Section 6.

2. Related Work

In this section, we will review relevant research work that

have been developed to reduce redundancy and to overcome

the limitations of conventional image processing systems.

Then we will discuss different studies on visual attention

approaches.

Understanding the concept of visual attention is com-

plex and fortunately neuroscientists are working to devise

a brain-like processor [14, 15]. In a brain-like chip, one of

the challenges is the parallel image acquisition from nature

by designing a on-chip sensor. Tyrrell et al. proposed a

per-pixel architecture of CMOS digital focal plane readout

for the orthogonal-transfer-based real-time digital signal pro-

cessing [4]. Their per-pixel parallel architecture combines

with image detection and signal processing which keeps

all processors busy. They achieved high speed-up but it

imposes high power consumption. The integration of com-

plex processing may consume more power and this might
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be responsible for the design bottleneck. Since high power

consumption is a limitation in pixel-parallel architecture, a

3D design can be a viable solution to mitigate this problem.

In [16], authors showed that by using 3D design they can

achieve 50% and 35% savings in power consumption and

area overhead, respectively. Adding to it, 3D connection

gives a neuron-like connectivity among the circuit elements

in both lateral and transverse direction which gives a brain-

like design.

Alternately, the power dissipation can be further reduced

by minimizing the redundancy within the system. A natural

image contains a lot of irrelevant pixels or redundancies and

there is research [6,17–19] works to truncate those irrelevant

pixels. Streaming data reduction is a form of reducing re-

dundancy which is performed in image processing systems

using region of interest (ROI) based strategies to limit the

computation of data only to regions with high relevance.

To reduce communication bandwidth, it is built and sent

across the network in collaborative tracking systems such

as profiled data of tracked target [17]. Many ROI-based

computations [16-20], are used in image data compression

to further reduce the amount of data to be transported, thus

increasing the compression ratio in reducing transported

data. Computational models of visual attention have been

proposed in many variations [6, 18] to emulate the human

reaction to scene events and allow systems to focus on the

most important ones. In this line, the main concern of those

presented works are related to the visual attention mapping

and tracking ROI in different approaches.

It is notable that all these work concentrate on how the

biological vision systems focus on an image. The knowledge

was not further investigated for an efficient design aiming

to reduce the power consumption in a circuit. The design of

an on-chip visual attention module enables us to generate

the saliency map. In [19], the authors used the attention

module in an image sensor for detecting the saliency map.

The design has the focal plane attention based image sensor

but it is also limited to ROI generation. In addition, the use

of one-bit analog to digital converter (ADC) is a limitation

in high-performance computing.

Most recently, Intel introduced a prototype of neuromor-

phic chip loihi [22] with a self learning capability to mimic

the processing in the brain. The prototype is 1000 times

more energy efficient than the general purpose processor

and achieves a million times faster learning rate than typical

spiking neural nets. They incorporated the concept of high

speed parallel computing. However, the design does not

consider in-sensor computation.

Work on reconfigurable architectural design approaches,

for mapping saliency map to reduce power consumption and

speed-up, has not been investigated previously. In this paper,

we explored the neuromorphic smart image sensor based on

FPSP where we incorporated the on-chip attention module to

Figure 3. PPU-RPU interconnection structure with feedforward and

feedback connections.

find out the relevant regions and process those regions at high

speed. In addition, the pixel-parallel 3D architecture gives

the design maximal parallelism and provides low power

consumption.

3. Architecture Overview

In this section, we describe the overall architecture of

our design. Our proposed architecture is organized into

three planes namely Pixel-Level Processing Plane (PLPP),

Structure-Level Processing Plane (SLPP), and Knowledge

Inference Plane (NIP). The planes are comprised of recon-

figurable processing units to meet the computational needs

of an application. We present the functional block of each

hierarchical plane in Figure 3, where the PLPP receives an

array of pixels in parallel and extracts early visual features.

The features are then fedforward to the SLPP plane, where

comparatively complicated processing is performed. The

output of each processing unit is fedforward to the NIP for

complex operation. We describe the functional details of the

hierarchical planes below.

3.1. Pixel­Level Processing Plane (PLPP)

The PLPP is the first stage in the hierarchy which is

responsible for image acquisition and low-level image pro-

cessing as shown in Figure 3. This plane has two major

components, Pixel Processing Unit (PPU) and Clock Musk

(CM). In this figure, we have shown only two groups of PPU

by showing them in two squares and each group is driven by

a single CM.

The PPU contains pixel circuit, ADC, Interconnect Man-

ager (IM), and a Digital Processor (DP). Here, each PPU

is connected with its neighboring PPUs. The detail orien-

tation of PPUs is depicted in Figure 4. The pixel circuit

contains a photodiode (PD) and an amplifier. The PD creates

a photocurrent when photon energy imposed on it and the

amplifier converts it to a voltage. The ADC has a Sample

and hold (S/H) unit which samples the analog signal and
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Figure 4. (a) PPU array in the PLPP layer (b) Interconnection

among the PPU (c) Components of a PPU includes Pixel Circuit,

ADC, Interconnect Manager, and Digital Processor.

maintains a constant voltage level for a specific amount of

time. The ADC converts the constant analog voltage into

an 8-bit digital value in that time instance. Hence, the im-

posed scene on the focal plane is transformed into an 8-bit

gray-scale image. The ADC is followed by an IM as shown

in Figure 5 which instantly routes the data to its DP and

to the neighboring DPs at a time. In this figure, the IM-4

forwards the data to DP-4 and its neighboring DPs which are

numbered as DP-0 to DP-8. In the same way, IM-5 routes

the data from ADC-5 to DP (3˜11). Instead of storing the

data, the IM updates pixel values in each clock cycle.

The architecture of the PPU gives the option to perform

independent operations in the PPU in parallel which gives

a pixel-parallel architecture with high throughput. Each DP

has its own pixel value along with its neighboring values.

With these values it performs low-level operations for in-

stance edge or corner detection, thresholding, smoothing,

inversion, filtering, and morphological operations like di-

lation and erosion. Those operations determine whether a

pixel lies on an ROI.

A clock-musk unit is connected to each PPU for assigning

appropriate clock frequency which is shown in Figure 6. A

group of PPUs is connected with an XPU in the second plane,

and the XPU gives a feedback signal to the corresponding

Figure 5. Signal flow from the ADC to Digital Processors(DP):

ADC-4 is connected to DP-4 and its neighbor, and similarly ADC-5

is connected to DP-5 and its neighbor.

Figure 6. Clock Musk (CM) unit: System Clock is divided into

number of clocks and feedback signal determines the appropriate

clock for the Digital Processor.

CM. The XPU specifies the suitable clock frequency for

the PPU group and passes the information by the feedback

signal. The clock assignment allows the design to perform a

multi-clock computation in the PLPP layer by maintaining

the consistency among signals in parallel. The purpose of the

clock musk is to slow down operations in irrelevant regions

of an image.

Our proposed architecture in the PLPP leverages the par-

allel nature of pixel-sensing and low-level processing simul-

taneously. The focal plane computation in the PLPP layer

provides high throughput at high-speed.

3.2. Structure­Level Processing Plane (SLPP)

The SLPP is the second stage in the hierarchical model

as shown in Figure 3 and the plane takes only the features

as input from the PLPP. Features have less data than the

input image. Hence, the data volume reduces for the SLPP

plane. This layer has a number of XPUs and they work

as independent units and execute the assigned operation

in parallel. The XPU generates a distributed output with

these features and the output is forwarded to the NIP by a

bus. All XPUs in this layer have the same configuration and

generate an output at the same time. In addition, the SLPP

is connected to the PLPP plane by a feedback signal. The

XPU in this plane has two components, attention module

and Regional Processing Unit (RPU). Figure 7 provides the

closer view of the XPU of the SLPP layer and we present

the detail functionalities in the following subsections.

3.2.1 Attention Module

The attention module is the brain of the SLPP layer which

receives the extracted early visual features from the PLPP in

parallel and generates a feedback and a feedforward signal

Figure 7. XPUs single flow in the SLPP: The Attention Module

and RPU.
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to drive the PPU and RPU respectively and it is shown in

Figure 7.

The module is responsible for computing the visual

saliency in a region. If a region has inadequate visual in-

formation, then the attention module generates a saliency

score which is less than a threshold. In this case, this module

puts zero to the enable port of the RPU and puts zero in the

feedback path to select the slowest-clock from the CM. This

assignment makes RPU to postpone its execution and initi-

ates the slowest processing in the PLPP layer form the next

image frame for that region. Alternately, when the saliency

score is greater than threshold, then the attention module

enables the RPU and selects faster-clock based on the score.

In biological vision systems, the brain focuses on the

points where there is enough visual information and other

portions are ignored. Similarly, our architecture temporarily

ignores irrelevant regions by assigning a slow-clock to them.

Alternately, when saliency score becomes significant, our

design assigns fast-clock to that region to execute those

pixels with high importance.

3.2.2 Regional Processing Unit (RPU)

The RPU has a more coarse-grained processor and operates

on broader regions of the image than the PPU. Where the

PPU is responsible for only one pixel, the RPU processes

on the group of pixels as shown in Figure 3. The figure

indicates, there is one RPU for each PPU group in the PLPP.

Figure 7 presents an elaborated functional view of the

RPU. The RPU receives the input from the attention module

with an enable signal. After that, it starts executing and

sends the distributed output to the NIP by a bus for further

processing. This processor is always assigned with the fast-

clock and maintains an asynchronous connection with the

attention module. The RPU is a reconfigurable unit and

we can implement different kinds of complicated computer

vision applications for instance line, circle, blob, shape, ob-

ject detection on this processor. The PLPP performs the

preliminary job of a complex algorithm and this reduces the

execution overhead. The computation in the RPU is discrete

and don’t have the knowledge of the entire image.

One of the objectives of the design is to save power. When

an RPU is not receiving the enable signal from the attention

module, it remains idle and doesn’t consume power. Hence,

the possible power saving is proportional to the number of

idle RPUs in the SLPP layer.

3.3. Knowledge Inference Plane (NIP)

The output of the SLPP is combined with the inference

knowledge of a scene. Sequences of distributed features

such as lines, circles, rectangles, and contours can be com-

bined with infer knowledge of a scene. As opposed to the

PLPP and SLPP, which operate on large amounts of data, the

features are vastly reduced in the NIP to the extent that they

can be processed sequentially by an embedded processor

with average performance. The integration of our relevance-

feedback method as explained earlier, further limits features

to only relevant regions of an image. The knowledge infer-

ence plane implements clustering and some other processing

preferred by the user to accumulate all the segregated in-

formation obtained from the RPUs. In this design, the NIP

receives inputs from each RPU in parallel. In addition, those

RPUs which are inactive and don’t have the line equation

will be discarded by the NIP. As a consequence, the num-

ber of effective inputs for the sequential processor further

decreases and this feature enhances the system performance

by speeding up the sequential operation.

The designed system-on-chip architecture, with a low-

frequency (in the 100 MHz range) processor, enhances the

speed-up and performance by reducing the effective inputs.

3.4. The Overall Architectural Evaluation

The key feature of the hierarchical architecture using

XPUs is the maximal parallelism provided vertically and

horizontally within and across processing planes. In addition,

the three layers described above maintain a hierarchy and

each layer communicates with its adjacent layers in real-

time. The layered design introduces a 3D pixel-parallel

structure. If we come down from the PLPP to the NIP,

there is a gradual degradation in data volume but gradual

increase in the image processing complexity; which is a

common feature of a bottom-up architecture in the brain.

In the nervous system, as we go deeper from the retina to

the deep layer, the complexity of processing increases. The

visual attention scheme in the nervous system decreases the

data volume from layer to layer. In the human visual system,

from Retina to Layer-4 early visual features are extracted,

complex processing is carried out in Layer-5, and the deep-

layer accumulates all information and gives the final output

and there are feedback and feedforward connections among

the layers [10]. Transitioning from the human visual system

to our design, the PLPP emulates retina to Layer-4, the SLPP

imitates Layer-5, and the NIP acts like the deep layer.

Therefore, in our work, we have emulated the basic con-

cept of the biological visual system in a circuit by designing

a pixel-parallel focal plane smart neuromorphic image sensor

with a bottom-up hierarchical 3D architecture.

4. Case Study

To rationalize our architecture, we reconfigure our system

for a specific real-time application and compare our design

to existing solutions found in the literature [3], [23]. In this

section, we provide a real-world use case scenario of lane

detection method and analyze the performance in terms of

speed-up and power saving.
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The conventional approaches for lane detection are fol-

lowed by some sequential operations as represented by a

flowchart depicted in Figure 8. The image sensor reads

an image and forwards it to the back-end processor. The

processor performs preliminary computations such as noise

reduction, image enhancement or image smoothing which

are followed by an ROI generation. After that, an edge detec-

tion algorithm is applied. The edge detected image provides

the features for line detection. The output of the line detec-

tion algorithm can generate several lines but a few of them

represent lanes. A clustering or classifying algorithm gives

possible lanes from the multiple lines.

Figure 8. Block diagram of Lane detection.

When a sequential processor computes all those computa-

tions, it becomes hard to meet the demand for real-time oper-

ation. In Figure 8, the edge detection and line detection steps

are computationally expensive for a sequential processor.

To overcome this limitation, researchers normally achieve

speed-up by introducing hardware-accelerators and run indi-

vidual portions of the execution which are computationally

expensive. In [23], the authors proposed a system-on-chip ar-

chitecture for real-time lane detection. Images were acquired

from an image sensor mounted on the windshield of a car to

provide lane departure notification. The edge and the line

detection were performed in a hardware accelerator and the

rest of the operations were computed on the sequential pro-

cessor. The authors reported an overall speed-up of 2.09×

with respect to software implementation. For a larger im-

age, the sequential operation will require more computation

time and reduce the frame rate as a consequence. In [24],

authors presented a nice correlation with frame rate with

image size. They showed the gradual degradation in frame

rate with the gradual increase in pixel count in a sequential

processor implemented on a hardware accelerator.

However, our architecture solves this problem by dividing

and assigning the computer vision application on those three

layers. In the first layer, we implement edge detection on

DPs and these processors convert a grayscale image into a

binary image which is fed into the SLPP plane. Since the

PLPP takes an 8-bit input image and gives a one-bit output

image, the PLPP layer contributes to reduce 8× data volume.

The SLPP divides the entire image into several regions. The

attention module receives data and computes the saliency

score for that region. When a score is greater than a threshold,

we assign fast clock in the PLPP and the RPU looks for the

possible line equations on the block. Conversely, the RPU

halts the execution when the score is less than a threshold and

Digital Processors in the group are assigned to a 10× slower

clock from the next clock cycle. At the same time, From the

SLPP layer, a distributed line equations are forwarded to the

NIP. When a region does not have enough visual information,

will not send any data to the NIP. Based on the input image,

there will be a number of XPUs in SLPP that will remain

idle. This inactive RPUs will reduce the data volume in the

NIP. In NIP, we execute a clustering algorithm which collects

the distributed knowledge and populates lines on the lane.

We have reported the performance of each stage in section5.

5. Experimental Result

We organize this section with the Evaluation and imple-

mentation detail of our model and then followed with a

discussion on the performance of our architecture, which

includes resource utilization, power consumption, area pro-

jection, timing information, and speed-up.

5.1. Evaluation Infrastructure

We used the Virtex-7 [11] FPGA board from Xilinx as

an evaluation platform to prototype our model. The RTL

analysis of the prototype gives the latency, resource utiliza-

tion, and power consumption of each hierarchical plane.

We tested each unit in the Application Specific Integrated

Circuit (ASIC) domain to meet the industry standard for fab-

rication. We used Design-Compiler [12] from Synopsys and

Innovus [13] from Cadence to achieve the layout design for

each module in 90nm technology. From the layout design,

we accumulate the area, power, timing constraints and then

analyze those values with different operating conditions.

5.2. Implementation Detail

This architecture we have presented can be modeled for

different computer vision applications by splitting the entire

operation into three segments and distributing them in the

three layers. In this section, we describe our implementation

for the real-time high-speed lane detection as described in the

section 4. The following sections describe the performance

in different planes.

5.2.1 Performance of the PLPP Layer

In the reconfigurable PPU, we have implemented Sobel edge

detection for achieving early visual features. We used Design

Compiler Ultra [12] and Innovus [13] to design the layout of

the DP, IM, and CM using 1 GHz clock frequency. We have

summarized the layout extracted parameters in Table1.

The table shows that area overhead of the processor is

low and this gives an advantage to improve the fill-factor

of the image sensor. In [3], authors spend 43% area for the

Digital Processor and 27% for a memory unit in the focal

plane which reduce the fill-factor.

It is notable that, we didn’t include any memory unit to

store the pixel data in the PLPP layer rather we routed the

data in vertical and horizontal direction. Hence, the overall
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Table 1. Key Functional Modules Specification in the PLPP Layer

Performance Matric DP CM IM

Area ( um2) 380.11 596.37 45.22

Power (uW) 918.7 561.6 100.1

Timing (ns) 0.943 0.786 0.469

Wire-Length (um) 1121 1947 21.58

No. of Cells 199 170 17

Cell Density(%) 65.67 59.6 60.2

Table 2. The possible Power Saving in the Processor by increasing

Time-Period with 2GHz reference-clock
Time Period

1X 2X 4X 8X 10X 20X

Power Cons-

umption (uW)
953.7 480.4 243.8 125.5 101.8 54.5

Power Sav-

ing (%)
0 49.62 74.43 86.84 89.33 94.28

area reduces which improves the fill-factor. In 90nm technol-

ogy, the pixel circuit consumes an area of 401.6um2 [25] and

the ADC consumes 0.021mm2 [26]. The estimated active

area for a VGA image (640 x 480) size will be 7250mm2

which has 307200 PPUs. The chip size is compatible with

the available neuromorphic chip [22]. In the PPU, an ADC

occupies major portion. The use of newer technology (32nm)

with the advanced method (spintronics) can reduce the ADC

area to 10um2 [27].

In the PLPP layer, the CM saves power by assigning

multiple clocks in the plane. In this processor, we applied

different clock frequencies ranging from 2GHz to 25MHz to

observe the variation in power consumption. The simulation

result obtained from design compiler [12] is given and have

been tabulated in Table 2. The analysis shows that when 10

times slower clock is applied, the processor saves 89.33%

power compared with the reference clock-frequency (2GHz).

We designed those modules in an FPGA to analyze the

behavior and summarized in Table 3. Here, the DP takes 2

and IM takes 1 clock-cycle and the PLPP updates the output

every 2 clock-cycle.

Figure 9. Power Consumption versus time period analysis in the

DP: The 10 times slower clock has 89% power savings.

Table 3. Resource Utilization and Timing in FPGA

Module FFs LUTs Clock Cycles

DP 1 91 2

IM 1 8 1

CM 25 35 2

5.2.2 Performance of the SLPP Layer

In the SLPP layer, we implement Hough Line Transform

(HLT) algorithm to detect lines in each region. This algo-

rithm looks at many possible lines in an image and among

them, the horizontally inclined lines do not represent a lane.

In our implementation, we prevent those lines by adding a

filter in HLT algorithm. When a line makes an angle in be-

tween 30◦ -150◦ with the horizontal axis, our RPU considers

that as a line. This approach prevents false line detection and

lessens the burden to the sequential processor.

Although the reconfigurable units can be tailored to a

larger region, for simplification, we have considered an RPU

is connected to an 8x8 region (64 PPUs) for extracting pa-

rameters. Table 4, which presents different constraints of

the XPU unit shows that the attention module consumes

only 4.98% power with an 2% area overhead in the XPU. To

this extent, we can save 95.02% power consumption from

an XPU when the RPU is inactive. In a complete design,

numbers of RPUs will remain inactive which determines the

amount of power savings from the SLPP layer.

In Table 5 we provide the FPGA resource utilization and

timing performance for line detection. This table shows

that the attention module generates outputs in every 2 clock-

cycles and continues its surveillance for finding an ROI.

However, the SLPP layer has 8-times reduced data volume

than the PLPP layer and inactive RPUs save power and

reduce redundancy of an image.

Table 4. Key Functional Modules Specification in the SLPP Layer

RPU Attention Module

Area (um2) 42438.438 894.824

Power (uW) 26710 1402

Timing (ns) 1.459 0.959

Wire Length 696018 151

No. of Cells 29048 25

Cell Density(%) 74.81 58.81

Table 5. Resource Utilization and Timing performance in FPGA

Module FFs LUTs Clock Cycles

RPU 13198 85446 1650

Attention Module 74 90 2
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Table 6. Overall Resource utilization in FPGA
PLPP SLPP

Usages Utilization(%) Usages Utilization(%)

LUTs 57339 18.9 257148 84.69

FFs 1377 0.23 40260 6.64

Clock 3 - 1652 -

5.2.3 The Overall Implementation

We have tested the design for a comparatively small image in

an FPGA to check the end to end connectivity. The design is

comprised with 576 PPUs and 9 RPUs. The main objective

of the FPGA implementation is to test the design integrity

for a small image by analyzing the performance and resource

utilization. We have implemented the layers separately in

the FPGA and tabulated the result in Table 6. Those results

show that when an image imposed on the PLPP, with a

100MHz system-clock, we get discreet line equations after

165ns. The drawback of the design is that it consumes more

resources for the nature of parallel execution. A biological

vision systems also have huge resources but the utilization of

these resources remains low. Transitioning to our design, we

need more resources and with have redundancies in resource

utilization. The prominent feature of the design is that the

pixel-parallel architecture is highly scalable and has the same

behavior for large images.

Besides, we performed software simulations to test the

behavior of different planes with pragmatic image sizes.

Figure 10 shows the software simulated output images of

each layer. Figure 10 (a) is the input image to the PLPP

and this layer gives edge detected image using Sobel edge

detection and shown in Figure 10(b). We have considered

six RPUs which divides the image into six groups. If each

group has enough edge pixels, then the six RPUs will work

in parallel to generate line equations. In Figure 10(c), three

regions haven’t enough edge pixels and our architecture

keeps them inactive. As a result, we can achieve nearly 47%

power savings in the SLPP layer according to the simulation

in section 5.2.2. Finally, in Figure 10(d), we showed the lane

detected output image which is obtained in the NIP.

5.3. Performance Analysis

PLPP an SLPP perform two operations: edge detection

and line detection. In [3], edge detection took 84 cycles

and in [23], they took 2.589ms. Comparing with them, our

PLPP takes only 3 clock-cycles or 30ns for edge detection.

Alternately, the author in [23], reported 41ms was required

to compute lines in an image with an image size of (320x37).

In contrast, our SLPP layer completes line detection in 165ns

in FPGA with 100MHz clock. However, the execution time

doesn’t depend on the image size in our design and the

parallel nature achieves high speed-up in each stage.

The ASIC implementation gives the CMOS level informa-

Figure 10. Images in the Hierarchical Plane, (a) Image input in

the PLPP layer (b) Output of the PLPP (c) Output of the SLPP

(d) Output of the NIP layer. The lanes are highlighted in the main

image with red marks [28].

tion for each module. We perform area, power, and timing

analysis for all modules to design a neuromorphic chip. Al-

ternately the FPGA implementation gives the end to end

integrity of the design. This implementation gives the proof

that the design is reconfigurable and scalable by maintain-

ing the same performance. Finally, the software simulation

shows the outcome of each stage of the hierarchical planes.

6. Conclusion

In this paper, we presented a pixel-parallel 3D architecture

of a neuromorphic image sensor. The sensor uses different

sampling frequencies in different regions of an image to en-

able high-performance computing at low power. The smart

sensor is designed as a 3D bottom-up architecture composing

of several computational planes where each plane performs

different image processing algorithms in a highly parallel

manner. The model emulates the hierarchical process of

the nervous system by providing feedforward and feedback

information flow between different planes. The designed

attention module dynamically detects regions with relevant

information and produces a feedback path to sample those

regions with a higher clock frequency. We have tested the

viability of our design by prototyping it on an FPGA and

ASIC platform. The results showed that by trading off re-

source overhead we can obtain high speed-up while reducing

redundancy and power consumption.
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