
GPU based Video Object Tracking on PTZ Cameras

Cevahir Cigla, Kemal Emrecan Sahin and Fikret Alim

Aselsan Inc.

Turkey

ccigla,kesahin,fikretalim@aselsan.com.tr

Abstract

In this study, an embedded Pan-Tilt-Zoom (PTZ) tracker

system design is proposed that is based on NVIDIA Tegra

K1-X1 mobile GPU platform. For this purpose, state-of-

the-art correlation filter (CF) based video object tracking

(VOT) algorithms are exploited regarding their high per-

formance. Each algorithmic step is carefully implemented

on GPU that further increases the efficiency and decreases

execution times. The PTZ control is designed to track hu-

man targets by centralizing within the image coordinates

where the targets have limited speed but obvious appear-

ance changes. Incorporating on-board decode and encode

capability of Tegra platform as well as angular position

control, the presented approach enables 50-100 fps target

tracking for HD (1920x1080) videos on K1 and X1 corre-

spondingly. This is to our best knowledge the first efficient

implementation of CF trackers on a mobile GPU platform

with use of multiple features, scale and background adapta-

tion. This study extends the scope of accuracy focused VOT

research to platform optimized efficient implementations for

real-time high resolution video tracking.

1. Introduction

VOT is a common tool for a large variety of computer vi-

sion applications such as video based surveillance and au-

tonomous robotic systems. The recent VOT benchmarks

and challenges [1], [2], [3], [4], [5] had an impact on track-

ing research by providing a common evaluation platform

for the comparison of algorithms. The key contributions of

these benchmarks are the labeled videos and availability of

open source algorithms. In that way, new studies can eas-

ily use the outputs of state-of-the-art techniques to compare

results on the same platform with much less effort.

Despite the advantages provided by these benchmarks,

there are two significant issues that have not been discussed

adequately; computational complexity and specific tracking

applications. These benchmarks mostly focus on the accu-

racy of tracking performances with respect to various eval-

uation metrics. The computational complexity is the sec-

ondary focus where timings are achieved for CPU devices

with negligible efforts on optimizations. The algorithms

are mostly implemented on high level languages (such as

MATLAB) and high compute capability devices (such as

workstations) which are far from deployment level on low

cost embedded systems. The second issue is the specific

tracking application problems. VOT benchmarks involve

large variety of videos for very different applications (fish

tracking in aquarium or tracking football players) that def-

initely require special assumptions. In that manner, after

an overall evaluation, winning algorithms may not be the

most efficient or best performing algorithms for special pur-

poses. In this study, we focus on real-time HD video PTZ

tracking on cost efficient mobile platforms and provide a

framework for real-time GPU implementations of VOT al-

gorithms. Nvidia Tegra K1 and X1 series are chosen as the

target platforms which have revolutionized mobile comput-

ing with their effective GPU capabilities. Based on the real-

time constraints, we have incorporated correlation based fil-

ter and its state-of-the-art variants as the base algorithms for

the proposed framework.

The related work on VOT is discussed in section 2, which

is followed by the details of GPU implementations of the

chosen correlation filter trackers. The fourth section is de-

voted to the hardware and data framework of the overall

system that is composed of a PTZ camera and a low cost

GPU device. Giving the experimental results, the paper

concludes by the discussions and future work.

2. Related Work

The evolution of VOT algorithms can be observed by

the annual VOT challenges [1]-[5] that provide a compre-

hensive overview. According to the recent VOT challenge

[5], almost half of the competitors exploit correlation filter

tracking and one third of the competitors take advantage of

convolutional neural networks (CNN) based features. Dis-

criminative correlation filter is the common approach for the

top ten performing algorithms. In the early years of these

challenges, KCF [6] has been the game changer approaches

767



Figure 1: The flow of correlation based trackers

that introduced efficient correlation based on Fourier Trans-

forms and multi-dimensional features. Even though the re-

cent top ten trackers [5] vary in terms of feature utilization,

Histogram-of-Gradients (HOG) [7] and color names [8] are

the common features that are exploited by all trackers.

Statistics of trackers in the recent challenges indicate that

significant amount of research is devoted for correlation fil-

ters. Circular shifts and Fast Fourier Transform are the ef-

ficient fundamental tools of CFs. The common flowchart

of CF trackers is given in Figure 1, where the target tem-

plate is correlated in the following frames within a search

region based on the extracted multiple features. Then new

position of the target is estimated by the response map ob-

tained through FFT based correlation. Finally, target model

is updated as the tracks are successful. One of the pioneer-

ing CF based approaches is DSST which exploits intensity

features to represent a target. This work is modified by use

of HOG as multi-dimensional features and kernelized cor-

relation with more robust tracking [6]. The performance

and computation balance has provided KCF to be one of

the most exploited approach in recent years. Almost each

CF tracker utilizes multi-dimensional features increasing

robustness and accuracy. SAMF [9] introduced scale adap-

tation and use of color features where different scales of the

target template are correlated to find the best match. This

has boosted-up robustness and applicability of CF for track-

ing. Recently, Staple [10] incorporated histogram features

to handle dynamic targets with shape changes. Response

maps of HOG and histogram based features are merged to

find the best match. On the other hand, context-aware CF

(CFCA) [11] and discriminative CF tracker [12] have been

proposed to handle background changes around the target

that improves accuracy and robustness.

VOT challenges provide an excellent environment to

compare trackers with the open source implementations. In

most cases, algorithms are implemented on CPU with high

level languages (MATLAB) that restricts the trial on mobile

or embedded systems. Even though they provide flexible

experimental comparison especially on tracking accuracy,

execution time evaluation is mostly restricted on CPU im-

plementations which is not sufficient to give ideas for real-

world systems. In VOT 2017, there are only two significant

trackers [12] and [13] that are implemented in GPU with

C implementations, while most GPU implementations are

given in MATLAB which requires less effort and optimiza-

tion. Recently, [14] proposed a GPU implementation of

KCF based on deep comparison network with single scale

adaptation on Tegra X1. It is also important to note that,

most of the trackers utilize high power GPUs to enable deep

learning approaches. The best performing real-time tracker

in VOT 2017 [12] is almost ten times slower than KCF on

single scale.

As the camera technology develops, video resolutions

and frame-rates increase and the need for faster trackers is

inevitable. According to [15], complexity of the trackers

losses their advantages over fundamental trackers such as

DSST and KCF for higher frame rates. The real-world sce-

narios require scale adaptation as well which increases the

computation time linearly in general. Even though DSST

provides a novel solution for scale adaptation, it is eight

times slower than KCF. At that point, special attention is

required to map those efficient algorithms to GPU apart

from the fundamental parallelization tools in high level lan-

guages. Thus, mobile platforms can benefit these efforts to

cope with fast developing camera technologies.

The other branch of VOT research is devoted to im-

prove and utilize the real time trackers on pan-tilt-zoom

(PTZ) cameras. [16] proposes a real time vision system

that focuses on control of the camera and object tracking

under different conditions by using a SONY network cam-

era SNC-RZ30N. An optical flow background estimation

method is exploited in [17] for real-time VOT using Point-

Grey Research USB 3.0 Flea-3 cameras with PTU-D46-17

pan/tilt units. [18] copes with low frame rates using SONY

IP PTZ cameras(SNC-RZ50N and SNC-RZ25N). Adaptive

background generation and moving object detection are uti-

768



lized over Panasonic PTZ camera in [19]. [20] proposes po-

sition tracking that focuses on the estimation of object posi-

tion using IP-Surveillance system contains AXIS PTZ-215

cameras. It is important to note that, none of these works

provide any analysis of their VOT algorithms as well as per-

formance over a Wide Area Network(WAN) that may cause

fluctuation in response time of camera control between PTZ

camera and VOT system.

In this study, we propose GPU implementations of well

known and recent CF trackers SAMF [9], Staple [10] and

CFCA [11] with scale adaptation on NVIDIA Tegra K1-

X1 modules which are accepted as efficient mobile plat-

forms. Preserving reported performances of the trackers,

the proposed implementation provides up to x3 speed-up

compared to full CPU implementation on the same plat-

form. Besides, we incorporate camera control on pre-

selected Dome cameras to design a smart tracker camera

that works on 1920x1080 video with 50 fps.

3. Algorithm Selection and GPU implementa-

tion

The algorithmic complexity and availability are the key

constraints that are faced during the selection of algorithms

for a real-time performing system. At that point, we fo-

cus on the mostly exploited CF trackers which provide suf-

ficient space for improvement on GPU. CF trackers have

common functional blocks as illustrated in Figure 1. As

mentioned previously, there are many types of CF trackers

which have various differences on each step. Among these

choices we have chosen a representative set of trackers that

have comprehensive features important in terms of GPU im-

plementation.

3.1. Algorithms

Kernelized correlation filter [6] has provided significant

performance boost-up as well as robustness by the use of

multiple features such as HOG. In SAMF [9], KCF has been

extended to handle changes in the scale, as well as incorpo-

rated an efficient color representation with HOG features.

Afterwards, these features have been a standard for CF

trackers with their proven reliability and robustness against

various conditions. The scale adaptation is also an impor-

tant factor that enables trackers to cope with size changes

of targets especially in surveillance systems, where position

of the cameras are generally fixed and the distance of the

targets change. It is clear that SAMF has the fundamen-

tal capabilities of CF trackers, multiple feature utilization,

scale adaptation and efficient FFT based correlation. Thus,

we have chosen SAMF as one of the baseline trackers for

GPU implementation. It can easily be mapped to KCF by

exploiting single scale and omitting color features.

Recently, staple [10] exploited histogram features to han-

dle shape changes of the targets. For this purpose, two re-

sponse maps, multiple feature based correlation and fore-

ground/background histogram similarity, are extracted and

merged by weighted summation. In [10], it is shown that

use of histogram similarity improves the tracking especially

for non-rigid objects with marginal burden on computa-

tional complexity. In the case of surveillance tracking, it

is important to handle shape changes since the targets are

mostly human. Therefore, we have chosen Staple tracker

as the second baseline for our GPU implementation frame-

work.

Adaptation of trackers according to the environmental

changes is another important factor for robustness. The

update of target model is sometimes insufficient when the

background is dynamic and highly textured. CFCA [11]

provides a solution to adapt the target models by use of

negative samples around the target. Hence, in any direc-

tion of the target, negative samples provide the tracker to

learn regions where the response should give low correla-

tion scores. In that way, background-foreground mixing is

prevented. It is a novel idea to incorporate negative samples

into the target model, which forms the third approach to be

implemented in GPU.

As indicated in [5], there are lots of variations of CF

trackers improving the performances each year. One recent

approach that has been exploited excessively in VOT chal-

lenges is the use of deep features instead of hand crafted

ones. That seems to improve the performances however in-

creasing computational complexity as well [14]. The com-

plexity is critical for the deployment on mobile devices

which is the main point of this study. For the time being,

we focus on GPU optimization of fundamental CF track-

ing features, use of multiple features (HOG-color names-

histogram), scale, shape, environment adaptation and FFT

based correlation. It is one of the best ways to exploit deep

features designed for specific targets however, there is still

room for the real time deployment of those features, which

is considered as a future direction of this study.

In the chosen CF tracker set, each method has modifica-

tions over the base KCF algorithm. They mostly vary on

the additional features as indicated previously. In Figure

2, the regions exploited to extract additional features are

shown where the orange region corresponds to the funda-

mental HOG and color name features, the red area indicates

the region for histogram calculation in staple [10], and the

blue areas define the negative response regions around to

target in [11].

3.2. GPU implementation

The target platform for the GPU implementation of CF

trackers is the well known mobile Nvidia Tegra K1-X1

boards. In general 16x16 processing blocks are utilized with

256 threads, as shown in Figure 3, that gives the most ef-

ficient tiling for K1. The thread are organized in coalesced

769



Figure 2: The regions defined for different features ex-

ploited by various CF trackers, HOG and color name fea-

tures that are common for all CF trackers, histogram fea-

tures exploited in Staple, and the false target regions for

context-aware CF tracker

memory pattern to get fast and efficient reads as shown in

the middle of the first row of Figure 3. Besides RGB im-

ages are stored in unsigned char4 format so that each thread

gets rgb values with one memory access. Having efficient

memory access, the details of GPU implementations are

presented in three steps according to the framework given

in Figure 1.

3.2.1 Feature Extraction

Feature extraction starts with the region crop around the

target center and CPU to GPU data transfer. In order to

minimize the data transfer which has a significant impact

on the computational complexity, the region correspond-

ing to the largest scale is cropped which is then re-cropped

for smaller scales as shown in the second row of Figure

3. Thus, number of memory copies is set to one and in-

dependent of the number of scales that will be searched.

Once the related region is copied to GPU device memory,

HOG features and compact color names representation are

extracted according to the tiling in Figure 3. Coalesced

memory access is used to enable fast RGB image process-

ing through low number of memory accesses. The atomic

built-in functions (i.e.atomicAdd) are efficient for the cal-

culation of histograms during HOG feature extraction. The

color names features are extracted by fast look-up tables

with the same tiling configuration in Figure 3. The fea-

ture extraction, excluding the region crop, is conducted for

each scale independently. Throughout the extraction of fea-

tures, bottleneck is formed along the histogram calculation

which depends on the atomic functions. It is still quite ef-

ficient on GPU since the size of the target region is limited

(96x128) in order to guarantee a processing time that meets

Figure 3: The tiling for GPU processing, only one CPU-

GPU memory copy is performed for highest scale.

the final tracking speed. Thus, even the initial target size

is larger that the pre-defined sizes, the cropped region is

down-sampled to the desired size, which does not affect the

tracking performance of considerably large objects.

3.2.2 Response Calculation

Once feature representation of the search region is ready,

the correlation response is calculated by the use of built-

in FFT functions of CUDA. Multiple FFT operations can

be conducted at the same time, yielding an efficient imple-

mentation for correlation. The FFT of target model and the

search region are multiplied element-wise for each chan-

nel independently with same thread tiling given in Figure

3 which is followed by inverse FFT. Then the response of

each feature channel is added to obtain the final response

of the search region. There are minor differences between

the implemented CF trackers, in SAMF the inverse FFT is

calculated for each channel independently in a kernelized

way then the addition is performed over the channels. On

the other hand, for the linear kernel version of SAMF and

the remaining trackers, only one inverse FFT calculation is

performed after the summation of channel FFTs.

In the CFCA tracker, additional operations are per-

formed for the negative response regions which follow ex-

actly the same approach described previously. Negative

response regions are included in the target model. The

regions that look like the negative sample result in low

correlation scores and prevents tracker from stucking on

background. Histogram similarity check provides addi-

tional response map that is introduced in staple. Having

the background/foreground histogram distributions, Fore-

ground similarity of each pixel is calculated in the search

region which is achieved by fast look-up tables along the

two histograms through 16x16 tiling. This response is re-

sized to the FFT response map and then added for the final

result.

770



Localization of the target is achieved by finding the

maximum correlation in the response map through built-in

atomicMax function in CUDA. Currently, we exploit pixel

precision tracking however it can easily be extended to sub-

pixel accuracy by polynomial fit around the peak response

point.

3.2.3 Model Update

The last step of visual tracking is the update of target model

with the use of recent observation. For this purpose, feature

extraction is performed on the new target position within

a region defined by target size. The new representation is

incorporated into the target model by weighted summation

which is easily achieved by pixel-wise additions on 16x16

grids.

In PTZ tracking scenario, it is required to pan and tilt

the camera in order to hold position of the target within the

center of image. For this purpose, detected target positions

in image coordinates (u,v) are converted into pan and tilt

degrees in camera coordinates as:

∆θ = tan−1
u

vc(φ) + fc(φ)

∆φ = −φ+ tan−1
vc(φ) + s(φ)

vs(∆θ) + c(∆θ)[−vs(φ) + c(φ)]
(1)

where φ is the current tilt angle position of the camera,

∆θ and ∆φ are the pan-tilt angles to be applied to get the

target at the center of the image, c and s are the abbrevia-

tions of cos and sin for simplicity. It is also important to

note that, targeting PTZ cameras to the exact pan-tilt angles

is not a good way to provide smooth tracking which results

in hysteresis with fast camera motion. Instead, we define

speed parameter for the camera, which aims to get target in

the image center within a pre-defined time interval (eg. 2

seconds). In that way, the camera slows down as the tar-

get gets closer to the center and overshooting is prevented.

The calculation of angles and the related camera speeds are

conducted on CPU which require very low computational

burden.

4. System Outline

The system architecture of the proposed smart tracker

camera is given in Figure 4. The system consists of a PTZ

camera, Tegra K1 or X1 board and video clients. In subsec-

tion 4.1, the overview of hardware structure of the system

architecture is given which is followed by the the software

structure.

4.1. Hardware Structure

As shown in the figure 4, ethernet is the main interface

that connects PTZ Camera and a Tegra as well as Video

Figure 4: Hardware Structure of Video Object Tracking

clients to the tracker camera. Hence, two separated eth-

ernet interfaces are required on Tegra platform that is met

by a mini-PCIE ethernet adapter on Tegra board. The PTZ

camera is an IP Camera with HD resolution. PTZ controls

are made over HTTP protocol through the known camera

field-of-view (FOV) and pan-tilt speeds. The camera video

stream is controlled by RTSP and the video stream is trans-

mitted by RTP over UDP.

Tegra carrier boards may vary according to performance

requirements. In this study, we have tested several boards

such as ConnectTech Astro Carrier for TX1 [21], NVidia

EVMs Jetson TK1 [22] and Jetson TX1 [23], Apalis TK1

module [24] and Ixora carrier board [25] and custom boards

for TX1. Tegra platform takes video stream from IP Cam-

era over ethernet interface and sends RTP video + metadata

over the second ethernet interface. RTSP server and RTSP

client are also supported with the help of our software de-

velopment. Thus, video clients can get video stream from

the tracker camera by RTP/RTSP.

4.2. Software Structure

Software implementation consists of two main pipelines

shown with dashed rectangles as seen in Figure 5. The

video stream and PTZ camera control related information

are transferred over colored links in which red link repre-

sents the video stream, blue link contains the pan-tilt-zoom

information and the orange link transmits the metadata gen-

erated by tracking algorithm. In the first pipeline, there

are three blocks; rtp stream receiver, gstreamer decoder

and the tracking algorithm. Correspondingly, streaming of

video from a target PTZ camera, decoding of h264-encoded

video stream into required format for tracking algorithm

and finally CF-based tracking are followed in this pipeline.

Video stream is gathered via the real-time streaming pro-

tocol based client written in QT. H264-encoded stream is

decoded with a similar pipeline seen in Figure 6 that is for-

warded to the VOT algorithm block.

771



Figure 5: Software Structure of Video Object Tracking

Figure 6: Gstreamer Decode Pipeline

In the second pipeline, there are metadata manager,

gstreamer encode and rtsp server. Metadata manager is re-

sponsible for parsing the final pan-tilt speeds determined by

the VOT block. Once the pan-tilt speed and the direction

of movement are determined, the control command of PTZ

camera is constructed. This command is transmitted to the

motor controller of the PTZ camera. The gstreamer encodes

the decoded video stream as in Figure 6b which is also sent

to video clients in h-264 format.

The information flow in blue link (between PTZ cam-

era and tegra platform) is provided by HTTP-based server-

client communication protocols. Tegra platform acts as

HTTP-based communication client that requests pan-tilt re-

lated information using GET commands and sets the pan-tilt

speed of PTZ camera using POST commands.

5. Experimental Results

The proposed PTZ tracking system is analyzed in three

steps. In the first part, a comparison is given between CPU

and GPU implementations through the executions timings

and the tracking accuracy. The algorithms implemented on

GPU are compared in terms of execution speed in the fol-

lowing subsection. The overall system performance is dis-

cussed in the final part mostly focusing on the timings and

the final tracking capability. The experiments are conducted

on two different Nvidia Jetson boards; TK1 and TX1.

5.1. CPU­GPU Comparison

In this study, GPU implementation is developed over

the open source C code provided by [6] where multi-scale

version of KCF is also implemented which actually corre-

sponds to SAMF. Thus, the algorithmic CPU-GPU compar-

ison is provided over this approach that covers the most crit-

ical steps of CF trackers including HOG and color name

features, multi-scale extension, FFT based correlation and

detecting new target position. Having the verified GPU im-

plementation of each step, it is rather easy to extend with

use of histogram similarity in staple [10] and CFCA [11].

In order to be fair, CPU code is also optimized for faster

execution. During the experiments, we have exploited two

of the recent tracking benchmarks [26][27] as well as our

surveillance videos captured for human tracking that in-

volves 50 videos with 1920x1080 resolution (totally 15000

frames). In order to verify GPU implementation, we run

CPU and GPU codes consecutively on the same videos with

same initial target definitions. The average absolute hori-

zontal and vertical position differences are 1.3 and 1.2 pix-

els over 15000 frames with HD resolution. These results in-

dicate that GPU implementation produces almost the same

output with the original CPU version. The tracking outputs

visualized in Figure 7 indicates that the proposed GPU im-

plementation (SAMF Gauss) has almost same output com-

pared to original CPU version.

The execution times of CPU and GPU versions of SAMF

[9] are given in Figure 8, and it is clear that GPU pro-

vides x3 speed-up on the Tegra platform. The modified

CPU version of SAMF is also 4 times more efficient that

the same code experimented in [14] (8 fps on 1280x720

with X1). Hence, the proposed GPU version enables x12

improvement compared to the experiments given in a re-

cent study [14]. We have chosen three different target sizes

(100x100, 200x200 and 300x300) and run the experiments

on full resolution. Throughout the experiments, five differ-

ent scales (1.1-1.05-1-0.95-0.9) are utilized to adapt target

size changes which has linear effect on the computational

complexity. It is important to note that, GPU improvement

is more obvious as the target size increases. The detailed

computation time analysis (K1 module) for three main steps

of CF trackers is given in Table 1 where the target size is

chosen to be 200x200. According to the results, HOG fea-

ture extraction is the most time consuming step which is fol-

lowed by the FFT calculations. The improvement by GPU

is much more obvious for the feature extraction step which

almost provides x7 speed-up. On the overall, proposed GPU

implementation enables up to 50 fps on Tegra K1 for HD

videos, which is further speeded up by 2 on X1 module.

772



Figure 7: Visual outputs of implemented GPU algorithms SAMF linear, SAMF Gauss, CFCA, Staple and SAMF Gauss in

CPU.

Figure 8: The average CPU-GPU computation times on Jet-

son TK1 and TX1 for three different target sizes.

5.2. Methods on GPU

The computation times of provided GPU implementa-

tions for different CF trackers are provided in Table 1. The

Gaussian kernel version of SAMF requires 30% more com-

putation compared to the linear kernelized version. In sta-

ple, use of histogram response map introduces additional

1.5 msec while in context aware tracker additional feature

extraction along negative response regions almost triples

computation in the model update step. As the algorithm

complexity increases with additional steps, execution times

go up to 32 msec which is still within the conventional

25 fps bounds. Compared to the GPU implementation of

KCF with deep comparison networks in [14] where track-

ing takes 22 msec on 1280x720 video (49 msec for HD res-

olution), proposed GPU implementation of the most com-

plex chosen algorithm (staple) requires almost 70% less

computation with 16 msec tracking on 1920x1080 video.

It is important to note that CPU-GPU memory transfer of

HD frames takes almost 30% of the computation on K1

board, while on X1 board this part can be handled through

pinned memory utilization. However, this advantage is not

reflected to the comparison in this study that could further

increase system capability especially on X1 boards.

The accuracy of the chosen CF trackers have been an-

alyzed comprehensively in VOT challenges [1]-[5], there-

773



Table 1: Computation time distribution of CF trackers on

Jetson TK1 for a target with size of 200x200 pixels, *corre-

sponds to CPU implementation

Time(msec)
CPU-GPU

transfer

Feat.

Extr.
Detection

Model

Training
Total

SAMF linear 6.4 6.9 3.5 3.6 20.4

SAMF Gauss 6.4 6.9 8.5 4.8 26.6

CFCA 6.4 6.9 4.1 12.4 29.8

Staple 6.4 8.5 8.7 7.8 31.4

*SAMF linear - 48.1 11.7 4.6 64.4

Table 2: The performance of implemented GPU trackers on

Jetson TK1 and TX1.

Time(msec) SAMF linear SAMF Gauss CFCA Staple

TK1 20.4 26.7 29.3 34.7

TX1 12.2 15.2 16.8 20.0

fore we do not provide additional comparison. On the other

hand, some typical visual results are illustrated in Figure 7

for the sake of completeness. The timing performances of

trackers on Tegra K1 and X1 boards are given in Table 2. It

is clear that, X1 provides almost x2 speed-up without any

exception over different methods.

5.3. Overall System timing

The timing on the overall system architecture is given in

Figure 12, where the video encode-decode take 1-2 msec

that are negligible compared to the VOT algorithm block.

The management time of the PTZ camera control (duration

of GET and POST request commands) is one of the most

critical aspects that affect the system behavior. The dura-

tion of GET request command has an average response time

around 450 msec which limits the frequency of pan-tilt re-

quests provided by Tegra platform. Since the software sys-

tem has the initial pan-tilt information and track speed, the

same pan-tilt speeds are utilized until next pan-tilt informa-

tion is requested. The response time of POST command is

approximately 100 msec hence the software system sends a

POST request around every 200 msec. As mentioned pre-

viously, pan-tilt speed is estimated to get the target in the

center of the camera within 2-3 seconds. Thus, the overall

response and request interval of GET and POST command

do not cause any issue to PTZ camera control.

Typical system outputs during a real world tracking sce-

nario are illustrated in Figure 10. The system is mostly de-

signed to track human under surveillance scenario where

speed and distance of the target is limited. Thus, the de-

lays introduced during get-set commands on PTZ, do not

have significant impact on the tracking capability. As the

target gets closer to the camera center, the tracking speed

decreases in order to prevent hysteresis. It is clear that the

system is robust against background and target appearance

Figure 9: System architecture and the overall timing

Figure 10: The Visual outputs of the PTZ tracking system

that runs in real-time on HD videos

changes and tracks the human target properly.

6. Conclusion

In this study, an efficient GPU implementation frame-

work of well known correlation based trackers is presented

which is further incorporated into PTZ tracking system.

Streaming HD videos through surveillance cameras, per-

forming on board decode and encoding, the proposed sys-

tem is able to track human targets with high frame rates

i.e. 50 and 100 fps for Tegra K1 and X1 consecutively. In-

corporating system on chip versions of these mobile GPU

platforms, this seems to be an important contribution for the

future of smart cameras. Having implemented four versions

of CF based trackers with hand crafted features, multi-scale

and background adaptation, we plan to extend the proposed

framework for deep features that are designed for specific

classes of targets depending on the application.

References

[1] Matej Kristan et’al. The visual object tracking vot2013 chal-

lenge results. ICCV Visual Object Tracking Workshop, Dec

2013. 1, 7

774



[2] Matej Kristan et’al. The visual object tracking vot2014

challenge results. ECCV, Visual Object Tracking Workshop,

2014. 1

[3] Matej Kristan aet’al. The visual object tracking vot2015

challenge results. ICCV Visual Object Tracking Workshop,

Dec 2015. 1

[4] Matej Kristan aet’al. The visual object tracking vot2016

challenge results. ECCV Visual Object Tracking Workshop,

Dec 2016. 1

[5] Matej Kristan et’al. The visual object tracking vot2017 chal-

lenge results. ICCV Visual Object Tracking Workshop, 2017.

1, 2, 3, 7

[6] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. Pattern

Analysis and Machine Intelligence, IEEE Transactions on,

2015. 1, 2, 3, 6

[7] Girshick R. McAllester D. Ramanan D. Felzenszwalb, P. Ob-

ject detection with discriminatively trained part-based mod-

els. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 2010. 2

[8] Schmid C. Verbeek J.J. Larlus D. Van de Weijer, J. Learning

color names for real-world applications. Image Processing,

IEEE Transactions on, 2009. 2

[9] Yang Li and Jianke Zhu. A scale adaptive kernel correlation

filter tracker with feature integration. In Computer Vision -

ECCV 2014 Workshops: Zurich, Switzerland, September 6-7

and 12, 2014, Proceedings, Part II, pages 254–265. Springer

International Publishing, 2014. 2, 3, 6

[10] Luca Bertinetto, Jack Valmadre, Stuart Golodetz, Ondrej

Miksik, and Philip H. S. Torr. Staple: Complementary learn-

ers for real-time tracking. June 2016. 2, 3, 6

[11] Matthias Mueller, Neil Smith, and Bernard Ghanem.

Context-aware correlation filter tracking. In Proc. of the

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2017. 2, 3, 6

[12] Luka ehovin Ji Matas Alan Lukei, Tom Voj and Matej Kris-

tan. Discriminative correlation filter tracker with channel and

spatial reliability. 2018. 2

[13] David Held, Sebastian Thrun, and Silvio Savarese. Learning

to track at 100 fps with deep regression networks. In Euro-

pean Conference Computer Vision (ECCV), 2016. 2

[14] Krishneel Chaudhar, Moju Zhao, Fan Shi, Xiangyu Chen,

Kei Okada, and Masayuki Inaba. Robust real-time visual

tracking using dual-frame deep comparison network inte-

grated with correlation filters. In nternational Conference

on Intelligent Robots and Systems (IROS), 2017. 2, 3, 6, 7

[15] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva

Ramanan, and Simon Lucey. Need for speed: A bench-

mark for higher frame rate object tracking. arXiv preprint

arXiv:1703.05884, 2017. 2

[16] Gerard Medioni Thang Dinh, Qian Yu. Real time track-

ing using an active pan-tilt-zoom network camera. In In-

ternational Conference on Intelligent Robots and Systems,

IEEE/RSJ, 2009. 2

[17] Jonathan T. Black Daniel D. Doyle, Alan L. Jennings. Opti-

cal flow background estimation for real-time pan/tilt camera

object tracking. Elsevier, Volume 48, pp 195-207, 2014. 2

[18] Guillaume-Alexandre Bilodeau Parisa Darvish

Zadeh Varcheie. People tracking using a network-based ptz

camera. Machine Vision and Applications,, Volume 22, Issue

4, pp 671-690, 2011. 2

[19] Andreas Koschan Besma R. Abidi Mongi A. Abidi

Sangkyu Kang, Joon-Ki Paik. Real-time video tracking us-

ing ptz cameras. In Proceedings Volume 5132, Sixth Inter-

national Conference on Quality Control by Artificial Vision,

2003. 3

[20] Chao-Yang Lee Shou-Jen Lin Chu-Sing Yang, Ren-

Hao Chen. Ptz camera based position tracking in ip- surveil-

lance system. In 3rd International Conference on Sensing

Technology, 2008. 3

[21] Astro carrier board users guide. http://www.

connecttech.com/pdf/CTIM-ASG001_Manual.

pdf. 5

[22] Jetson tk1 development kit specification. http:

//developer.download.nvidia.com/

embedded/jetson/TK1/docs/3_HWDesignDev/

JTK1_DevKit_Specification.pdf. 5

[23] Jetson tx1 development kit product sheet.

http://images.nvidia.com/content/

tegra/embedded-systems/pdf/

JTX1-DevKit-Product-sheet.pdf?ncid=

pa-blo-ftrs27-3860. 5

[24] Toradex apalis tk1 module datasheet.

https://docs.toradex.com/

103129-apalis-tk1-datasheet.pdf. 5

[25] Toradex ixora carrier board datasheet.

https://docs.toradex.com/

101430-apalis-arm-ixora-datasheet.pdf. 5

[26] Matthias Mueller, Neil Smith, and Bernard Ghanem. A

benchmark and simulator for uav tracking. In Proc. of the

European Conference on Computer Vision (ECCV), 2016. 6

[27] Anton Milan, Laura Leal-Taixé, Ian D. Reid, Stefan Roth,

and Konrad Schindler. MOT16: A benchmark for multi-

object tracking. CoRR, abs/1603.00831, 2016. 6

775

http://www.connecttech.com/pdf/CTIM-ASG001_Manual.pdf
http://www.connecttech.com/pdf/CTIM-ASG001_Manual.pdf
http://www.connecttech.com/pdf/CTIM-ASG001_Manual.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev/JTK1_DevKit_Specification.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev/JTK1_DevKit_Specification.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev/JTK1_DevKit_Specification.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev/JTK1_DevKit_Specification.pdf
http://images.nvidia.com/content/tegra/embedded-systems/pdf/JTX1-DevKit-Product-sheet.pdf?ncid=pa-blo-ftrs27-3860
http://images.nvidia.com/content/tegra/embedded-systems/pdf/JTX1-DevKit-Product-sheet.pdf?ncid=pa-blo-ftrs27-3860
http://images.nvidia.com/content/tegra/embedded-systems/pdf/JTX1-DevKit-Product-sheet.pdf?ncid=pa-blo-ftrs27-3860
http://images.nvidia.com/content/tegra/embedded-systems/pdf/JTX1-DevKit-Product-sheet.pdf?ncid=pa-blo-ftrs27-3860
https://docs.toradex.com/103129-apalis-tk1-datasheet.pdf
https://docs.toradex.com/103129-apalis-tk1-datasheet.pdf
https://docs.toradex.com/101430-apalis-arm-ixora-datasheet.pdf
https://docs.toradex.com/101430-apalis-arm-ixora-datasheet.pdf

