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Abstract

Keypoint detection algorithms are typically based on

handcrafted combinations of derivative operations imple-

mented with standard image filtering approaches. The early

layers of Convolutional Neural Networks (CNNs) for im-

age classification, whose implementation is nowadays often

available within optimized hardware units, are character-

ized by a similar architecture. Therefore, the exploration of

CNNs for keypoint detection is a promising avenue to obtain

a low-latency implementation, also enabling to effectively

move the computational cost of the detection to dedicated

Neural Network processing units. This paper proposes a

methodology for effective keypoint detection by means of

an efficient CNN characterized by a compact three-layer

architecture. A novel training procedure is proposed for

learning values of the network parameters which allow for

an approximation of the response of handcrafted detectors,

showing that the proposed architecture is able to obtain re-

sults comparable with the state of the art. The capability

of emulating different detectors allows to deploy a variety

of algorithms to dedicated hardware by simply retraining

the network. A sensor-based FPGA implementation of the

introduced CNN architecture is presented, allowing latency

smaller than 1[ms].

1. Introduction

Keypoint detectors are fundamental components in many

computer vision systems. Applications of keypoint detec-

tion include tracking and 3D reconstruction, which often

have extremely low latency and power efficiency require-

ments, such as in the case of autonomous driving (latency)

and AR/VR pose estimation (latency and power consump-

tion). The majority of state of the art keypoint detectors

[3, 12, 5, 14, 13] are based on combinations of derivative

operations, such as determinant of the Hessian [3] or differ-

ence of Gaussians [12], and their implementations are based

on conventional image filtering and processing approaches.

Figure 1: Detector architecture, seen as a Fully Convolu-

tional Neural Network. I is the input image, and ρ(I) is

the keypoint response output. Each window corresponds to

a convolution operation. The filters on the first layer are

separable. Equation 1 describes the network in detail.

Similarly to keypoint detectors, the early layers of Con-

volutional Neural Networks (CNNs) are also characterized

by combinations of filtering operations, hinting that key-

point detectors could be implemented as CNNs. This paper

focuses on state of the art keypoint detectors, showing that it

is possible to build a CNN-based system that matches or ex-

ceeds their performance. In particular, a fundamental con-

tribution of this paper is the design of a CNN architecture

and training methodology that is able to obtain results com-

parable with state of the art of keypoint detectors, namely

KAZE [3], while surpassing the seminal SIFT detector [12]

and modern machine-learning based algorithms [28, 26].

Keypoint detection implemented as a CNN is not only

interesting from a theoretical point of view, but also leads

to practical benefits. In particular, a design of this kind

enables the inclusion of keypoint detection within a more

complex system based on CNNs as well, allowing for end-

to-end system training [28]. Another fundamental advan-

tage of CNN implementation with respect to handcrafted

algorithms is that CNN development is constantly evolv-
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ing in both speed and power consumption. In particular,

CNNs are often implemented on GPGPUs, which are char-

acterized by ever-increasing speed and power efficiency, on

advanced hardware solutions that have been developed for

performance (e.g., Google TPU) and power efficiency (e.g.,

Movidius Fathom) and they can also be implemented on FP-

GAs (Field Programmable Gate Arrays) or silicon-based ar-

chitectures. Therefore, a CNN implementation of keypoint

detection implicitly captures the benefits of this indepen-

dent implementation improvement. Clearly, the downside

of a pure hardware implementation would be the lack of re-

configurability. In fact, the implementation of a new algo-

rithm is in general extremely time consuming and it is gated

by the limited resources. The proposed approach overcomes

this constraint by the introduction of a small network archi-

tecture that is able to emulate multiple keypoint detection

algorithms, such as KAZE [3] and SIFT [12], and which is

claimed to be possibly suited also for algorithms yet to be

proposed. The emulation of a current or novel algorithm

can be simply regarded as a CNN parameters update. The

complexity of the algorithm that can be implemented in this

way is directly connected to the capacity of the network.

For speed and power efficiency, which are particularly

important in the case of embedded systems, it is desired to

consider CNN architectures characterized by a small foot-

print, especially in the case of FPGA implementations. In

this case, keypoints can be computed in a streaming-based

fashion that does not require to store the entire content of the

image, intercepting the sensor data stream at readout. The

considered CNN is therefore designed as a compact three

layers architecture with separable convolutional kernels and

quantized filter weights resulting in less than 1[KB] of total

memory utilization for the parameters.

In order to obtain a CNN that is able to approximate the

output of any specific keypoint detector, it is important to

devise an effective training methodology. In fact, in this

case, training data can be obtained by simply running a key-

point detector on a set of images, so the amount of labeled

training data is potentially unlimited. The fundamental is-

sue in this problem regards instead the effective exploita-

tion of this training data. This paper introduces a training

scheme based on hard negative mining that adaptively se-

lects the examples to be considered during training, in order

to effectively learn the values of the convolution parameters.

Experimental results using standard metrics [17] show

that the proposed network architecture coupled with the

training methodology is able to effectively learn to produce

the keypoint responses of state of the art algorithms, i.e.,

KAZE [3] and of the well-known SIFT [12], outperforming

other state of the art learning-based approaches [26, 28].

Power efficiency measurements and latency performance

results of our streaming-based FPGA implementation of the

network empirically prove the potential of having a ded-

icated CNN hardware implementation for keypoint detec-

tion, paving the way to mainstream applications that are

particularly demanding.

2. Related Work

Detecting keypoints is a well-known problem and a great

variety of approaches to tackle it have been proposed in the

computer vision literature.

Many handcrafted keypoint detectors have been devel-

oped since Lowe’s SIFT [12] in 1999, which uses differ-

ence of Gaussians as its response operator. MSER [15] in-

troduced the unique concept of extremal regions, while [16]

proposed an affine invariant detector. SURF [5] defined a

fast approximation of the determinant of the Hessian re-

sponse by using integral images. The determinant of the

Hessian can still be considered as one of the best operators

for robust keypoint detection [11], and it has been used by

other algorithms such as recently by KAZE [3]. In addi-

tion to this operator, KAZE adds the novel concept of us-

ing a non-linear diffusion scale space instead of the more

traditional Gaussian pyramid, making it the de facto cur-

rent state of the art among handcrafted keypoint detectors.

More recently, SIFER [14] and D-SIFER [13] proposed an

advanced Cosine Modulated Gaussian filter instead of tra-

ditional derivative-based ones, with promising results.

Besides handcrafted algorithms, machine learning meth-

ods has also been heavily exploited in recent years. One of

the first attempts in using machine learning techniques to

speed up conventional detectors is FAST [20]. ORB [21]

extended the basic concept of FAST and enhanced its ca-

pabilities, while extending it to the scale space. Some ap-

proaches focus on learning edges rather than keypoints [7].

Recently, it has been shown that instead of learning a detec-

tor from scratch, it is possible to enhance detectors by learn-

ing a score for evaluating matchability of keypoints [10].

Closer in spirit to our approach, the method of [23]

shows that it is possible to emulate handcrafted detectors by

learning them. This approach leads to interesting results,

although it uses a WaldBoost classifier instead of CNNs.

Another approach tunes for specific tasks such as detect-

ing keypoints from man-made structures [24]. Other ma-

chine learning approaches include using Genetic Program-

ming [25], and learning linear filters [19] where the lack of

non-linearity makes it more suited for very specific tasks.

[4] uses deep networks for keypoint detection with a hard

negative mining training approach which is similar to ours,

but applied in a different fashion and focusing on a custom

dataset of aerial images. The state of the art for machine

learning based solutions is represented by TILDE [26] and

LIFT [28]. TILDE introduces a temporally invariant de-

tector with an interesting loss function to enforce the re-

sponse shape, although its performance was not compared

to KAZE. LIFT defines a complete end-to-end solution for
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detection and description of features based on SIFT. While

very interesting from a theoretical point of view, the archi-

tecture of TILDE and LIFT cannot be easily implemented

in streaming-fashion on a compact FPGA architecture due

to their large computational and memory footprint.

3. Network Architecture

A novel, compact CNN architecture is defined for effec-

tively performing keypoint detection with minimum layout

complexity. The considered CNN takes as input a single

channel image I of arbitrary size, and produces as output

the relative keypoint response function ρ(I) which has the

same size as the input image. Per pixel, the response func-

tion gives a score which describes how likely that pixel is

supposed to be a keypoint, according to the learned detector.

The network acts as an end-to-end image-to-response

function, without requiring any pre-processing on the input

image. A single instance of the network computes a sin-

gle response function, meaning that the CNN needs to be

instantiated as many times as the number of needed scales

in order to compute the response for the whole scale space.

In order to perform the actual keypoint detection, a simple

non-maxima suppression algorithm can be run on the re-

sponse maps after these are generated.

The architecture of the proposed CNN, represented in

Figure 1, is constituted by three layers. The first layer of the

network is made of M convolutional filters of size w × w,

generated by corresponding separable filters. Separable fil-

ters reduce the number of actual parameters for a single fil-

ter from w2 to 2w, making the network more compact. The

second layer is made of N 1×1 convolutional filters, which

perform N different linear combinations of the outputs pro-

duced by the first layer. Considered together, these first two

layers actually allow for an approximation of standard con-

volutional filters, as proved by [22]. The last layer linearly

combines the N outputs to produce the final response out-

put. In between the different layers a ReLU [9] activation

function is added to give the network the capability of ap-

proximating non-linearities.

Formally, the network can be described by the following

function:

ρ(I) =

N
∑

i

ai φ

(

M
∑

j

cij φ
(

ejf
T
j ∗ I + gj

)

+ di

)

+ b (1)

where ej and f j are the separable convolutional kernels of

the j-th filter, φ is the ReLU activation, and a, b, C, d, E,

F , g are the parameters to be learned. The hyper-parameters

M , N and w control the capacity of the network and its rel-

ative approximation capabilities. The function above can

be interpreted as a non-linear regressor by replacing the in-

put image I with a w × w patch p reshaped as a vector,

the convolution operation with a dot product, ejf
T
j with

its relative vector-shaped representation and the output ρ(I)
with a single scalar response output ρ(p) for the given input

patch. Considering this latter interpretation, the training can

be performed on single patches of size w×w extracted from

the images, and the resulting regressor can then be general-

ized to full images by just “sliding” it as a convolution.

4. Training Approach

Given a specific keypoint detector (e.g., KAZE [3] or

SIFT [12]), it is possible to naı̈vely regress its response

output as-is. While this solution could possibly work, the

different operators used for defining the response function

used by different algorithms (e.g., determinant of the Hes-

sian, difference of Gaussians, etc.) lead to relative re-

sponse domain inconsistency, introducing a further layer of

complexity to be learned. Moreover, learning-based algo-

rithms might rely only on the higher level definition of good

keypoints, eventually described as position and scale (e.g.,

learning features from SfM [10, 28], or manually labeled

keypoints).

This leads to the conclusion that such naı̈ve approaches

are not ideal when different detectors need to be handled.

Instead, regardless the detector it is always possible to de-

fine and synthesize a target response function r, defined

for each pixel p within the image, which relies only on

the knowledge of a set of detected keypoints (k, π) ∈ K,

where k is the location of the keypoint and π its normal-

ized response value. This allows to decoupling the proposed

framework from specific image-based responses, leading to

increased flexibility in choosing a variety of detectors that

can be approximated. We define the response function r to

be regressed as:

r(p;K) = max
(k,π)∈K

Aπ exp

(

−
‖p− k‖

2

2σ2

)

, (2)

where A is a defined amplitude coefficient and π models the

strength of the detected keypoints. The choice of using the

operator max for blending two keypoints aims at capturing

the behavior of handcrafted algorithms: when two detected

keypoints are very close, their original response is a wider

blob of almost uniform intensity. A visual example of this

generated response function is provided in Figure 2c.

Generating ground truth data for training can be done by

simply evaluating the response r to be regressed on generic

images. Given this ability of generating a possibly unlim-

ited amount of labels, and that the size of the training set

directly affects the training complexity, a strategy needs to

be devised in order to select a small, well-distributed set of

labels which guarantees that the overall function is repre-

sented. In order to effectively sample this domain, a novel

iterative reinforcement method is proposed based on the fol-

lowing steps.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: (a) Input image, (b) KAZE response, (c) gener-

ated response r, (d) response inference r̂ from the network

after initialization step. (e) and (f) are responses from re-

spectively the state of the art LIFT [28] and TILDE [26]

detectors, which do not use the proposed training set re-

inforcement process. (g) thresholded absolute difference

C(I; ·, ·) between (d) and (c) as described in Equation 3, (h)

response inference r̂ from the network after reinforcement.

All responses are from the same scale, i.e., the highest one.

Best viewed on monitor.

(a) Define a set of images for training A set of images I
is defined and their response r is computed per patch/pixel.

(b) Initialize training set The training set is initialized

by sampling r uniformly in the response domain. For each

image in I, an histogram is built among the computed r val-

ues. Then, values are randomly selected within each bucket

such that the same amount is picked per bucket.

(c) Perform the regression The training set above is used

to train the network, obtaining the regressed response func-

tion r̂. Figure 2d shows an example of the inferred response

after the initialization step. Observe that the sampled in-

formation is not enough actually to represent the overall re-

sponse function, as some specific components (e.g., edges)

are missing from the initial training set. Edges are false pos-

itives since by definition do not include useful unambiguous

points to track. Notice that a similar behavior is noticeable

in state of the art CNN-based detectors such as LIFT [28]

and TILDE [26] as shown in Figures 2e and 2f.

(d) Reinforce the training set This step picks these

under-represented components of r and adds more of these

samples to the training set, enabling a better representation

of the overall function. This is performed by thresholding

the absolute difference of the inferred function and the ac-

tual function. Specifically, the following binary function is

used to define whether a pixel (x, y) in the image I is a good

candidate for being part of the reinforcement set or not:

C(I;x, y) = |T (r(I;x, y))− T (r̂(I;x, y))|, (3)

where T is a thresholding function defined as

T (f(I;x, y)) =







1 if f(I;x, y) ≥ max
(u,v)∈ΛI

f(I;u, v)

θ

0 otherwise

,

(4)

where ΛI is the image matrix and the parameter θ controls

the strength of the thresholding function. An example is

shown in Figure 2g. Applying a threshold before the abso-

lute difference instead of vice versa helps to enforce mostly

points which are actually considered during the eventual

keypoint detection stage, as thresholding is usually applied

to the response before performing non-maxima suppres-

sion.

The points for which C(I;x, y) = 1 are added to the

initial training set. Since their number is variable, random

sampling can be performed to get a fixed amount propor-

tional to the initial number of samples. Eventually, a num-

ber of randomly picked samples from the overall set of com-

puted r values is added to the training set to tackle the clas-

sical reinforcement problem of balancing between explo-

ration and exploitation1.

(e) Iterate again from Step (c) Once the training set has

been updated, a new training session is performed on the

same network. Notice that the complexity of the network

is not changing in any of the iterations, as it would other-

wise happen in traditional boosting strategies with cascad-

ing classifiers. Instead, only the distribution of the training

set is changed in order to better represent samples that are

harder to learn.

1Although the connection between the proposed approach and rein-

forcement learning is intuitive, its formal analysis is beyond the scope of

this paper.
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This procedure can be iterated until satisfactory results

are obtained (i.e., convergence is reached or maximum

number of iterations is met). Empirical results on the con-

sidered training data set (i.e., Roman Forum [27]) show that

a very small number of iterations is necessary to obtain con-

vergence. In particular, the quantitative results reported in

Section 6 are characterized by two iterations. An example

of the final inferred result r̂ is reported in Figure 2h.

5. Quantization

The capability of deploying this neural network on hard-

ware for streaming-based real-time, low-power keypoint de-

tection is one of the important goals which lead this de-

sign to be compact and efficient. Other than the size of

the network itself, another crucial step for enabling an ef-

ficient hardware implementation is the use of fixed point

arithmetic instead of the more standard floating point, in-

troducing quantization of the network parameters.

The proposed approach is derived from the one proposed

by [8], which however mostly focuses on fixed point com-

putation for training networks. Instead, our solution only

concerns the inference time rather than the training one,

so their interesting clipping-or-rounding approach is here

ported to the inference itself while the training stage is still

performed with floating point values. The 〈IL, FL〉 notation

is going to be used for describing a fixed point integer with

IL integer bits and FL fractional bits.

Interpreting a generic neural network function as a se-

ries of dot products, the main problem when it comes to

fixed point computation is that the result of a dot product

requires a bit width which is bigger than the input one.

When the output from a dot product is going to feed the

subsequent dot product, and so forth and so on, the width

of the result theoretically keeps growing making the com-

putation too expensive. Specifically, for a dot product of

n numbers of width 〈IL, FL〉 the relative result width is

〈log2 n + 2IL, 2FL〉. It is then necessary to define a way

to crop this result width back to 〈IL, FL〉, such that all the

operators within the network can be consistent to the same

input size.

Inspired by [8] we define the following Convert function

for this task. It is performed on the output of a generic dot

product:

Convert(x, 〈IL, FL〉) =










−2IL−1 if x ≤ −2IL−1

2IL−1 − 2−FL if x ≥ 2IL−1 − 2−FL

⌊x⌋ otherwise

(5)

Where ⌊x⌋ is defined as the largest multiple of 2−FL less

than or equal to x. This function clips the input value x to

the maximum or minimum value representable by 〈IL, FL〉

when it saturates, or crops the fixed point precision to the

desired length otherwise.

The novelty of this approach is that, when it comes to

converting the network’s learned parameters from floating

to fixed point, it only constraints the total bit width (i.e.,

IL + FL) to be either 8 or 16 bit, while dynamically adapt-

ing the specific IL and FL widths according to the minimum

needed IL size for each layer, thus maximizing the FL pre-

cision.

6. Experimental Results

For generating the training set, similarly to LIFT [28],

we use images from the Roman Forum data set from [27].

Regarding the handcrafted detectors to be approximated,

we consider KAZE [3] as the state of the art and SIFT to

demonstrate that the network can be effectively trained us-

ing different algorithms as baseline. Hyper-parameters are

set to N = 16, M = 16 and w = 15, leading to a total

of 785 learned parameters including biases. With an 8-bit

quantization, this means that the total size of the network is

actually only 785 bytes. The choice of these specific val-

ues has been made in order to make the network compact

enough to fit a cheap, small SoC FPGA solution such as

the Xilinx Zynq 7020 or the Xilinx Artix 7 200T, showing

that the network can provide good approximation perfor-

mance even with a very low power, small hardware solu-

tion. Within training l2 loss is used and batch size is set to

1000. In the initialization step, the number of samples se-

lected per each of the 2000 considered images is 200. In the

reinforcement step, 200 additional samples per image are

added from C(I; ·, ·) along with 200 more random samples

per image as described in Section 4. The learned filters and

an example activation of the network using KAZE as base-

line are shown in Figure 3. Training time on a single GPU

such as the NVIDIA GTX 1080 can be as fast as one hour,

given the very limited amount of weights.

6.1. Quantitative Results

The performance of the detector is evaluated by training

it independently with KAZE and SIFT, and comparing these

two outputs against the handcrafted KAZE [3], SIFT [12],

SURF [5] and the state of the art machine-learning based

TILDE [26] and LIFT [28] (in their provided trained con-

figuration) under the standard repeatability rate metric [17].

The repeatability rate measures the quality of a keypoint

detector by considering a pair of images, which are related

by a known homography transformation, and counting the

number of keypoints that are repeatedly detected.

The standard Oxford image data set [17] has been chosen

for this evaluation. This data set challenges the detectors on

different conditions which include increasing image blur,

viewpoint angle change, different zoom and rotations, light-

ing condition changes, and JPEG compression. All the con-
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(a)

(b)

Figure 3: (a) learned filters from the first layer when trained

with KAZE keypoints, (b) example activations for a typical

corner.

sidered detectors have been configured such that the number

of keypoints provided by each detector in the same image is

as similar as possible.

Results are shown in Figure 4. The network successfully

approximates state of the art KAZE when trained with the

same algorithm. When trained with SIFT, the network gen-

erally performs better than the original algorithm, because

the response r generated from the SIFT keypoints is more

selective and filtered compared to the original simpler dif-

ference of Gaussians response. SURF, which detector is an

approximation of the determinant of the Hessian operator, is

one of the the closest alternative methods to our KAZE re-

gressor. LIFT and TILDE use SIFT keypoints as baseline.

A note is necessary for Figures 4e and 4f: similarly to all

the other cases in this dataset, zoom changes are applied in-

creasingly along the x axis. Nevertheless, rotation changes

are instead applied in a non-continuous scatter fashion [17].

This explains the scatter nature of these two plots, since for

example image 5 happens to be rotated very similarly to im-

age 2, although with a different zoom level.

6.2. Qualitative Results

An example of the detected keypoints in the Viewpoint

(Graffiti) and Light scenes of the dataset is shown in Figure

5. The proposed KCNN detector is compared against the

original KAZE, TILDE [26] and LIFT [28]. As shown in

Figures 2e and 2f, the conventional training procedures of

TILDE and LIFT mislead the detectors in positively consid-

ering edges as interesting keypoints. This directly reflects

into the final output of these algorithms, where feature-wise

identical points along high constrast edges are detected as

Algorithm Device Latency Power

KAZE Intel I7-5930K 58 ms 140 W

KCNN

Intel I7-5930K 289 ms 140 W

NVIDIA GTX 1080 12 ms 180 W

Xilinx Zynq 7020
1 ms 1.6 W

Xilinx Artix 7 200T

Table 1: Performance evaluation, considering the computa-

tion of a single-scale 1280× 800 response.

shown in Figures 5c and 5d. Our approach is resilient to

this type of false positives. Notice that metrics that purely

consider detected keypoints in their evaluation (without de-

scription and matching), such as DTU [1] or even the con-

sidered Oxford [17] might wrongly assign positive scores

to some of these false positives, as chances are high that

random detected keypoints along one edge will match other

random detected keypoints on the same edge in the second

considered frame.

6.3. Performance

The proposed CNN architecture has been deployed on

CPU, GPU and FPGA, and its performance evaluated ac-

cordingly. In the first two, the Tensorflow [2] implementa-

tion of the network has been used, exploiting CUDA [18]

acceleration in the GPU case. In the FPGA case, a cus-

tom hardware implementation has been designed and de-

ployed to take advantage of dedicated silicon logic. Re-

sults are shown in Table 1, and compared against the stan-

dard KAZE CPU implementation from OpenCV [6]. It

is possible to notice that deploying the proposed solution

on a CPU is not recommended, as it runs slower than its

handcrafted archetype on the same platform. Nevertheless

it is clear that, as introduced earlier, the CNN solution is

really effective on dedicated logic which include for in-

stance standard GPUs and FPGAs. In case of GPUs, we

achieved a speed-up of almost 5x compared to the CPU by

just running the Tensorflow CUDA implementation as-is,

without additional optimization and with a power consump-

tion which is close to the one of the considered CPU. But

an even more interesting result is achieved through custom

gates in our FPGA implementation, which has 12x less la-

tency and 100x smaller power consumption compared to the

considered GPU. These results prove that dedicated silicon

logic for CNNs can provide much less latency and very high

power efficiency compared to more general purpose GPUs

by orders of magnitude. Having a keypoint detector imple-

mented on hardware can be crucial for guaranteeing real-

time capabilities and power efficiency, while using a neu-

ral network decouples the hardware logic from the specific

detector to be approximated allowing it to be reusable and

deployable to dedicated CNN hardware.
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Figure 4: Quantitative results showing the Repeatability Rate on the standard Oxford data set [17]. (a) and (b) are challenging

the detectors against increasing (x-axis) blur of the images while (c) and (d) are increasingly changing the viewpoint angle,

(e) and (f) apply various scale transformations, (g) reduces the exposure and (h) the JPEG compression quality. The trained

detector KAZE KCNN successfully approximates the state of the art KAZE and surpasses TILDE and LIFT, while being

faster and more efficient.

(a) KAZE (b) KAZE KCNN (c) LIFT (d) TILDE

Figure 5: Visual comparison of detected keypoints from different considered algorithms. (a) original handcrafted KAZE

algorithm, (b) learned KAZE from KCNN, (c) and (d) state of the art CNN-based detection algorithms TILDE [26] and LIFT

[28]. Notice how the novel supervised reinforcement training of KCNN allows for a proper approximation of the learned

algorithm, avoiding false positives along the edges. Best viewed on monitor.

7. Hardware Implementation

The KCNN detector has been deployed on a custom sen-

sor board and fully integrated with a RGB-D sensor. Figure

6 shows a high level overview of the system. Three camera

sensors are mounted on the board and connected to a Xilinx

Artix 7 200T FPGA through independent MIPI lanes. Two

of the sensors are used for active stereo depth computation

with VGA resolution at 60[Hz] (not detailed in this paper),

whereas the top one is used for capturing RGB data and

performing keypoint detection through KCNN. The RGB
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(a) Back of the board (b) Front of the board

(c) Architecture diagram

(d) RGB-KD module framing a stationary scene with live visualization

on a monitor. Depth map is in the upper left corner. Keypoints are

overimposed in green on the color stream. Best viewed on monitor.

Figure 6: Compact hardware system implementing KCNN

along with a RGB-D sensor, i.e., a RGB-KD device.

Resource Amount % on Zynq

7020 SoC

% on Artix 7

200T FPGA

LUT 21.120 40% 16%

FF 90.587 85% 34%

BRAM 4 3% 1%

DSP 196 89% 26%

Table 2: Hardware resources utilization for KCNN on Xil-

inx FPGA (successfully implemented in both Xilinx Zynq

7020 SoC and Xilinx Artix 7 200T FPGA).

image has resolution 1280 × 800 and has a framerate of

60[Hz] which is synchronized with the depth frames.

The FPGA implementation of KCNN computes the re-

sponse map r̂ on-the-fly directly from the camera sensor’s

real time pixel stream, buffering only a small number of

frame lines (7), which are required by the neural network,

introducing a latency smaller than 1[ms]. Still at the sensor

stream level, the response output is thresholded and non-

maxima suppression is performed to obtain a binary map of

the detected keypoints. The generated binary map is then

watermarked on the least significant bit of each RGB pixel

of the camera sensor’s stream, thus obtaining an efficient

encoding of the keypoint information and the color data

within the same image stream. This encoded RGB frame

is then trasmitted along with the depth information through

either a MIPI or HDMI interface (to preserve low latency)

or to a single USB 3.0 output, obtaining a real time RGB-

KD (RGB, Keypoints and Depth) streaming device.

From the host side, it is only required to decode the wa-

termark information from the raw camera stream in order

to access the list of detected keypoints directly from the

RGB-KD stream. This solution entirely removes the key-

point detection computational cost from the host, which is

function of w×h, allowing to skip directly to the descriptor

computation which is instead function of k where k is the

number of pre-detected keypoints. A variety of detectors

can be instantiated on-the-fly within KCNN by uploading to

the internal memory the relative weights through the USB

interface.

8. Conclusion

A novel, compact convolutional neural network for key-

point detection has been introduced in this paper. The net-

work is used for approximating existing keypoint detectors

without the need for changing the underlying implementa-

tion, by retraining it according to the specific task. This

approach allows different detectors to be easily deployed in

a variety of different platforms which span from GPUs to

dedicated hardware logic for neural networks.

Together with a novel training set reinforcement ap-

proach which exploits the knowledge of the function to be

approximated, the network successfully learns the state of

the art detector, i.e., KAZE. Results show that the detec-

tion performance exceeds the one of SIFT and of the cutting

edge machine-learning based TILDE and LIFT. The hard-

ware implementation of the proposed architecture is able to

deliver extremely low latency and low power keypoint de-

tection, paving the way to mainstream applications such as

AR/VR and autonomous driving as well as embedded sys-

tems.
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