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Abstract

Semantic segmentation is a critical module in robotics

related applications, especially autonomous driving. Most

of the research on semantic segmentation is focused on im-

proving the accuracy with less attention paid to computa-

tionally efficient solutions. Majority of the efficient seman-

tic segmentation algorithms have customized optimizations

without scalability and there is no systematic way to com-

pare them. In this paper, we present a real-time segmenta-

tion benchmarking framework and study various segmenta-

tion algorithms for autonomous driving. We implemented

a generic meta-architecture via a decoupled design where

different types of encoders and decoders can be plugged

in independently. We provide several example encoders in-

cluding VGG16, Resnet18, MobileNet, and ShuffleNet and

decoders including SkipNet, UNet and Dilation Frontend.

The framework is scalable for addition of new encoders and

decoders developed in the community for other vision tasks.

We performed detailed experimental analysis on cityscapes

dataset for various combinations of encoder and decoder.

The modular framework enabled rapid prototyping of a cus-

tom efficient architecture which provides ∼x143 GFLOPs

reduction compared to SegNet and runs real-time at ∼15

fps on NVIDIA Jetson TX2. The source code of the frame-

work is publicly available 1.

1. Introduction

Semantic segmentation has witnessed tremendous

progress with deep learning. The main goal is to perform

pixel-wise classification of the image, that serves the pur-

pose of scene understanding. Scene understanding has vari-

ous benefits in robotics applications [55, 3, 56, 30], the most

1https://github.com/MSiam/TFSegmentation
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Figure 1: Overview of the different components in the

framework with the decoupling of feature extraction mod-

ule and decoding method.

prominent benefit is in autonomous driving [61, 42, 4, 12].

Segmentation has also been used in medical applications

[11, 66], and augmented reality [36]. The first promi-

nent work in deep semantic segmentation was fully con-

volutional networks(FCNs) [35], that proposed an end-to-

end method to learn pixel-wise classification. That method

paved the road to subsequent advances in the segmentation

accuracy. Multi-scale approaches [7][60], context aware

models [33][65], and temporal models [44] introduced dif-

ferent directions for improving accuracy. All of the above

approaches focused on accuracy and robustness of segmen-

tation.

However, some aspects for semantic segmentation such

as computational efficiency has not been thoroughly stud-

ied in the literature. Although, when it comes to applica-

tions such as autonomous driving this would have tremen-

dous impact. There is little work which address the seg-
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Figure 2: Taxonomy of semantic segmentation approaches.

mentation networks’ efficiency such as [63][39]. The sur-

vey on semantic segmentation [18] presented a comparative

study between different segmentation architectures includ-

ing ENet [39]. Yet, there is no principled comparison of

different networks and meta-architectures. These previous

studies compared different networks as a whole, without

comparing the effect of different modules. That does not

enable researchers and practitioners to pick the best suited

design choices for the required task.

In this paper we propose the first framework toward

benchmarking real-time architectures in segmentation. Our

main contributions are: (1) we provide a modular de-

coupling of the segmentation architecture into feature ex-

traction and decoding method which is termed as meta-

architecture as shown in Figure 1. The separation helps in

understanding the impact of different parts of the network

on real-time performance. (2) A detailed ablation study

highlighting the trade-off between accuracy and computa-

tional efficiency is presented. (3) The modular design of our

framework allowed the emergence of two novel segmenta-

tion architectures using MobileNet [24] and ShuffleNet [62]

with multiple decoding methods. ShuffleNet lead to x143

GFLOPs reduction in comparison to SegNet. It was able to

run real-time at 15 fps on a Jetson TX2. Our framework is

built on top of Tensorflow and is publicly available.

2. Semantic Segmentation

In this section a taxonomy of deep semantic segmenta-

tion is presented. The literature work in semantic segmenta-

tion is categorized into three main subcategories: (1) Fully

Convolutional Networks. (2) Context Aware Models. (3)

Temporal Models. The first category is about the main body

of work on semantic segmentation using deep learning. The

other two categories include the work exploiting context

knowledge and temporal information. Note that both tem-

poral and context aware models are considered under fully

convolutional networks category. However they are consid-

ered as further refinement and are excluded in their own cat-

egories due to the large body of work under them. Figure 2

summarizes the general taxonomy and literature in semantic

segmentation.

2.1. Fully Convolutional Networks(FCN)

The initial direction in semantic segmentation using con-

volutional neural networks was towards patch-wise training

[14, 19, 2] to yield the final segmentation. Grangier et al.

[19] proposed a multi-patch training strategy for convolu-

tional neural networks to perform segmentation. Farabet et

al. [14, 15] proposed a multi-scale dense feature extrac-

tor. The method used a Laplacian pyramid of the image,

where each scale is forwarded through a 3-stage network

to extract hierarchical features. For each pixel the features

are encoded from a contextual patch around the pixel. The

scene is then over-segmented into super pixels and condi-

tional random fields over the super pixels are used. Bell

et al. [2] proposed a method to utilize convolutional neural

networks to classify each patch in a sliding window fashion.

The dominant direction in deep semantic segmentation

is to learn pixel-wise classification in an end-to-end man-

ner [35, 38, 1]. Long et al. [35] started with proposing

fully convolutional networks(FCN). The network learned

heatmaps that were then upsampled with-in the network us-

ing transposed convolution to get dense predictions. Unlike

patch-wise training methods this method uses the full im-

age to infer dense predictions. The SkipNet architecture

was utilized to refine the segmentation using higher res-

olution feature maps. Noh et al. [38] proposed a deeper

decoder network, in which stacked transposed convolution

and unpooling layers are used. Badrinarayanan et al. [1]

proposed SegNet which is an encoder-decoder architecture.

The decoder network upsampled the feature maps by keep-

ing the maxpooling indices from the corresponding encoder

layer. Kendall et al. [28] followed that work by proposing

Bayesian SegNet, which incorporates uncertainties in the

predictions using dropout during inference. Ronneberger et

al. [41] proposed a u-shaped architecture network where

feature maps from different encoding layers are concate-
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Figure 3: Different Decoding methods for fully convolutional networks. Figure reproduced from [35, 41]

nated with the upsampled feature maps from the corre-

sponding decoding layers. Paszke et al. [39] proposed the

use of bottleneck modules for a computationally efficient

solution that is denoted as ENet. Figure 3 shows the archi-

tecture for FCN8s [35] and U-Net [41].

2.2. Context Aware Models

Refinements on fully convolutional networks was intro-

duced to improve the segmentation accuracy by incorpo-

rating context. In this section we consider only the spatial

context that does not include any temporal information. The

methods to enforce models to become context aware are

mainly categorized into multi-scale support, utilizing con-

ditional random fields, or recurrent neural networks. Fara-

bet et al. [14] handled the scale by introducing multiple

rescaled versions of the image to the network. However

with the emergence of end-to-end pixel-wise training, Long

et al. [35] proposed the skip architecture to merge heat-

maps from different resolutions. Since these architectures

include pooling layers to increase the receptive field, this

leads to the downsampling of the image with a loss in the

resolution.

Yu et al. [60] introduced dilated or atrous convolutions,

which expanded the receptive field without losing resolu-

tion based on the dilation factor. Thus it provided a better

solution for handling multiple scales. Wu et al. [59] pro-

posed a shallower network using residual connections that

included dilated convolution and outperformed deeper mod-

els. Chen et al. [7] proposed DeepLab that uses atrous spa-

tial pyramid pooling (ASPP) for multi-scale support. This

idea builds on utilizing the dilated convolutions. Figure 4

shows dilated convolutions and spatial pyramid pooling as

separate methods that can be used to incorporate multi-scale

support. Zhao et al. [64] proposed to incorporate global

context features from previous layers into the next layers.

Chen et al. [8] refined further the DeepLab method by in-

corporating global context features. Chen et al. [9] provided

a way for handling scale by using attention models that pro-

vides a mean to focus on the most relevant features. This

attention model is able to learn a weight map, that weighs

feature maps pixel-by-pixel from different scales. Eigen et

al. [13] proposed a method to sequentially utilize multiple

scales to refine the prediction of depth, surface normals, and

semantic segmentation.

One of the commonly used models to incorporate con-

text is conditional random field (CRF). Chen et al. [7] uti-

lized the fully connected conditional random fields as a post

processing. The unary potentials of the CRF are set to the

probabilities from their convolutional network, while pair-

wise potentials are gaussian kernels based on the spatial and

color features. Lin et al [34] proposed a method to use pair-

wise potentials based on convolutional neural networks fea-

ture maps. In contrast to the previous work that uses condi-

tional random fields as post processing refinement step, this

work went further in integrating CNNs and CRFs. Zheng et

al. [65] formulated the mean field CRF inference algorithm

as a recurrent network. Thus, the proposed method enabled

the end-to-end training of the model.

Another way to incorporate context is using recurrent

neural networks (RNN) to capture the long range depen-

dencies of various regions. Visin et al. [57] used a recur-

rent layer to sweep the image horizontally and vertically,

which ensures the usage of contextual information for a bet-

ter segmentation. One of the main bottlenecks in vanilla

RNN is the vanishing gradients problem, gated recurrent

architectures such as LSTMs [23] and GRUs [10] alleviate

this problem. Byeon et al. [5] proposed a segmentation

method that splits the image into non overlapping regions,

then incorporates context using four separate LSTM blocks.

Li et al. [32] proposed a method for context fusion using

LSTMs. In their work both RGB and depth information

were utilized, and the global context was modeled verti-

cally on both, followed by the horizontal fusion. Another

bottleneck in vanilla recurrent networks is that it could lead

to the loss in spatial relationships. Shuai et al. [46] utilized

directed acyclic graph RNN to incorporate long range de-

pendencies. This directed acyclic graph maintains spatial

relations-ships unlike using chained RNNs. Finally, Qi et
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Figure 4: Atrous Convolution and Spatial Pyramid Pooling

for Multi-scale support. Figure reproduced from [8, 60].

al [40] proposed hierarchically gated deep network, which

is a multi-scale deep network that incorporates context at

various scales. Multiple LSTM memory cells are used in

the network between convolutional layers, to learn whether

to incorporate spatial context from the lower layer into the

higher one.

2.3. Temporal Models

All the discussed work was focused on still image seg-

mentation. Recently some approaches emerged for video

semantic segmentation that utilized temporal information

[45][16] [47][37]. Shelhamer et al. [45] introduced clock-

work networks which are clock signals that control the

learning of different layers with different rates. Tran et al.

[54] proposed a 3D convolutional network trained end-to-

end for video semantic segmentation. An issue with 3D

convolutional is its small extent on the temporal axis that

would not capture long termporal dependencies. Recurrent

neural networks can alleviate such a bottleneck. Fayyaz et

al. [16] incorporated spatio temporal features by using a

layer grid of Long Short term memory models (LSTMs).

However, conventional LSTMs as mentioned earlier do

not utilize the spatial coherence and would end up with

more parameters to learn. Siam et al. [47] proposed a

convolutional gated recurrent network to learn temporal in-

formation to leverage the semantic segmentation of videos.

The gated recurrent unit used in the work was convolutional,

this enabled it to learn both spatial and temporal information

with less number of parameters. Nilsson et al. [37] com-

bined the power of both convolutional gated architectures

and spatial transformers for leveraging video semantic seg-

mentation. However in an action recognition comparative

study [6], two-stream architectures that utilize optical flow

information has shown to perform better than Conv-LSTM

models. That motivated more research in the direction of

incorporating motion and appearance for video segmenta-

tion. Tokmakov et al. [52] proposed a U-Net architecture

that takes as input optical flow information to perform video

segmentation. Jain et al. [27] proposed a model that fuses

both RGB and optical flow information for the final video

segmentation prediction. Tokmakov et al. [53] proposed a

further improvement by utilizing optical flow information in

a two-stream architecture that utilizes convolutional gated

recurrent units. Gadde et al. [17] proposed a method for

applying feature warping through an intermediate module

termed as NetWarp in order to incorporate temporal infor-

mation from videos.

3. Real-time CNNs

In recent years there has been an increasing need for

running deep neural networks real-time on embedded plat-

forms, in various applications. Two main categories in the

work of efficient CNNs are discussed: (1) Efficient CNN

models that introduce different layers and modules to im-

prove its computational efficiency. (2) Model compression

and pruning. Other approaches such as model quantization

and hardware acceleration are out of the scope of this paper.

3.1. Efficient CNN Models

Convolutional layers are required to learn cross chan-

nel and spatial correlations. This process can be performed

in an efficient manner by separating both. Szegedy et al.

[50, 51, 49] introduced the inception module and utilized

it in Inception V1, V2 and further refined it in Inception

V3 [51] and Inception-ResNet [49]. The main purpose of

the inception module is to decouple the cross channel and

spatial convolution. This separation is performed using 1x1

for the cross channel convolution that maps to 3 or 4 sep-

arate spaces. This is followed by 3x3 and/or 5x5 convolu-

tion for the spatial correlations. The extreme case of the in-

ception module with one spatial convolution per channel is

what is termed as depthwise separable convolution. Figure

5 shows the inception module [50], and depthwise separable

convolution which is kind of an extreme case of inception.

Howard et al. presented depth-wise separable convolutions

as a mean to improve efficiency [24] in what is known as

MobileNets. Zhang et al. developed a generalized form

of separable convolution denoted as grouped convolution,

while utilizing channel shuffle to ensure the input-output

connectivity between different groups [62]. Figure 5 shows

the shufflenet unit utilized in their model.

Huang et al. [25] proposed training a densely con-

nected network with sparsified connections denoted as Con-

denseNet. The connectivity pattern is implemented effi-

ciently using grouped convolutions. This method is consid-

ered also as a network pruning method. Most of the research

conducted in efficient convolutional networks is directed to-

wards classification and detection. Little attention is given

to the computational efficiency of deep neural networks for

semantic segmentation. When it comes to applications such

as autonomous driving this consideration is extremely im-

portant. Some studies such as the work by Paszke et al.

[39] tried to address the issue of segmentation efficiency.
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Figure 5: Differences between Computationally Efficient Modules for Convolution. GC: Grouped Convolution. DWC:

Depth-Wise Convolution.

Sandler et al. [43] proposed inverted residual module with

linear bottleneck. This takes low dimensional representa-

tion as input then expands it to a higher dimensional space

applies convolution then maps it back. The convolution op-

eration is performed using the efficient depthwise separable

convolutions. This work proposed an efficient segmentation

method as well.

3.2. Model Compression and Pruning

There are two main pruning techniques for model com-

pression namely weight pruning and filter pruning. Han

et al. proposed DeepCompression framework [21] which

learns both weights and connections in a three steps pro-

cess. They make use of a regularization loss which pushes

parameters towards zero and thus reducing the number of

parameters of AlexNet by a factor of 9. Sparsity can lead

to inefficient parallelism. To alleviate sparsity constraint,

Han et al. [20] presented an efficient inference engine rely-

ing on sparse matrix-vector multiplication with weight shar-

ing. The resulting computation speed achieves x189 and

x13 gain when compared to CPU and GPU implementa-

tions of the same DNN without compression. Model com-

pression also enables networks to fit in the on-chip SRAM

which reduces energy consumption per memory read by a

factor x120 compared from fetching weights from DRAM.

Filter pruning is a similar approach like weight pruning.

While weight pruning results in sparse connectivity pattern,

removing the entire filter and their associated feature maps

preserve dense connectivity. Consequently computational

cost reduction does not rely on sparse convolution libraries

or dedicated hardware and existing efficient BLAS libraries

for dense matrix multiplication can be further used. Wen

et al. [58] proposed filter pruning using model structure

learning and group lasso which is an efficient regularization

to learn sparse structures. Their method is even more gen-

eral than filter regularization since the Structured Sparsity

Learning (SSL) method can regularize any structure (fil-

ters, channels, filter shapes, and layer depth) of CNNs. This

learning technique acts like a compression method to learn a

smaller model from a larger one reducing the computational

cost. Li et al. [31] presented another pruning approach

which is not based on filter magnitude. The method relied

on reinforcement Learning to train a pruning agent which

made a set of binary actions to decide to remove or not each

filter. It maximized a reward function which combined two

terms, the accuracy term and the efficiency term. The ac-

curacy term ensured the performance drop is bounded, and

the efficiency term encouraged to prune more filters away.

4. Segmentation Benchmarking Framework

In this section a detailed description of the benchmark-

ing framework is presented. We implemented a generic

framework through the decoupled encoder-decoder design.

This allows the extensibility for more encoding and decod-

ing methods. It also allows principled comparison between

different design choices that can aid practitioners.

4.1. Meta­Architectures

Three meta-architectures are integrated in our bench-

marking software: (1) SkipNet meta-architecture [35]. (2)

U-Net meta-architecture [41]. (3) Dilation Frontend meta-

architecture [60]. The meta-architectures for semantic seg-

mentation identify the decoding method for in the network

upsampling. All of the network architectures share the same

down-sampling factor of 32. The downsampling is achieved

either by utilizing pooling layers, or strides in the convolu-

tional layers. This ensures that different meta architectures

have a unified down-sampling factor to assess the effect of

the decoding method only.

SkipNet architecture denotes a similar architecture to

FCN8s [35]. The main idea of the skip architecture is to

benefit from feature maps from higher resolution to improve

the output segmentation. SkipNet applies transposed convo-

lution on heatmaps in the label space instead of performing

it on the feature space. This entails a more computationally

efficient decoding method than others. Feature extraction

networks have the same downsampling factor of 32, so they

follow the 8 stride version of skip architecture. Higher reso-

lution feature maps are followed by 1x1 convolution to map

from feature space to label space that produces heatmaps
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Figure 6: Different Meta Architectures using MobileNet as the feature extraction network. a) SkipNet architecture. b) UNet.

corresponding to each class. The final heatmap with down-

sampling factor of 32 is followed by transposed convolution

with stride 2. Elementwise addition between this upsam-

pled heatmaps and the higher resolution heatmaps is per-

formed. Finally, the final output heat maps are followed

by a transposed convolution for up-sampling with stride 8.

Figure 6(a) shows the SkipNet architecture utilizing a Mo-

bileMet encoder.

U-Net architecture denotes the method of decoding that

up-samples features using transposed convolution corre-

sponding to each downsampling stage [41]. The up-

sampled features are fused with the corresponding features

maps from the encoder with the same resolution. The stage-

wise upsampling provides higher accuracy than one shot 8x

upsampling. The current fusion method used in the frame-

work is element-wise addition. Concatenation as a fusion

method can provide better accuracy, as it enables the net-

work to learn the weighted fusion of features. Nonetheless,

it increases the computational cost, as it is directly affected

by the number of channels. The upsampled features are then

followed by 1x1 convolution to output the final pixel-wise

classification. Figure 6(b) shows the UNet architecture us-

ing MobileNet as a feature extraction network.

Dilation Frontend architecture utilizes dilated convolu-

tion [60] instead of downsampling the feature maps. Dilated

convolution enables the network to maintain an adequate

receptive field, but without degrading the resolution from

pooling or strided convolution. However, a side-effect of

this method is that computational cost increases, since the

operations are performed on larger resolution feature maps.

The encoder network is modified to incorporate a downsam-

pling factor of 8 instead of 32. The decrease of the down-

sampling is performed by either removing pooling layers

or converting stride 2 convolution to stride 1. The pooling

or strided convolutions are then replaced with two dilated

convolutions [60] with dilation factor 2 and 4 respectively.

4.2. Feature Extraction Architectures

In order to achieve real-time performance multiple net-

work architectures are integrated in the benchmarking

framework. The framework includes four state of the

art real-time network architectures for feature extraction.

These are: (1) VGG16 [48]. (2) ResNet18 [22]. (3) Mo-

bileNet [24]. (4) ShuffleNet [62]. The reason for using

VGG16 is to act as a baseline method to compare against

as it was used in [35]. The other architectures have been

used in real-time systems for detection and classification.

ResNet18 incorporates the usage of residual blocks that di-

rects the network toward learning the residual representa-

tion on identity mapping.

MobileNet network architecture is based on depthwise

separable convolution [24]. It is considered the extreme

case of the inception module, where separate spatial con-

volution for each channel is applied denoted as depthwise

convolutions. Then 1x1 convolution is used and denoted

as pointwise convolutions. The separation in depthwise and

pointwise convolution improve the computational efficiency

on one hand. On the other hand it improves the accuracy

as the cross channel and spatial correlations mapping are

learned separately.

ShuffleNet encoder is based on grouped convolution that

is a generalization of depthwise separable convolution [62].

It uses channel shuffling to ensure the connectivity between

input and output channels. This eliminates connectivity re-

strictions posed by the grouped convolutions.

5. Experiments

In this section experimental setup, detailed ablation

study and results in comparison to the state of the art are

reported.
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Table 1: Comparison of different encoders and decoders on Cityscapes validation set. GFLOPs are measured on image size

1024x512.

Encoder Decoder GFLOPs mIoU Road Sidewalk Building Sign Sky Person Car

SkipNet MobileNet 13.8 61.3 95.9 73.6 86.9 57.6 91.2 66.4 89.0

SkipNet ShuffleNet 4.63 55.5 94.8 68.6 83.9 50.5 88.6 60.8 86.5

UNet ResNet18 43.9 57.9 95.8 73.2 85.8 57.5 91.0 66.0 88.6

UNet MobileNet 55.9 61.0 95.2 71.3 86.8 60.9 92.8 68.1 88.8

UNet ShuffleNet 17.9 57.0 95.1 69.5 83.7 54.3 89.0 61.7 87.8

Dilation MobileNet 150 57.8 95.6 72.3 85.9 57.0 91.4 64.9 87.8

Dilation ShuffleNet 71.6 53.9 95.2 68.5 84.1 57.3 90.3 62.9 86.6

Table 2: Comparison of different encoders and decoders on Cityscapes validation set with Coarse annotations pre-training

then using fine annotations.

Encoder Decoder mIoU Road Sidewalk Building Sign Sky Person Car

SkipNet MobileNet 62.4 95.4 73.9 86.6 57.4 91.1 65.7 88.4

SkipNet ShuffleNet 59.3 94.6 70.5 85.5 54.9 90.8 60.2 87.5

5.1. Experimental Setup

Through all of our experiments, weighted cross entropy

loss from [39] is used, to overcome the class imbalance. The

class weight is computed as wclass =
1

ln(c+pclass)
. Adam

optimizer [29] learning rate is set to 1e−4. Batch normaliza-

tion [26] after all convolutional or transposed convolution

layers is incorporated. L2 regularization with weight decay

rate of 5e−4 is utilized to avoid over-fitting. The feature ex-

tractor part of the network is initialized with the pre-trained

corresponding encoder trained on Imagenet. A width multi-

plier of 1 for MobileNet to include all the feature channels is

performed through all experiments. The number of groups

used in ShuffleNet is 3. Based on previous [62] results on

classification and detection three groups provided adequate

accuracy.

Results are reported on Cityscapes dataset [12] which

contains 5000 images with fine annotation, with 20 classes

including the ignored class. Another section of the dataset

contains coarse annotations with 20,000 labeled images.

These are used in the case of Coarse pre-training that proved

to improve the results of the segmentation. Experiments are

conducted on images with resolution of 512x1024.

5.2. Ablation Study

Semantic segmentation is evaluated using mean intersec-

tion over union (mIoU), per-class IoU, and per-category

IoU. Table 1 shows the results for the ablation study on

different encoders-decoders with mIoU and GFLOPs to

demonstrate the accuracy and computations trade-off. The

main insight gained from our experiments is that, UNet de-

coding method provides more accurate segmentation results

than Dilation Frontend. This is mainly due to the transposed

convolution by x8 in the end of the Dilation Frontend, un-

like the UNet stage-wise upsampling method. The Skip-

Net architecture provides on par results with UNet decoding

method. In some architectures such as SkipNet-ShuffleNet

it is less accurate than UNet counter part by 1.5%.

The UNet method of incrementally upsampling with-in

the network provide the best in terms of accuracy. How-

ever, SkipNet architecture is more computationally efficient

with x4 reduction in GFLOPs. This is explained by the fact

that transposed convolutions in UNet are applied in the fea-

ture space unlike in SkipNet that are applied in label space.

Table 2 shows that pre-training with cityscapes coarse an-

notation, then finetuning on the fine annotation improves

the segmentation in terms of mIoU with 1-4%. The un-

derrepresented classes are the ones that often benefit from

pre-training.

5.3. Embedded Vision Experiments

Experimental results on the cityscapes test set are shown

in Table 3. ENet [39] is compared to SkipNet-ShuffleNet

and SkipNet-MobileNet in terms of accuracy and computa-

tional cost. SkipNet-ShuffleNet outperforms ENet in terms

of GFLOPs, yet it maintains on par mIoU. Both SkipNet-

ShuffleNet and SkipNet-MobileNet outperform SegNet [1]

in terms of computational cost and accuracy with reduction

up to x143 in GFLOPs. SkipNet-ShuffleNet was deployed

on a Jetson TX2 that delivered real-time performance in

15 frames per second on image resolution 640x360. Fig-

ure 8 shows the comparison between different image reso-

lution versus frame-rate and running time in milliseconds.

These were measured on the Jetson TX2 for the SkipNet-

ShuffleNet architecture. Figure 7 shows qualitative results

for different encoders including MobileNet, ShuffleNet and

ResNet18. It shows that MobileNet provides more accurate
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Table 3: Comparison to the state of the art segmentation networks on Cityscapes test set. GFLOPs is computed on image

resolution 640x360.

Model GFLOPs Class IoU Class iIoU Category IoU Category iIoU

SegNet[1] 286.03 56.1 34.2 79.8 66.4

ENet[39] 3.83 58.3 24.4 80.4 64.0

SkipNet-VGG16[35] 445.9 65.3 41.7 85.7 70.1

SkipNet-ShuffleNet 2.0 58.3 32.4 80.2 62.2

SkipNet-MobileNet 6.2 61.5 35.2 82.0 63.0

(a) (b)

(c) (d)

Figure 7: Qualitative Results on CityScapes. (a) Original Image. (b) SkipNet-MobileNet pretrained with Coarse Annotations.

(c) UNet-Resnet18. (d) SkipNet-ShuffleNet pretrained with Coarse Annotations.

segmentation results than the later two.
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6. Conclusion

In this paper, we present the first principled approach for

benchmarking real-time segmentation networks. The de-

coupled design of the framework separates encoder and de-

coder modules and allows for systematic comparison. The

first module is comprised of the feature extraction network

architecture and the second module is the meta-architecture

that provides the decoding method. This generic meta-

architecture allows for extensibility further on to other en-

coders and decoding methods. Detailed analysis of different

image resolutions versus frame-rate on Jetson TX2 is pre-

sented. Our benchmarking framework provides researchers

and practitioners a mechanism to systematically evaluate

new encoders and decoders. New computationally efficient

models for segmentation emerged that outperform the state

of the art in terms of GFLOPs, while maintaining on par ac-

curacy. It enabled one of the models to run real-time at ∼16

fps on a Jetson TX2. Future work is to mathematically for-

malize the meta-architecture to enable automated topology

exploration using meta-learning.
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