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Abstract

Deep convolutional neural networks (CNNs) have

achieved outstanding performance in object detection, a

crucial task in computer vision. With the computational

intensiveness due to repeated convolutions, they consume

large amount of power, making them difficult to apply in

power-constrained embedded platforms. In this work, we

present MVint, a power-efficient detection and tracking

framework. MVint combines motion-vector-based interpo-

lator and CNN-based detector to simultaneously achieve

high accuracy and energy efficiency by utilizing motion vec-

tors obtained inexpensively in the environments wherein

encoding is conducted at the cameras. Through evalua-

tions using MOT16 benchmark that evaluates multiple ob-

ject tracking, we show MVint maintains 88% MOTA while

reducing detection frequency down to 1/12. An implemen-

tion of MVint as a system prototype on Xilinx Zynq Ultra-

Scale+ MPSoC ZCU102 confirmed that MVint achieves an

ideal 12x FPS compared with a vanilla detection approach.

1. Introduction

Techniques for object detection have drastically im-

proved their performance. They are expected to be used in

broad range of real-world applications, such as IoT devices

and autonomous driving systems. Among those techniques,

convolutional neural networks (CNNs) are intensively stud-

ied and have achieved remarkable performance in various

object detection tasks. State-of-the-art CNNs employ com-

plex models with a large amount of parameters, which re-

quire intensive multiply-accumulate computations. Real-

time detection hence has been significantly difficult, but

real-time implementations of CNNs are recently realized

by the development of efficient models [17, 23, 24] and the

application of highly parallelized computational resources,

such as GPUs and specialized hardwares [3, 11, 21].
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Figure 1. Overview of the target multiple object tracking (MOT)

system with a camera that captures encoded videos. The encoded

videos are decoded in the MOT system into image frames and aux-

iliary information such as motion vectors.

With such development of CNNs for object detection,

improvement of the performance of multiple object tracking

(MOT) [19] has become an active research topic as a more

advanced subject. There are offline and online approaches

for MOT on videos; as offline trackers, LMP p [28] and

POI [31] are the ones that are specialized for humans as tar-

get objects. They not only use CNNs for precisely detecting

and tracking human subjects, but the CNNs are also used for

pose estimation and temporal object identification between

the adjacent frames. As online trackers, SORT [2] and

EAMTT [27] utilize CNN or DPM [5] for accurate object

detection. By spending large part of the computational costs

on the object detection efforts for the spatio-temporal track-

ing, they realize real-time tracking with moderate tracking

performance.

For embedded platforms, however, CNN-based real-time

MOT is still a challenging problem because the allowable

energy consumption is strictly limited. In this work, we aim

to construct an efficient MOT method based on a highly ac-

curate CNN-based detector. To achieve this, we focus on

information given by video codecs. In some practical vi-

sion systems such as surveillance cameras, video encoders

are already equipped with the sensor edges and compressed

video stream is transmitted to the servers. In this work,

we assume a system that performs MOT for those encoded

streams as shown in Fig. 1, which contains a camera with

a video encoder and an MOT system. The encoder in the

camera is used to reduce the transmission bandwidth to the
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Figure 2. Procedures of the tracking-by-detection. The bounding

boxes (BBox Union) are generated by the detection process. Then,

a unique ID is annotated to each bounding box. The IDs in BBox

Union are propagated along time series by the prediction and as-

sociation processes.

MOT system by compressing video streams. In this sys-

tem, we utilize intermediate data obtained from the decod-

ing process as auxiliary information to reduce the computa-

tional complexity of the MOT.

There exist researches that utilize intermediate data of

video codecs for image recognition. For example, MPEG-

flow [15] utilizes motion vectors to efficiently compute the

optical flow. MV-CNN [32] combines motion vectors with

CNN to realize real-time action recognition. Although the

objective of MV-CNN is close to the objective of this paper,

our proposed method intends to decrease the computational

complexity more aggressively, by interpolating results of

object detection.

In this work, we propose a novel method called “MVint”

to realize energy-efficient real-time detection by utilizing

both CNN and motion vectors extracted from encoded video

streams. MVint switches the tracking process according

to the type of the frames encoded by video codecs. For

I-frames, which are compressed and decompressed inde-

pendent with other frames, MVint performs accurate de-

tection using CNN. For P-frames, which are compressed

and decompressed using the preceding frame, MVint per-

forms low complexity interpolation using the detection re-

sults of I-frames, thereby eliminates computationally inten-

sive CNN-based detection while the tracking performance

is well maintained. When I-frame exists for every N frames

in the video stream, the detection frequency using CNN can

be reduced to 1/N of the naı̈ve approach in which CNN is

used for every frame to realize MOT.

2. Tracking-by-detection

Tracking-by-detection (TBD) [7, 33] is a popular ap-

proach for multiple object tracking. In this section, we

overview the TBD according to Geiger, et al. [7]. The over-

all process of the TBD is summarized in Fig. 2. The pro-

cessing pipeline of the TBD is divided into three steps: (1)

detection, (2) prediction, and (3) association. The union of

the bounding boxes, which are the detection results, are rep-

resented as “BBox Union.” The bounding boxes are prop-

agated for downstream frames through the prediction and

association processes.

First, in the detection process, the bounding boxes of the

object proposals are generated from an input frame. To ac-

complish this, various detectors are used: feature-based de-

tectors such as DPMv5 [26], CNN-based detectors such as

R-CNN [10, 9, 25], and single-shot approaches [17, 23, 24].

In the TBD, because the overall tracking performance is de-

termined by the performance of detection, a large part of the

computational costs are dedicated to the detection process

to achieve good tracking performance.

Next, in the prediction process, the bounding boxes are

filtered to remove uncertainty that comes with the transition

of the objects. The Kalman filter [29] is the most common

method for this purpose. A general form of the systems that

Kalman filter targets is denoted as

xk+1 = Axk +Buk + wk (1)

zk = Hxk + vk (2)

p(w) ≈ N(0, Q) (3)

p(v) ≈ N(0, R). (4)

Eq. (1) presents the process model to represent the state

transition of the system, Eq. (2) presents the observation

model to represent the change made when the state is ob-

served, and Eq. (3) and (4) present probability distributions

of the noises, where N(a, b) denotes the normal distribu-

tion with mean a and variance b. The variables are the state

xk, the disturbance input (or control input) uk, the process

noise wk, and the observation noise vk at time k.

Finally, in the association process, unique IDs are an-

notated to the bounding boxes after the prediction process,

and corresponding boxes are associated to boxes that will

be obtained in the next frame. The most common algorithm

for the association is the Hungarian method [16], which is

known as an algorithm for optimal matching. A cost func-

tion f(BBA,BBB), which indicates affinity of the bound-

ing boxes of the adjacent frames, is chosen in advance.

For unions {BBX
i }i=1,··· ,N , {BBX+1

j }j=1,··· ,M represent-

ing the bounding boxes of the two consecutive frames X
and X + 1, a cost (affinity) matrix is computed. By solving

this cost matrix as a complete bipartite graph, the optimal

matching to minimize the sum of the cost is obtained. In

accordance with the matching results, the IDs of the boxes

in frame X are propagated to those in frame X + 1. The

IDs for the boxes that have no matching box are discarded

and new boxes in frame X + 1 are annotated by new IDs.

In section 4.1, we will describe the proposed method by

comparing the TBD shown above.
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Figure 3. Inter-frame motion compensation. Each frame in the

video sequence is encoded by one of the three frame types: I-

frame, P-frame, and B-frame.

3. Motion vectors in codecs

We give a brief description of video codecs (especially,

MPEG-2 [12]), focusing on the motion vectors that are used

by the proposed method. MPEG-2 is one of the video codec

standards. In an MPEG-2 encoded video stream, frames

are stored as a compressed sequence in a video container.

Each frame is divided into small regions (e.g. 16 × 16)

named macroblocks, for which the encoding and decoding

processes are conducted. The decoding process includes

many sub-processes such as motion compensation, inverse

discrete cosine transform (inverse DCT), inverse quantiza-

tion of DCT coefficients, and variable length decoding.

Among them, motion compensation by inter-frame pre-

diction is a key process in the decoding. The motion com-

pensation is used to improve the efficiency of the compres-

sion by exploiting the temporal similarity between the con-

secutive frames. In the motion compensation, a motion vec-

tor, which is a translation offset from the reference frame to

the target frame, is utilized to represent the movement of

the macroblock. The motion vectors are stored in an en-

coded stream and extracted when the stream is decoded.

Each decoded motion vector is associated with the corre-

sponding macroblock of the reference frame to restore the

target frame.

Generally, for the motion compensation defined in video

codec standards [12, 14, 13], there are three types of frames

having different roles: I-frame, P-frame, and B-frame. The

I-frame is treated as a reference frame in motion compen-

sation. It contains complete information to restore the pixel

map by itself without using information from other frames.

On the other hand, the P-frame refers the previous refer-

ence frame to restore the pixel map. The B-frame also

refers to other frames, but it uses the subsequent frames

as well as the previous frames. The restored frames are

also treated as reference frames in motion compensation for

other frames. Fig. 3 illustrates an example sequence to show

how frames are referred by each other. In the figure, the ref-

erence frames and the target frames are connected by arrows

in direction of the reference to the target frames. Whereas

compression rate increases if a larger number of P-frames

and B-frames are contained in a video sequence, while more

processing power is required to restore them. Here we de-

fine a “group of pictures (GOP)” that contains N frames
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Figure 4. Tracking process of the proposed method (MVint). For

I-frames, MVint performs precise detection to generate bounding

boxes (BBox Union). For P-frames, MVint performs low-cost

interpolation to generate boxes referring boxes of the previous

frame. As a next I-frame comes, the interpolated boxes are dis-

carded and new boxes are generated by detection.

from a certain I-frame to the next I-frame. We use the GOP

as a processing unit in the following sections.

4. Proposed method

4.1. MVint framework

Based on the TBD described in Section 2, we pro-

pose MVint, which is a computationally efficient detection

method for video streams utilizing motion vectors. MVint

reduces the frequency of computationally demanding detec-

tion process by replacing it with a simple interpolation.

Fig. 4 overviews the tracking process in MVint. The con-

nections of the frames on the upper side of the figure indi-

cate the decoding process by inter-frame prediction. MVint

performs different processes depending on the frame types

(I or P). Note that in this work we assume the video streams

contain only I- and P-frames for simplicity. On I-frames,

MVint generates bounding boxes by the detector as done in

the conventional TBD approach. It is important to gener-

ate bounding boxes thoroughly and accurately at this stage.

To that end, MVint may use relatively expensive algorithms

in terms of the computational cost, such as CNNs. In this

paper, we finally adopt SqueezeDet [30] for our system pro-

totype in Section 6 to realize both efficiency and accuracy.

On P-frames, MVint generates bounding boxes only

from the detection results of the previous reference frame

without executing detection on the current frame. This pro-

cess can be regarded as “interpolation” of the location of the

bounding boxes from the detection result of the previous

frame. To interpolate the bounding boxes, motion vectors

extracted from the motion compensation process are uti-

lized. Since MVint targets encoded video streams that only

contain I- and P-frames, the interpolation of the bounding

boxes is repeated while the P-frames continue. When the

next I-frame appears, the interpolated boxes are discarded

and new boxes are generated by the detector.
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Considering MVint in the context of the TBD, MVint

simplifies the detection process by the interpolation using

motion vectors. Since there is no constraint for the predic-

tion and the association processes, we can adopt any meth-

ods for these processes in the proposed MVint framework.

In this paper, we adopt the methods as follows in terms of

simplicity and efficiency. First, the prediction process is

implemented as identity transformation without addition of

any noises; i.e., the prediction does nothing. Then, the as-

sociation process is implemented by the Hungarian method.

As a cost function for the Hungarian method, we utilize

fIoU(BBA,BBB) = 1−
|BBA ∩ BBB|

|BBA ∪ BBB|
, (5)

where |BBx| represents the area of the bounding box BBx.

Eq. (5) means intersection over union (IoU) of the two

bounding boxes BBA and BBB.

4.2. Interpolation

Various implementations for the interpolation of bound-

ing boxes in P-frame can be applied to MVint. To take ad-

vantage of the MVint framework, the computational cost for

the interpolation should be much smaller than that of the

detection process. As a naive implementation, we propose

linear interpolation in this paper. Let a set of motion vec-

tors for a bounding box be {v(i, j)}i=1,···N,j=1,···M , where

v(i, j) is a individual motion vector corresponding to each

macroblock, and N and M are the numbers of the hori-

zontal and vertical macroblocks (i.e., those of the motion

vectors) in the bounding box, respectively. With the linear

interpolation, the center of the bounding box ct is moved to

the next center ct+1 by a linear function as

ct+1 = ct + α ·

∑
i

∑
j v(i, j)

N ·M
, (6)

where α is a parameter to control the effect of motion vec-

tors. In this method, we assume that the size of the bounding

boxes will not change in the interpolation.

The parameter α can be set considering the filling rate γf
of the object in the bounding box. As a simple example, let

us consider the situation that motion vectors of the object

are constant v and 0 in other regions. To reflect the move-

ment of the object correctly to the center of the bounding

box, α should be set as the reciprocal of γf . Although each

region has different motion vectors with noises in realistic

situations, the filling rate is still convenient to determine α.

More simply, α can be set approximately 1 for the objects

with tight bounding boxes, and set slightly larger than 1 for

the objects with loose bounding boxes.

In order to realize a smooth movement of the bounding

boxes, we apply the Kalman filter described in section 2. In

Eq. (1)–(4), the box center ct is assigned to the state xk and

MOTA (↑) Multiple Object Tracking Accuracy [1].

MOTP (↑) Multiple Object Tracking Precision.

FAF (↓) False Alarm per Frame.

MT (↑) Mostly Tracked.

ML (↓) Mostly Lost.

FP (↓) False Positive.

FN (↓) False Negative.

IDsw (↓) Identity switch.

FM (↓) Fragmentations.

Hz (↑) Processing Frequency.

Table 1. Default indices for MOT Challenge.

the box movement ct+1 − ct is assigned to uk. Each matrix

in the filter is obviously assigned to A = B = H = I ,

where I is the identity matrix. By following Eq. (1) and (2),

when the state transition of the system or the observation of

the union of the bounding boxes occurs, the Gaussian noise

is supplied to estimate ct. Here, the state xk assigned by ct
is reset for every I-frame.

5. Tracking performance evaluation

5.1. Dataset

We evaluate MVint with MOT16 [19], which is a bench-

mark for multiple object tracking. MOT16 provides image

sequences and metadata such as a frame rate, a total num-

ber of the frames, an image size, and detection results of the

default detector DPMv5 [26] for each sequence. Outputs of

the trackers are the sizes, positions, and IDs of the bounding

boxes for each frame. The dataset is split into training and

testing sets. The ground truths are only given for the train-

ing split. The indices for the test split are calculated when

the results for the test split are submitted on the MOT16 of-

ficial website 1. Variations of the proposed method are eval-

uated on the train split since MOT16 officials recommend

to submit only one variation to the website.

To evaluate each method accurately, multiple perfor-

mance indices are considered in MOT16. The default per-

formance indices are listed in Table 1. The arrows indi-

cate whether the bigger value is desirable (↑) or the smaller

is desirable (↓) for each index. The most handy index is

MOTA [1], which summarizes the overall tracking perfor-

mance well. MOTA is calculated as

MOTA = 1−

∑
t(FNt + FPt + IDswt)∑

t GTt

. (7)

Here, GT is the number of the bounding boxes given as the

ground truth, and variable t is the frame number.

1 https://motchallenge.net/results/MOT16/
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5.2. Settings

In the experiment, input sequential images are encoded

using FFmpeg, and motion vectors are extracted using FFm-

peg libavcodec. For each codec, the GOP-size is fixed to

12 unless otherwise specified. We evaluate two different

detectors for comparison: DPMv5 as the default detector

mentioned in MOT16, and Faster R-CNN [25] (referred as

FRCnn) as an example of a CNN-based detector. For each

detector, the detection results are given in advance; the re-

sults by DPMv5 are included in the dataset and the results

by FRCnn are given by F. Yu, et al. [31].

In addition to the proposed method, we evaluate two

more methods, which are summarized as follows:

Baseline

Detection: performed for all frames.

Association: performed for all frames.

MVint

Detection: performed only for I-frames. (Interpolation

is performed for P-frames.)

Association: performed only at the transitions from P-

frame to I-frame.

Worst

Detection: performed only for I-frames. (No interpo-

lation for P-frames.)

Association: performed only at the transitions from P-

frame to I-frame.

The baseline and the worst methods are the standard TBD

method. In particular, the worst method can be considered

as a TBD with a lower detection frequency. The base-

line gives the upper-bound performance that MVint may

achieve, and the worst method corresponds to the lower

bound. In the experiments, MVint is evaluated with two

variations of the interpolation methods: the linear interpo-

lation (Linear) and the linear interpolation with Kalman fil-

ter (LinearK). The parameter α in Eq. (6) is set to α = 1.0
for all the variations of the linear interpolation.

The input video is encoded by the simple profile of

MPEG-2. The measurement of the processing frequency

targets processes for reading and decoding of frames, track-

ing and interpolation of bounding boxes; note that the pro-

cessing time for detection itself is not included as a factor

of FPS. Motion vector extraction itself is also not included

to FPS and is performed by reading preprocessed data.

5.3. Results

Table 2 shows the evaluation results of the three meth-

ods described above. First of all, MVint improves all the

indices except for the frequency compared with the worst

methods that use DPMv5 and FRCnn. In particular, the

IDsw of MVint greatly decreases compared with that of the

baseline method. This is because MVint performs the asso-

ciation process only when the target frame is switched from

Figure 5. The relationship between the GOP-size and MOTA. The

markers are plotted where the GOP-size is 12.

P-frame to I-frame, which results that MVint can obviously

track the same object while P-frames are fed continuously.

As summarized by MOTA, MVint (LinearK) achieves high

MOTA values, which is 91.0% of the baseline with DPMv5

and 88.0% of that with FRCnn.

Next, we evaluate the effect of the GOP-size for the

tracking performance of MVint. The relationship between

the GOP-size and MOTA with the FRCnn detector is shown

in Fig. 5. The GOP-size is plotted in the range of 1–20.

Note that the GOP-size of 12 is marked in the figure. MOTA

decreases almost proportionally as the GOP-size increases.

Therefore, the GOP-size can be chosen by considering the

trade-off between the capacity of computational resources

and the performance of detection and tracking. For exam-

ple, if the GOP-size is chosen to be 12 as in this evalua-

tion, the CNN detection frequency can be reduced to 1/12

from that of the baseline tracker. Since the computational

complexity of the interpolation per bounding box is much

smaller than that of the CNN-based detection, the overall

complexity will be reduced close to the extent of CNN de-

tection frequency reduction.

We also evaluated the performance of MVint with differ-

ent variations of video codecs as listed in Table 3. For the

evaluation, FRCnn is used for the detection, and LinearK

is used for the interpolation. Table 4 shows the evaluation

results on the train split. From the results, we confirmed

that the tracking performance is affected to some extent by

which codec, profile, and level are utilized.

Table 5 summarizes the performance of the proposed

method and other methods evaluated on the test split. Other

methods are selected from the standard methods [4, 6, 7,

20, 22] mentioned in the MOT16 white paper and from

some of the state-of-the-art methods [2, 27, 28, 31] pub-

lished in the MOT16 official website. Results for the stan-

dard methods are listed on the rows under the middle line in

Table 5. Input video is encoded by simple profile of MPEG-

4 Part 2 and the tracking is performed using FRCnn and Lin-
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Method Detector MOTA MOTP FAF MT (%) ML (%) FP FN IDsw FM Hz

Baseline FRCnn 59.3 82.0 1.05 36.9 14.9 5597 37296 2097 1890 55.3

MVint (LinearK) FRCnn 52.2 78.6 1.92 22.1 23.0 10207 41884 728 1298 38.4

MVint (Linear) FRCnn 51.0 77.9 2.04 20.9 23.2 10846 42523 729 1419 41.6

Worst FRCnn 34.1 76.7 3.71 7.2 27.1 19746 51109 1908 2860 58.6

Baseline DPMv5 27.7 77.3 0.89 7.7 53.6 4707 72606 2487 2586 84.2

MVint (LinearK) DPMv5 25.2 75.1 1.29 4.4 60.7 6866 75224 512 720 23.4

MVint (Linear) DPMv5 24.8 74.2 1.33 4.6 60.0 7050 75408 525 787 25.9

Worst DPMv5 18.2 73.6 1.99 1.2 65.4 10563 78947 811 1350 91.2

Table 2. MOT16 evaluation results (Split: train).

Codec Library Profile Level

H.264 libx264 Baseline Level 3

MPEG-4 Part2 mpeg4 Simple Level 1

MPEG-2 mpeg2video Simple Main

Table 3. Target codecs.

earK. From the result, we first confirmed that our method

with CNN trained by F. Yu, et al. [31] has the major im-

provement of MOTA compared to the standard results by

DPMv5. Except for LMP p, the methods above the mid-

dle line are online. To compare MVint with SORTwHPD16

and EAMTT, both of which do not use CNNs for tempo-

ral tracking, MVint achieves the second highest MOTA.

SORTwHPD16 also uses the detector by CNN trained by

F. Yu, et al., and performs detection every frame. With this

reason, SORTwHPD16 is considered close to the baseline

method in our evaluation. EAMTT uses DT-DPM [5] as the

detector, and tracks objects mainly by a particle filter. Due

to the accurate CNN detector, our method realized higher

MOTA than that of EAMTT by about 2.5 points.

6. System prototype

6.1. Architecture

We consider a tracking system prototype with MVint on

an embedded platform to see the performance advantage

earned by MVint. This system consists of a multicore pro-

cessor with a main memory, some specialized coprocessors

to compute CNN for detection, an output display, and an

input webcam with a video codec encoder.

The entire system architecture is shown in Fig. 6. The

white boxes are hardware components and the gray boxes

are the processes executed on the hardware. The processes

on the multicore processor are implemented to use multi-

ple threads. The input webcam transfers encoded frames to

the main memory. The frames are temporarily stored in the

main memory and decoded asynchronously in a thread. At

Detector

Copro.

Webcam

Memory

Thvideo

encode

Display

Thdisplay

control

track

w/ interp.

Thvideo

decode

Thdetect

control

Multicore Processor

Figure 6. The architecture of the system prototype. Input webcam

transfers frames as an encoded stream to the processor. Decoded

frames and motion vectors are pushed into a queue to perform de-

tection and tracking asynchronously. The output display receives

the tracking results in the appropriate order of sequence.

the same time, motion vectors are also extracted in the de-

coding process. Certain amounts of frames and motion vec-

tors are pushed into a queue to transfer them to a thread that

controls the coprocessor, and to a thread that performs the

tracking and interpolation processes. The results are trans-

ferred to the output display from the tracking thread in an

appropriate order of the sequence.

A more detailed diagram of the frame processing order

is shown in Fig. 7. The numbers in each box indicate the

frame sequence numbers. The threads have to be synchro-

nized at a time when the processes reach the red lines. As

shown in Fig. 7, particularly the display thread has to be

synchronized to the track thread to avoid processing earlier

than the track thread. On the other hand, the decode thread

only has to be synchronized when the detection is com-

pleted and can be asynchronously processed in each GOP.

At the end of the GOP, all the threads are synchronized to

make the next GOP independent. By processing frames

as described above, the input frame rate can be gained by

GOP-size times faster. When the system’s bottleneck is the

processing time of the detector as in the case of the CNN-
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Codec MOTA MOTP FAF MT (%) ML (%) FP FN IDsw FM Hz

H.264 51.3 78.4 2.00 19.3 21.9 10636 42368 805 1452 23.4

MPEG-4 Part2 53.5 78.7 1.78 22.6 21.1 9453 41227 648 1222 23.5

MPEG-2 52.2 78.6 1.92 22.1 23.0 10207 41884 728 1298 23.5

Table 4. MOT16 evaluation results for different codecs (Split: train).

Method MOTA MOTP FAF MT (%) ML (%) FP FN IDsw FM Hz

LMP p [28] 71.0 80.2 1.3 46.9 21.9 7880 44564 434 587 0.5

POI [31] 66.1 79.5 0.9 34.0 20.8 5061 55914 805 3093 9.9

SORTwHPD16 [2] 59.8 79.6 1.5 25.4 22.7 8698 63245 1423 1835 59.5

MVint (FRCnn LinearK) 55.0 76.7 2.7 20.4 24.5 15766 65297 1024 1594 16.9

EAMTT [27] 52.5 78.8 0.7 19.0 34.9 4407 81223 910 1321 12.2

TBD [7] 33.7 76.5 1.0 7.2 54.2 5804 112587 2418 2252 1.3

CEM [20] 33.2 75.8 1.2 7.8 54.4 6837 114322 642 731 0.3

DP NMS [22] 32.2 76.4 0.2 5.4 62.1 1123 121579 972 944 212.6

SMOT [4] 29.7 75.2 2.9 4.3 47.7 17426 107552 3108 4483 0.2

JPDA M [6] 26.2 76.3 0.6 4.1 67.5 3689 130549 365 638 22.2

Table 5. MOT16 evaluation summary (Split: test).

based methods, the detection rate of F FPS can be extended

to G · F FPS, where the GOP-size is referred as G. From

the evaluation results in Section 5, this method is much bet-

ter than the case that simply slows down the input frame

rate to the maximum frame rate that detector can accept (the

“Worst” method), in terms of tracking performance.

6.2. Evaluation

We implement the system prototype described above

to evaluate hardware performance in a practical situa-

tion. The system is implemented on a commercial system-

on-a-chip (SoC), Xilinx Zynq UltraScale XCZU9EG-

2FFVB1156, with an evaluation board Xilinx Zynq Ultra-

Scale+ MPSoC ZCU102. The software programs are writ-

ten in C++14 using libavcodec and OpenCV libraries and

deployed on Linux running on a quad-core ARM Cortex-

A53 processor. We use Logicool HD Pro Webcam C920

as an input webcam, where the video streams are encoded

by H.264. The frame rate is 24 FPS and the image size is

320× 240. The employed interpolation method is LinearK.

Although the original GOP-size of C920 is fixed at 300, we

interpret every 12 frames in the GOP as a “sub-GOP” to

maintain the tracking performance of MVint. If the GOP-

size is virtually shrunk to the sub-GOP-size, the frame at the

position of the I-frame may be a P-frame. Therefore, we de-

code these P-frames and treat them as I-frames in order to

virtually realize the GOP-size of 12.

In the coprocessor, we utilized SqueezeDet [30] as a de-

tection network. Although SqueezeDet is relatively a small

network compared with other detection networks, we fur-

ther compressed the network by 8-bit quantization [18] so

Process Time [us]

decode 11714

detect 420495

track 162

display 2574

(a) w/o MVint

Process Time [us]

decode 304227

detect 423713

track 659

display 6426

(b) w/ MVint

Table 6. A breakdown of the processing time.

that it fits in the on-chip memory. Feature maps are com-

puted in a Q8.24 fixed-point number format. Prior to adopt-

ing SqueezeDet on the coprocessor, we confirmed that our

trained model with these optimizations closely maintain the

original detection performance on KITTI benchmark [8].

We first evaluated the processing time to perform all the

processes without MVint. That is, the system performs de-

coding , detection, tracking, and display. Processes are par-

allelized similarly as the system with MVint. The evalua-

tion results are shown in Fig. 8a. Fig. 8a represents a part of

the frame-processing timeline to show the processing time

for some three frames. The interval between the dashed

lines indicates the processing time for one frame. The pro-

cess of the detect thread is conspicuously the bottleneck for

the maximum frame rate. To compare the maximum frame

rate quantitatively, we show the breakdown of the process-

ing time for a frame between dashed lines in Table 6a. From

Table 6a, the maximum frame rate that the system without

MVint can process is 1/420495 us=2.38 FPS.

Next, we evaluated the processing time with MVint as

described in Section 6.1. The results are shown in Fig. 8b.
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Figure 7. The processing order of frames. Threads have to be synchronized at a time when processes reach red lines. By processing frames

in order as here, input frame rate can be gained n times faster.

(a) w/o MVint (b) w/ MVint

Figure 8. The timelines without and with MVint in tracking. The interval between the dashed lines indicates the processing time to process

one frame. Although the processing time for the detection is consistent in both figures, the interval of (b) is much shrunk than that of (a).

The interval between the dashed lines again indicates the

processing time for one frame. Although the processing

time for detection is consistent with Fig. 8a, the interval for

display is shrunk as described in Fig. 7. Table 6b shows the

timing breakdown to process one frame. From Table 6b,

the maximum frame rate that the system with MVint can

achieve is 1/(423713 us/12)=28.32 FPS.

We successfully confirmed that the frame rate of

2.38 FPS has improved to 28.32 FPS by the proposed

MVint, which is about 11.90 times acceleration and nearly

equal to the ideal value of 12, the sub-GOP-size. We par-

allelized both the application without MVint and that with

MVint to make the most critical detection process be bot-

tlenecks for the maximum frame rate; hence, we directly

demonstrated the benefit from MVint in terms of extend-

ing the maximum frame rate. Although we fixed the sub-

GOP-size to 12 and realized 11.90 times faster frame rate,

the maximum frame rate can be adjusted according to the

trade-off described in Fig. 5.

7. Conclusion

We proposed MVint, which aims to realize an efficient

real-time detection using CNN-based detectors. MVint

utilizes motion vectors extracted from video streams en-

coded by video codec to interpolate bounding boxes by

low-complexity operations. Through the evaluations using

MOT16, we show that MVint maintains 88% MOTA with a

reduction of the detection frequency to 1/12. We further im-

plemented MVint as a system prototype on ZCU102 embed-

ded platform, and confirmed that MVint achieves 28.32 FPS

with the parallelized application.

For future works, the exploration of the interpolation

methods may be important. Evaluation for the system pro-

totype in this paper implies that there is a room to employ

more complex interpolation algorithms. To improve the per-

formance of the interpolator, other intermediate information

contained in video streams may be utilized.
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