This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Persistent Memory Residual Network for Single Image Super Resolution

Rong Chen', Yanyun Qu* !, Kun Zeng?, Jinkang Guo', Cuihua Li', Yuan Xie?
School of Information Science and Engineering, Xiamen University, Xiamen, China
2College of Electronic Science and Technology, Xiamen University, Xiamen, China
3Research Center of Precision Sensing and Control, Institute of Automation,
Chinese Academy of Sciences, Beijing, China

chenrongmail@gg.com, yyqu@xmu.edu.cn, zengkun30l@aliyun.com,

jinkang.guo@gmail.com, chli@xmu.edu.cn, yuan.xie@ia.ac.cn

Abstract

Progresses has been witnessed in single image super-
resolution in which the low-resolution images are simulated
by bicubic downsampling. However, for the complex im-
age degradation in the wild such as downsampling, blur-
ring, noises, and geometric deformation, the existing super-
resolution methods do not work well. Inspired by a per-
sistent memory network which has been proven to be ef-
fective in image restoration, we implement the core idea of
human memory on the deep residual convolutional neural
network. Two types of memory blocks are designed for the
NTIRE2018 challenge. We embed the two types of memory
blocks in the framework of enhanced super resolution net-
work (EDSR), which is the NTIRE2017 champion method.
The residual blocks of EDSR is replaced by two types of
memory blocks. The first type of memory block is a resid-
ual module, and one memory block contains four residual
modules with four residual blocks followed by a gate unit,
which adaptively selects the features needed to store. The
second type of memory block is a residual dilated convolu-
tional block, which contains seven dilated convolution lay-
ers linked to a gate unit. The two proposed models not only
improve the super-resolution performance but also mitigate
the image degradation of noises and blurring. Experimen-
tal results on the DIV2K dataset demonstrate our models
achieve better performance than EDSR.

1. Introduction

Image super-resolution aims at restoring rich details of
a high-resolution (HR) image from an LR image or a se-
quence of low-resolution images without additional hard-
ware support. Moreover, super-resolution (SR) is an ill-
posed problem because an LR image can be generated by
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a large subspace of high-resolution images. Until now, SR
is still a challenging task due to the complex degradation in
the wild, such as image noises, blurring, downsampling and
SO on.

Deep learning methods have been successfully applied
to SR, but most of the deep learning-based SR methods are
usually trained on the traditional training dataset, such as
bicubic downsampling which simply simulates the realistic
image degradation process. However, LR images are gener-
ated by more complex degradation than bicubic downsam-
pling in the realistic world. In the NTIRE2018 challenge
on single image super-resolution [[16]], DIV2K is a more
challenging training dataset than the traditional SR training
dataset. The degradations on the DIV2K dataset include
noises, blurring, displacement or combination of the above-
mentioned degradation with unknown downsampling. Pre-
vious SR methods may not achieve good performance on
the real LR images. Further studies are required for the S-
R problem of LR images, which are generated from more
complex degradations.

In this paper, we focus on improving the SR problem of
complexity degradation LR images. Motivated by human
long-term memory, we implement persistent memory block
[14] by using deep residual convolution neural network in
which the long-path mimics human long-term memory. We
use SR architecture similar to EDSR [[10], which is the N-
TIRE2017 champion method in the task of SR. We design
two novel models: the Memory Enhanced Deep Super Res-
olution (MemEDSR) and Image Restoration with Memory
network (IRMem). Both the proposed models overcome not
only the degradation of downsampling but also the degra-
dation of blurring and noises. In the MemEDSR model, we
replace the residual blocks of EDSR with a memory block.
The memory block is composed of four residual modules
with four residual blocks, and the output of each module
links to a gate unit, in order to realize long-path links. In
the IRMem model, we design a residual dilated convolu-
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Figure 1. The architecture of the proposed MemEDSR network.

tional module as a memory block. Several memory blocks
are used for constructing fine details, and each module is
composed of seven dilated convolutional layers. In the end,
the output of each memory block links to a gate unit, which
adaptively selects the features needed to store.

The contributions are summarized as follows:

(1) Two types of memory blocks are designed for solving
the SR problem, which are caused by complex degradation
such as downsampling, blurring and noises and so on.

(2) Two deep network models (i.e., MemEDSR and
IRMem) are proposed, and each model contains differen-
t persistent memory blocks and residual short cut links in
order to tackle the four tracks in the NTIRE2018 challenge
on single image super-resolution.

(3) Extensive experiments are conducted on the DIV2K
dataset. We discuss three important factors in the proposed
models: the persistent memory block, the loss function, and
the batch normalization. Qualitative and quantitative results
show that the proposed two models can achieve good results
on Track 2,3,4 in the NTIRE2018 challenge on single image
super-resolution.

2. Related Work
2.1. Image SR via Deep Learning

Great progress has made in deep learning-based SR
methods. SRCNN [2], which first implemented the con-
volutional neural network on SR, achieved the milestone S-
R performance. After that, many CNN-based SR methods
rose up [4} 6, [7, 8, Ol (10, [12] (17, [T9] 22]]. In VDSR [6]] and
DRCN [7], convolutional networks contain deeper convolu-
tional layers so that the receptive field in the original image
is enlarged. They made a great improvement in the SR per-
formance. Different from the previous SR methods which
takes the magnified image by bicubic interpolation as the
input of SR network, ESPCN [12] directly extracts image

features in the LR space. The sub-pixel convolutional layer
learns an array of upscaling filters to upscale the final LR
feature maps into the HR output. ESPCN is optimal and
reduces the computational complexity. Similar to ESPCN
[12], FSRCNN [3]] also does features extraction in the LR
space and deconvolution is used for image reconstruction.
Some variants of ESPCN [[12]], such as SRResNet [9], DR-
RN and EDSR [10] use the deeper network to improve
performance. In the NTIRE2017 challenge on single image
super-resolution [15], EDSR has achieved impressive
results and won this competition. It removes batch normal-
ization (BN) layer in its neural network architecture in order
to effectively reduce memory consumption and uses a resid-
ual scaling factor to stabilize the training of the model.

However, the above-mentioned methods do not solve
well the SR problem caused by the complex degradation.
These methods are good at dealing with the degradation
caused by bicubic downsampling but neglect deblurring and
denoising.

2.2. Image Restoration via Deep Learning

Image restoration is a classical problem in the field of
computer vision. BM3D [1]] is one of the famous deblurring
methods in the traditional model-based optimization algo-
rithms. Inspired by the great success of deep learning in
image classification and speech recognition, the deep con-
volutional neural network is widely used to solve the prob-
lem of image restoration [20), [21]. MemNet
and IRCNN [21]] are two latest image restoration methods.
MemNet [[14] is proposed by the inspiration of human per-
sistent memory. A persistent memory network is designed
for image restoration, to explicitly mine persistent memory
through the adaptive learning process. Similar to DenseNet
[3], the network connects each layer to every other layer in
a feed-forward fashion, thus, the feature map learned by this
layer is also directly passed to all subsequent layers as the
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Figure 2. The architecture of the proposed IRMem network.

input ( thoughts). Finally, the results of the reconstruction
of each module are added according to a certain weight ra-
tio to generate the final SR result (the idea of DRCN [[7])). It
achieves excellent results in image restoration. Zhang et al.
proposed IRCNN [21]], which combines the model-based
optimization methods with deep learning based discrimina-
tive denoising. IRCNN uses the dilated convolution layers
to enhance the receptive field in the training, and contains
seven layers with different dilated filter parameters. IRCNN
has a good effect on image denoising, deblurring, and SR.

3. Proposed Methods

It is recognized in neuroscience that there are many re-
cursive connections ubiquitously existing in the neocortex.
Motivated by the recursive connections, MemNet [14] pro-
poses the persistent memory block, which contains a recur-
sive unit and a gate unit. The recursive unit can mimic the
short-term memory, and a gate unit can mimic human long-
term memory. Each recursive unit links to the gate unit in
a memory block. Inspired by the effectiveness of MemNet
on deblurring and denoising, we embedded the persisten-
t memory blocks in our models. We propose two models
(i.e., MemEDSR and IRMem) to tackle the SR tracks in the
NTIRE2018. In the following, we introduce two deep net-
works in detail.

3.1. MemEDSR

We adopt similar network architecture to EDSR [10],
which contains three parts: the head part, the body part, the
tail part. The head part contains one convolutional layer,
and the body part contains several residual blocks, and the
tail part tackles the upsampling reconstruction like ESPCN
[12]. A residual network structure contains 64 filter kernels
and the residual scale is set at 0.1.

In MemEDSR, we use a memory block which contains
four residual modules in the body part. Each residual mod-
ule contains four residual blocks and is regarded as a recur-

sive unit. Each recursive unit links to a gate unit. Similar to
EDSR, BN layers are removed in MemEDSR. The frame-
work of the proposed MemEDSR is shown in Figure[T]
There are two branches at the back of the memory
block. One branch is used for upsampling the output of the
memory block so as to generate the SR image. The other
branch is used to reconstruct the LR image. For the training
set {(w(i),y(i))}il, where () is the LR patch, and ()
is the ground truth patch. We denote the reconstruction
of an LR patch by LR(z(")) and denote the bicubic
downsampling of the SR result generated by the network
by D(SR(x®)) . The loss function is formulated as Eq.,

I LS~ ([l (i)
©) =55 2 (o - sra] )+
=l (D
N EZ_V: (HD SR(")) - LR(x(i))Hl) '

The loss function contains two terms. The first loss term is
the fidelity of the SR result to the ground truth image, and
the second loss term is the fidelity of the reconstruction of
the LR image to the downsampling result of the SR image
by bicubic downsampling.

3.2. IRMem

As shown in Figure 2] we modify a dilated convolution
block of IRCNN [21]] into a memory block of the IRMem
model. We implement the core idea of persistent memory
on an IRCNN block. In an IRCNN memory block, there are
seven dilated convolutional layers, and the dilation factors
are 1,2,3,4,3,2,1 is shown in Table [T We link the out-
put of each dilated convolution layer to the gate unit, and
all the output features are concatenated as the input of the
gate unit. Draw lessons from EDSR, we remove all the BN
layers in IRCNN memory block due to its high memory-
consuming. Furthermore, we add a short cut from the head
to the output of the gate unit in each IRCNN memory block,

924



and the residual scale is set to 0.1. We repeat the IRCNN
memory block several times for enhancing the performance
of the model. And then we embed all the memory block-
s into the body part. The advantages of IRMem are three
folds:1) IRMem enlarges the receptive field of the convo-
lution layers; 2) IRMem adaptively controls how much of
the previous features should be reserved; and 3) IRMem
decides how much of the current features should be stored.

’ Layer \ Filter Dilation Padding Succedent layer ‘
Convl | 3%3 1 1 Relu
Conv2 | 3*3 2 2 BN+Relu
Conv3 | 3*3 3 3 BN+Relu
Conv4 | 3*3 4 4 BN+Relu
Conv5 | 3%3 3 3 BN+Relu
Conv6 | 3%3 2 2 BN+Relu
Conv7 | 3*3 1 1 -

Table 1. A Module Composition of IRCNN[21]].

4. Experimental Results
4.1. Experiment Setup

DIV2K 2018 dataset is a high-quality image dataset con-
taining 1000 images (~ 2K resolution in width or height)
for single image super-resolution tasks with four tracks.
The images are degraded in different ways to form four
corresponding LR datasets corresponding to four tracks: 1)
Track 1: Classic bicubic - x 8 in which the degradation of an
image is generated by bicubic downsampling with the fac-
tor 8, 2) Track 2: Realistic mild - x4 in which an LR image
is a downsampling version with the factor 4 together with
noises, 3) Track 3: Realistic difficult - x4 in which an LR
image is a downsampling version with the factor 4 together
with noises and blurring, and 4) Track 4: Realistic wild -
x4 in which an LR image is a downsampling version with
the factor 4 with noises, blurring and displacement. Every
track contains 800 training images, 100 validation images,
and 100 test images. HR image patches from HR images
with the size of 192 % 192 are randomly sampled for train-
ing. An HR image patch and its corresponding LR image
patch are treated as a training pair. In our experiments, we
only use the datasets given in NTIRE2018 challenge on SR
without using the external datasets for training.

We implement our proposed SR models on the four
tracks. For each track, MemEDSR contains one memory
block with 16 residual blocks, and 64 feature maps. IRMem
contains 16 memory blocks, and 64 feature maps in each
memory block. It is the trade-off between the accuracy and
speed of the model.

Drawing on the experience of existing SR methods, we
set our two models with the same parameters for training.
Experimentally, we set the initial learning rate to 1le —4, and

we use ADAM learning optimization algorithm to update
the parameters of our models, which makes the proposed
network converge fast. The two parameters 3, and [ are
set to 0.9 and 0.999, respectively. 16000 training image
patch pairs in each track are used for training. The batch
size is 16. We use [; norm in the loss function, and use
the validation set to verify the performance of the proposed
models. We adapt PSNR and SSIM as the criteria which are
computed according to the rules given by the organizer of
NTIRE2018.

All the experiments are implemented in the platform
Ubuntu 16.04 with GTX1080 GPU and 32G CPU Memory.
The development environment is Pytorch 0.3.0.

4.2. Model Analysis

In this subsection, we discuss three important compo-
nents of our models to the SR performance: the BN layer,
the loss function, and the number of convolution layers in
IRMem. We first analyze the effect of the BN layer on S-
R. For the IRMem model, we give the implementation de-
tails in Table We compare IRMem without BN layers
and IRMem with BN layers (denoted by IRMem+BN). In
Table [2] we show the comparison results between IRMem
and IRMem+BN on the first and third track datasets. The
results demonstrate that removing BN can improve the S-
R performance a little. It also demonstrates that BN influ-
ences the SR performance a little more in Difficultx4 than
in Cubicx8. IRMem achieves the gain of PSNR and SSIM
by (0.1,0.032) in Difficultx4 and by (0.0039,0.0008) in
Cubicx 8, compared with IRMem-+BN.

’ Methods \ Difficultx 4 Cubicx8 ‘
IRMem 22.22/0.4811 25.3749/0.6888
IRMem+BN | 22.12/0.4779 25.3710/0.6880

Table 2. Comparison results between IRMem and IRMem+BN on
the Difficultx4 and Cubic x 8 datasets.

psnr-epoch

—a— MemEDSR_difficultx4
MemEDSR_difficultx4+BN

0.0 25 5.0 75 100 125 150 175 200
EPOCH

Figure 3. Experimental comparison between MemEDSR and
MemEDSR+BN on the Difficultx4 dataset.

Moreover, we estimate the effect of BN layer to
MemEDSR and make the comparison between MemEDSR
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and MemEDSR with BN layers (MemEDSR+BN). Figure
shows the comparison results between MemEDSR and
MemEDSR+BN on the Difficultx4 dataset. Table 2] and
Figure [3| both demonstrate that removing BN will improve
the SR performance. The positive gain is about 0.1db in
terms of PSNR.

We estimate the effect of different loss functions on S-
R and formulate the traditional loss function as Eq.@l), the
fidelity of the SR result to the ground truth.

b0 =g 2 (b -sre]) @

We denote the model with the traditional loss function
as Eq.(Z) by MemEDSR-LF1. The comparison results be-
tween MemEDSR and MemEDSR-LF1 on the Cubicx8
and Mild x4 datasets are shown in Table |3| It demonstrates
that the loss function with two loss terms as Eq.(T) is better

than Eq.(2).

] Methods

MemEDSR
MemEDSR-LF1

Mild x4 Cubic x8 |

22.7511/0.5064 25.1439/0.6800
22.7027/0.5026  25.1124/0.6783

Table 3. Comparison of MemEDSR with different loss functions
in terms of PSNR and SSIM on the Mild x4 and Cubic x 8 datasets.

Furthermore, we discuss how the number of convolution-
al layers affects the SR performance in the IRMem. We de-
note B as the number of memory blocks and F' as the num-
ber of feature maps. In the implementation of IRMem, we
set B = 16 and F' = 64. We compare it with the IRMem
model with B = 24, F' = 64, denoted by IRMem*. Table
gives the comparison results, which demonstrates that the
more the block number is, the better the SR performance is.

Methods IRMem IRMem?*
(B=16 F=64) (B=24 F=64)

[ Mild x4 | 22.7511/0.5064  22.9424/0.5107 |

Table 4. The effect of the number of the memory blocks in IRMem
on the Mildx x4 dataset.

4.3. Comparison with the state-of-the-art SR meth-
ods

In this subsection, we compare the proposed models with
the state-of-the-art SR methods. We set the bicubic in-
terpolation method as the baseline. Six state-of-the-art S-
R methods are compared with our two proposed model-
s (i.e., MemEDSR, IRMem) on DIV2K: Bicubic, SRCNN
[2], VDSR [6], CDA [19], EDSR [10], IRCNN [21]]. In our
experiments, EDSR and IRCNN are retrained on DIV2K.

As for EDSR, the published best SR results are achieved
with 32 memory blocks, each of which contains 256 feature
maps (B = 32, F = 256). For the limitation of the com-
putational resource, we cannot run our model with B = 32
and F' = 256 but only run the model with B = 16 and
F' = 64. For the fairness of comparison, we compare our
model with EDSR with B = 16 and F' = 64, denoted by
EDSR*. The code of EDSR used in our experiments is sup-
plied by the third party with the development environment
of Pytorch. As for IRCNN and IRMem, we set the same
network structure with 16 dilated convolution blocks and
64 feature maps. For SRCNN, VDSR, and CDA, we use
the models provided by their authors and we test the mod-
els on the NTIRE2018 validation datasets for three track-
s. As for the proposed models, we firstly train MemED-
SR and IRMem on the Mild x4 dataset, respectively. And
then, based on the two models, we train the new models
on Difficultx4 and Wildx4 datasets, respectively. During
training on the Mild x4 dataset, 60 epochs are trained with
the initial learning rate. After that, 120 epochs are trained
with half of the previous learning rate. The same strategy is
used in the Difficultx4 and Wild x4 datasets.

The comparison results of different methods on the last
three tracks are shown in Table[5] Each item has two digitals
in the results: the first is the averages of PSNRs, and the sec-
ond is the average of SSIMs. We find that Bicubic achieves
the best SR performance in terms of PSNR and SSIM on
Mild x4 dataset. We further observe that the results of the
models retrained on Mildx4 are inferior to Bicubic, SRC-
NN, and CDA. Together with the visual effect comparison
in Figure 4] we guess that models retrained on the Mild x4
dataset make the SR result over-smoothed. Thus, their P-
SNRs are less than Bicubic, SRCNN, and CDA. On the
Difficultx4 and Wildx4 datasets, the two proposed mod-
els achieve the best SR results among the 8 methods and
IRMem is better than MemEDSR.

| Methods [ Mildx4 Difficult x4 Wild x4 |
Bicubic 23.14/0.5166  21.77/0.4590  22.45/0.4857
SRCNN [2] | 22.96/0.5062 21.54/0.4431  22.16/0.4681
VDSR [6] | 22.86/0.4984  21.50/0.4387  22.10/0.4621
CDA [I7] | 22.99/0.5065 21.57/0.4440 22.21/0.4694
EDSR* [10] | 22.70/0.5029 22.13/0.4753  22.53/0.4943
IRCNN [21] | 22.68/0.5014  22.10/0.4742  22.54/0.4921
MemEDSR | 22.78/0.4993  22.13/0.4727  22.57/0.4942
IRMem 22.75/0.5064  22.22/0.4801  22.70/0.4986

Table 5. Comparison different methods on the last three datasets
in the NTIRE2018 challenge.

We also compare our models with EDSR on the five
datasets: Seth, Setl4, BSD100, Urban100, and DIV2K
validatation. We estimate our models for the SR problem
with the simple degradation caused by bicubic downsam-
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HR Bicubic VDSR [6] CDA[17]
(PSNR/SSIM)  (28.88/0.7193) (27.18/0.6234)  (27.43/0.6386)

0845 from DIV2K for Track3: EDSR [10] IRCNN [21] MemEDSR (Ours) IRMem (Ours)
difficultx4 (38.94/0.8990)  (39.35/0.8994) (38.29/0.8987) (39.39/0.9004)

VDSR [6] CDA[17]

(PSNR/SSIM)  (26.72/0.6952)  (24.66/0.5601)  (24.85/0.5724)

0844 from DIV2K for Track4: EDSR [ IRCNN [21]  MemEDSR(Ours) IRMem(Ours)
wildx4 (37.63/0.9763) (37.22/0.9728) (38.00/0.9768)  (38.00/0.9758)

Bicubic VDSR [6] CDA[17]
(PSNR/SSIM)  (30.96/0.8201)  (29.60/0.7506)  (29.78/0.7586)

1 1
o |
|

0891 from DIV2K for Track2: mildx4  EDSR[10] IRCNN [21] MemEDSR(Ours) IRMem(Ours)
(33.98/0.9342)  (33.92/0.9267) (33.72/0.9277) (35.14/0.9331)

Figure 4. Visual effect comparison of the five SR methods on three Tracks of the NTIRE2018 challenge.
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pling with the factor 4. For the comparison fairness, we
use the same network structure configuration for EDSR and
MemEDSR with 16 residual blocks, and IRMem has 16
memory blocks, each of which contains 64 feature maps
(B = 16, F = 64). Table [f] shows the comparison result-
s. It demonstrates that our models outperform EDSR on all
datasets. On Setb and Set14, IRMem achieves the high-
est gain by about 3db/0.09 in terms of PSNR and SSIM.
On DIV2K, MemEDSR is superior to EDSR with the gain
(1.35,0.0405) and IRMem is superior to EDSR with the
gain (2.03.0.0702) in terms of PSNR and SSIM. IRMem
achieves better SR results than MemEDSR.

Methods EDSR* MemEDSR IRMem
(B=16 F=64) (B=16F=64) (B=16F=64)
Set5 27.34/0.7774  29.64/0.8524  30.36/0.8655
Setl4 24.93/0.6786  26.35/0.7293  26.88/0.7453
BSD100 23.54/0.5697  23.66/0.5815 23.65/0.5831
Urban100 21.13/0.5701 21.47/0.6002  21.52/0.6080
DIV2K VAL | 27.03/0.7528  28.38/0.8033  29.06/0.8210

Table 6. Comparison between EDSR and our models with magni-
fication factor 4 on five datasets. In the experiments, EDSR* is the
model with B = 16 and F' = 64.

In the following, we give the visual effect comparison of
the five compared methods. Figure ] shows the comparison
of the visual effect on the last three track datasets. From the
visual effect, our proposed models can give more fine detail-
s than other SR methods. Because SRCNN, CDA, and VD-
SR are the original models proposed by their authors which
are trained on a bicubic downsampled training dataset, they
have little effect on noises. EDSR and IRCNN can mitigate
noises but their results look blurring. IRMem is superior to
other comparied SR methods, and it can not only denoise
but also keep fine details.

5. Conclusion

In this paper, we focus on the SR problem in which LR
images are degraded by complex degradation which con-
tains downsampling, blurring, and noises. DIV2K is a more
difficult SR dataset than the previous SR dataset. We im-
plement the core idea of human memory on the deep neural
network for SR. We design two models (i.e., MemEDSR
and IRMem) with the different memory blocks. Similar to
EDSR, which is the NTIRE2017 champion SR method, the
proposed models contain three parts: the head part, the body
part, and the tail part. In MemEDSR, we use a memory
block to replace the body part of EDSR. The memory block
contains four residual modules and each residual module
contains four residual blocks. The output of each residual
module links to a gate unit. In IRMem, we design a mem-
ory block which is composed by a residual dilated convo-
lutional block. Each memory block contains seven dilated

convolution layers and the each of them is linked to a gate
unit. The memory block is repeated several times for con-
structing fine detail. The experimental results show that the
two proposed models achieve better SR performance than
EDSR in Track 2, 3 and 4. It demonstrates the effectiveness
of our models.
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