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Abstract

Progresses has been witnessed in single image super-

resolution in which the low-resolution images are simulated

by bicubic downsampling. However, for the complex im-

age degradation in the wild such as downsampling, blur-

ring, noises, and geometric deformation, the existing super-

resolution methods do not work well. Inspired by a per-

sistent memory network which has been proven to be ef-

fective in image restoration, we implement the core idea of

human memory on the deep residual convolutional neural

network. Two types of memory blocks are designed for the

NTIRE2018 challenge. We embed the two types of memory

blocks in the framework of enhanced super resolution net-

work (EDSR), which is the NTIRE2017 champion method.

The residual blocks of EDSR is replaced by two types of

memory blocks. The first type of memory block is a resid-

ual module, and one memory block contains four residual

modules with four residual blocks followed by a gate unit,

which adaptively selects the features needed to store. The

second type of memory block is a residual dilated convolu-

tional block, which contains seven dilated convolution lay-

ers linked to a gate unit. The two proposed models not only

improve the super-resolution performance but also mitigate

the image degradation of noises and blurring. Experimen-

tal results on the DIV2K dataset demonstrate our models

achieve better performance than EDSR.

1. Introduction

Image super-resolution aims at restoring rich details of

a high-resolution (HR) image from an LR image or a se-

quence of low-resolution images without additional hard-

ware support. Moreover, super-resolution (SR) is an ill-

posed problem because an LR image can be generated by
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a large subspace of high-resolution images. Until now, SR

is still a challenging task due to the complex degradation in

the wild, such as image noises, blurring, downsampling and

so on.

Deep learning methods have been successfully applied

to SR, but most of the deep learning-based SR methods are

usually trained on the traditional training dataset, such as

bicubic downsampling which simply simulates the realistic

image degradation process. However, LR images are gener-

ated by more complex degradation than bicubic downsam-

pling in the realistic world. In the NTIRE2018 challenge

on single image super-resolution [16], DIV2K is a more

challenging training dataset than the traditional SR training

dataset. The degradations on the DIV2K dataset include

noises, blurring, displacement or combination of the above-

mentioned degradation with unknown downsampling. Pre-

vious SR methods may not achieve good performance on

the real LR images. Further studies are required for the S-

R problem of LR images, which are generated from more

complex degradations.

In this paper, we focus on improving the SR problem of

complexity degradation LR images. Motivated by human

long-term memory, we implement persistent memory block

[14] by using deep residual convolution neural network in

which the long-path mimics human long-term memory. We

use SR architecture similar to EDSR [10], which is the N-

TIRE2017 champion method in the task of SR. We design

two novel models: the Memory Enhanced Deep Super Res-

olution (MemEDSR) and Image Restoration with Memory

network (IRMem). Both the proposed models overcome not

only the degradation of downsampling but also the degra-

dation of blurring and noises. In the MemEDSR model, we

replace the residual blocks of EDSR with a memory block.

The memory block is composed of four residual modules

with four residual blocks, and the output of each module

links to a gate unit, in order to realize long-path links. In

the IRMem model, we design a residual dilated convolu-

922



Figure 1. The architecture of the proposed MemEDSR network.

tional module as a memory block. Several memory blocks

are used for constructing fine details, and each module is

composed of seven dilated convolutional layers. In the end,

the output of each memory block links to a gate unit, which

adaptively selects the features needed to store.

The contributions are summarized as follows:

(1) Two types of memory blocks are designed for solving

the SR problem, which are caused by complex degradation

such as downsampling, blurring and noises and so on.

(2) Two deep network models (i.e., MemEDSR and

IRMem) are proposed, and each model contains differen-

t persistent memory blocks and residual short cut links in

order to tackle the four tracks in the NTIRE2018 challenge

on single image super-resolution.

(3) Extensive experiments are conducted on the DIV2K

dataset. We discuss three important factors in the proposed

models: the persistent memory block, the loss function, and

the batch normalization. Qualitative and quantitative results

show that the proposed two models can achieve good results

on Track 2,3,4 in the NTIRE2018 challenge on single image

super-resolution.

2. Related Work

2.1. Image SR via Deep Learning

Great progress has made in deep learning-based SR

methods. SRCNN [2], which first implemented the con-

volutional neural network on SR, achieved the milestone S-

R performance. After that, many CNN-based SR methods

rose up [4, 6, 7, 8, 9, 10, 12, 17, 19, 22]. In VDSR [6] and

DRCN [7], convolutional networks contain deeper convolu-

tional layers so that the receptive field in the original image

is enlarged. They made a great improvement in the SR per-

formance. Different from the previous SR methods which

takes the magnified image by bicubic interpolation as the

input of SR network, ESPCN [12] directly extracts image

features in the LR space. The sub-pixel convolutional layer

learns an array of upscaling filters to upscale the final LR

feature maps into the HR output. ESPCN is optimal and

reduces the computational complexity. Similar to ESPCN

[12], FSRCNN [3] also does features extraction in the LR

space and deconvolution is used for image reconstruction.

Some variants of ESPCN [12], such as SRResNet [9], DR-

RN [13] and EDSR [10] use the deeper network to improve

performance. In the NTIRE2017 challenge on single image

super-resolution [15], EDSR [10] has achieved impressive

results and won this competition. It removes batch normal-

ization (BN) layer in its neural network architecture in order

to effectively reduce memory consumption and uses a resid-

ual scaling factor to stabilize the training of the model.

However, the above-mentioned methods do not solve

well the SR problem caused by the complex degradation.

These methods are good at dealing with the degradation

caused by bicubic downsampling but neglect deblurring and

denoising.

2.2. Image Restoration via Deep Learning

Image restoration is a classical problem in the field of

computer vision. BM3D [1] is one of the famous deblurring

methods in the traditional model-based optimization algo-

rithms. Inspired by the great success of deep learning in

image classification and speech recognition, the deep con-

volutional neural network is widely used to solve the prob-

lem of image restoration [20, 11, 18, 14, 21]. MemNet [14]

and IRCNN [21] are two latest image restoration methods.

MemNet [14] is proposed by the inspiration of human per-

sistent memory. A persistent memory network is designed

for image restoration, to explicitly mine persistent memory

through the adaptive learning process. Similar to DenseNet

[5], the network connects each layer to every other layer in

a feed-forward fashion, thus, the feature map learned by this

layer is also directly passed to all subsequent layers as the
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Figure 2. The architecture of the proposed IRMem network.

input ( thoughts). Finally, the results of the reconstruction

of each module are added according to a certain weight ra-

tio to generate the final SR result (the idea of DRCN [7]). It

achieves excellent results in image restoration. Zhang et al.

proposed IRCNN [21], which combines the model-based

optimization methods with deep learning based discrimina-

tive denoising. IRCNN uses the dilated convolution layers

to enhance the receptive field in the training, and contains

seven layers with different dilated filter parameters. IRCNN

has a good effect on image denoising, deblurring, and SR.

3. Proposed Methods

It is recognized in neuroscience that there are many re-

cursive connections ubiquitously existing in the neocortex.

Motivated by the recursive connections, MemNet [14] pro-

poses the persistent memory block, which contains a recur-

sive unit and a gate unit. The recursive unit can mimic the

short-term memory, and a gate unit can mimic human long-

term memory. Each recursive unit links to the gate unit in

a memory block. Inspired by the effectiveness of MemNet

on deblurring and denoising, we embedded the persisten-

t memory blocks in our models. We propose two models

(i.e., MemEDSR and IRMem) to tackle the SR tracks in the

NTIRE2018. In the following, we introduce two deep net-

works in detail.

3.1. MemEDSR

We adopt similar network architecture to EDSR [10],

which contains three parts: the head part, the body part, the

tail part. The head part contains one convolutional layer,

and the body part contains several residual blocks, and the

tail part tackles the upsampling reconstruction like ESPCN

[12]. A residual network structure contains 64 filter kernels

and the residual scale is set at 0.1.

In MemEDSR, we use a memory block which contains

four residual modules in the body part. Each residual mod-

ule contains four residual blocks and is regarded as a recur-

sive unit. Each recursive unit links to a gate unit. Similar to

EDSR, BN layers are removed in MemEDSR. The frame-

work of the proposed MemEDSR is shown in Figure 1.

There are two branches at the back of the memory

block. One branch is used for upsampling the output of the

memory block so as to generate the SR image. The other

branch is used to reconstruct the LR image. For the training

set
{

(x(i), y(i))
}N

i=1
, where x(i) is the LR patch, and y(i)

is the ground truth patch. We denote the reconstruction

of an LR patch by LR(x(i)) and denote the bicubic

downsampling of the SR result generated by the network

by D(SR(x(i))) . The loss function is formulated as Eq.(1),

L(Θ) =
1

2N

N
∑

i=1

(∥

∥

∥
y(i) − SR(x(i))

∥

∥

∥

1

)

+

1

2N

N
∑

i=1

(∥

∥

∥
D(SR(x(i)))− LR(x(i))

∥

∥

∥

1

)

.

(1)

The loss function contains two terms. The first loss term is

the fidelity of the SR result to the ground truth image, and

the second loss term is the fidelity of the reconstruction of

the LR image to the downsampling result of the SR image

by bicubic downsampling.

3.2. IRMem

As shown in Figure 2, we modify a dilated convolution

block of IRCNN [21] into a memory block of the IRMem

model. We implement the core idea of persistent memory

on an IRCNN block. In an IRCNN memory block, there are

seven dilated convolutional layers, and the dilation factors

are 1, 2, 3, 4, 3, 2, 1 is shown in Table 1. We link the out-

put of each dilated convolution layer to the gate unit, and

all the output features are concatenated as the input of the

gate unit. Draw lessons from EDSR, we remove all the BN

layers in IRCNN memory block due to its high memory-

consuming. Furthermore, we add a short cut from the head

to the output of the gate unit in each IRCNN memory block,
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and the residual scale is set to 0.1. We repeat the IRCNN

memory block several times for enhancing the performance

of the model. And then we embed all the memory block-

s into the body part. The advantages of IRMem are three

folds:1) IRMem enlarges the receptive field of the convo-

lution layers; 2) IRMem adaptively controls how much of

the previous features should be reserved; and 3) IRMem

decides how much of the current features should be stored.

Layer Filter Dilation Padding Succedent layer

Conv1 3*3 1 1 Relu

Conv2 3*3 2 2 BN+Relu

Conv3 3*3 3 3 BN+Relu

Conv4 3*3 4 4 BN+Relu

Conv5 3*3 3 3 BN+Relu

Conv6 3*3 2 2 BN+Relu

Conv7 3*3 1 1 -

Table 1. A Module Composition of IRCNN[21].

4. Experimental Results

4.1. Experiment Setup

DIV2K 2018 dataset is a high-quality image dataset con-

taining 1000 images (∼ 2K resolution in width or height)

for single image super-resolution tasks with four tracks.

The images are degraded in different ways to form four

corresponding LR datasets corresponding to four tracks: 1)

Track 1: Classic bicubic - ×8 in which the degradation of an

image is generated by bicubic downsampling with the fac-

tor 8, 2) Track 2: Realistic mild - ×4 in which an LR image

is a downsampling version with the factor 4 together with

noises, 3) Track 3: Realistic difficult - ×4 in which an LR

image is a downsampling version with the factor 4 together

with noises and blurring, and 4) Track 4: Realistic wild -

×4 in which an LR image is a downsampling version with

the factor 4 with noises, blurring and displacement. Every

track contains 800 training images, 100 validation images,

and 100 test images. HR image patches from HR images

with the size of 192 ∗ 192 are randomly sampled for train-

ing. An HR image patch and its corresponding LR image

patch are treated as a training pair. In our experiments, we

only use the datasets given in NTIRE2018 challenge on SR

without using the external datasets for training.

We implement our proposed SR models on the four

tracks. For each track, MemEDSR contains one memory

block with 16 residual blocks, and 64 feature maps. IRMem

contains 16 memory blocks, and 64 feature maps in each

memory block. It is the trade-off between the accuracy and

speed of the model.

Drawing on the experience of existing SR methods, we

set our two models with the same parameters for training.

Experimentally, we set the initial learning rate to 1e−4, and

we use ADAM learning optimization algorithm to update

the parameters of our models, which makes the proposed

network converge fast. The two parameters β1 and β2 are

set to 0.9 and 0.999, respectively. 16000 training image

patch pairs in each track are used for training. The batch

size is 16. We use l1 norm in the loss function, and use

the validation set to verify the performance of the proposed

models. We adapt PSNR and SSIM as the criteria which are

computed according to the rules given by the organizer of

NTIRE2018.

All the experiments are implemented in the platform

Ubuntu 16.04 with GTX1080 GPU and 32G CPU Memory.

The development environment is Pytorch 0.3.0.

4.2. Model Analysis

In this subsection, we discuss three important compo-

nents of our models to the SR performance: the BN layer,

the loss function, and the number of convolution layers in

IRMem. We first analyze the effect of the BN layer on S-

R. For the IRMem model, we give the implementation de-

tails in Table 1. We compare IRMem without BN layers

and IRMem with BN layers (denoted by IRMem+BN). In

Table 2, we show the comparison results between IRMem

and IRMem+BN on the first and third track datasets. The

results demonstrate that removing BN can improve the S-

R performance a little. It also demonstrates that BN influ-

ences the SR performance a little more in Difficult×4 than

in Cubic×8. IRMem achieves the gain of PSNR and SSIM

by (0.1, 0.032) in Difficult×4 and by (0.0039, 0.0008) in

Cubic×8, compared with IRMem+BN.

Methods Difficult×4 Cubic×8

IRMem 22.22/0.4811 25.3749/0.6888

IRMem+BN 22.12/0.4779 25.3710/0.6880

Table 2. Comparison results between IRMem and IRMem+BN on

the Difficult×4 and Cubic×8 datasets.

Figure 3. Experimental comparison between MemEDSR and

MemEDSR+BN on the Difficult×4 dataset.

Moreover, we estimate the effect of BN layer to

MemEDSR and make the comparison between MemEDSR
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and MemEDSR with BN layers (MemEDSR+BN). Figure

3 shows the comparison results between MemEDSR and

MemEDSR+BN on the Difficult×4 dataset. Table 2 and

Figure 3 both demonstrate that removing BN will improve

the SR performance. The positive gain is about 0.1db in

terms of PSNR.

We estimate the effect of different loss functions on S-

R and formulate the traditional loss function as Eq.(2), the

fidelity of the SR result to the ground truth.

L(Θ) =
1

2N

N
∑

i=1

(
∥

∥

∥
y(i) − SR(x(i))

∥

∥

∥

1

)

(2)

We denote the model with the traditional loss function

as Eq.(2) by MemEDSR-LF1. The comparison results be-

tween MemEDSR and MemEDSR-LF1 on the Cubic×8
and Mild×4 datasets are shown in Table 3. It demonstrates

that the loss function with two loss terms as Eq.(1) is better

than Eq.(2).

Methods Mild ×4 Cubic ×8

MemEDSR 22.7511/0.5064 25.1439/0.6800

MemEDSR-LF1 22.7027/0.5026 25.1124/0.6783

Table 3. Comparison of MemEDSR with different loss functions

in terms of PSNR and SSIM on the Mild×4 and Cubic×8 datasets.

Furthermore, we discuss how the number of convolution-

al layers affects the SR performance in the IRMem. We de-

note B as the number of memory blocks and F as the num-

ber of feature maps. In the implementation of IRMem, we

set B = 16 and F = 64. We compare it with the IRMem

model with B = 24, F = 64, denoted by IRMem*. Table

4 gives the comparison results, which demonstrates that the

more the block number is, the better the SR performance is.

Methods IRMem IRMem*

(B=16 F=64) (B=24 F=64)

Mild ×4 22.7511/0.5064 22.9424/0.5107

Table 4. The effect of the number of the memory blocks in IRMem

on the Mildx×4 dataset.

4.3. Comparison with the state-of-the-art SR meth-
ods

In this subsection, we compare the proposed models with

the state-of-the-art SR methods. We set the bicubic in-

terpolation method as the baseline. Six state-of-the-art S-

R methods are compared with our two proposed model-

s (i.e., MemEDSR, IRMem) on DIV2K: Bicubic, SRCNN

[2], VDSR [6], CDA [19], EDSR [10], IRCNN [21]. In our

experiments, EDSR and IRCNN are retrained on DIV2K.

As for EDSR, the published best SR results are achieved

with 32 memory blocks, each of which contains 256 feature

maps (B = 32, F = 256). For the limitation of the com-

putational resource, we cannot run our model with B = 32
and F = 256 but only run the model with B = 16 and

F = 64. For the fairness of comparison, we compare our

model with EDSR with B = 16 and F = 64, denoted by

EDSR*. The code of EDSR used in our experiments is sup-

plied by the third party with the development environment

of Pytorch. As for IRCNN and IRMem, we set the same

network structure with 16 dilated convolution blocks and

64 feature maps. For SRCNN, VDSR, and CDA, we use

the models provided by their authors and we test the mod-

els on the NTIRE2018 validation datasets for three track-

s. As for the proposed models, we firstly train MemED-

SR and IRMem on the Mild×4 dataset, respectively. And

then, based on the two models, we train the new models

on Difficult×4 and Wild×4 datasets, respectively. During

training on the Mild×4 dataset, 60 epochs are trained with

the initial learning rate. After that, 120 epochs are trained

with half of the previous learning rate. The same strategy is

used in the Difficult×4 and Wild×4 datasets.

The comparison results of different methods on the last

three tracks are shown in Table 5. Each item has two digitals

in the results: the first is the averages of PSNRs, and the sec-

ond is the average of SSIMs. We find that Bicubic achieves

the best SR performance in terms of PSNR and SSIM on

Mild×4 dataset. We further observe that the results of the

models retrained on Mild×4 are inferior to Bicubic, SRC-

NN, and CDA. Together with the visual effect comparison

in Figure 4, we guess that models retrained on the Mild×4
dataset make the SR result over-smoothed. Thus, their P-

SNRs are less than Bicubic, SRCNN, and CDA. On the

Difficult×4 and Wild×4 datasets, the two proposed mod-

els achieve the best SR results among the 8 methods and

IRMem is better than MemEDSR.

Methods Mild×4 Difficult ×4 Wild ×4

Bicubic 23.14/0.5166 21.77/0.4590 22.45/0.4857

SRCNN [2] 22.96/0.5062 21.54/0.4431 22.16/0.4681

VDSR [6] 22.86/0.4984 21.50/0.4387 22.10/0.4621

CDA [17] 22.99/0.5065 21.57/0.4440 22.21/0.4694

EDSR* [10] 22.70/0.5029 22.13/0.4753 22.53/0.4943

IRCNN [21] 22.68/0.5014 22.10/0.4742 22.54/0.4921

MemEDSR 22.78/0.4993 22.13/0.4727 22.57/0.4942

IRMem 22.75/0.5064 22.22/0.4801 22.70/0.4986

Table 5. Comparison different methods on the last three datasets

in the NTIRE2018 challenge.

We also compare our models with EDSR on the five

datasets: Set5, Set14, BSD100, Urban100, and DIV2K

validatation. We estimate our models for the SR problem

with the simple degradation caused by bicubic downsam-
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HR

(PSNR/SSIM)

Bicubic

(28.88/0.7193)

VDSR [ ]

(27.18/0.6234)

CDA [17]

(27.43/0.6386)

0845 from DIV2K for Track3: 

difficultx4

EDSR [10]

(38.94/0.8990)

IRCNN [21]

(39.35/0.8994)

MemEDSR (Ours)

(38.29/0.8987)

IRMem (Ours)

(39.39/0.9004)

HR

(PSNR/SSIM)

Bicubic

(26.72/0.6952)

VDSR [ ]

(24.66/0.5601)

CDA [17]

(24.85/0.5724)

0844 from DIV2K for Track4: 

wildx4

EDSR [10]

(37.63/0.9763)

IRCNN [21]

(37.22/0.9728)

MemEDSR(Ours)

(38.00/0.9768)

IRMem(Ours)

(38.00/0.9758)

HR

(PSNR/SSIM)

Bicubic

(30.96/0.8201)

VDSR [ ]

(29.60/0.7506)

CDA [17]

(29.78/0.7586)

0891 from DIV2K for Track2: mildx4 EDSR [10]

(33.98/0.9342)

IRCNN [21]

(33.92/0.9267)

MemEDSR(Ours)

(33.72/0.9277)

IRMem(Ours)

(35.14/0.9331)

Figure 4. Visual effect comparison of the five SR methods on three Tracks of the NTIRE2018 challenge.
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pling with the factor 4. For the comparison fairness, we

use the same network structure configuration for EDSR and

MemEDSR with 16 residual blocks, and IRMem has 16
memory blocks, each of which contains 64 feature maps

(B = 16, F = 64). Table 6 shows the comparison result-

s. It demonstrates that our models outperform EDSR on all

datasets. On Set5 and Set14, IRMem achieves the high-

est gain by about 3db/0.09 in terms of PSNR and SSIM.

On DIV2K, MemEDSR is superior to EDSR with the gain

(1.35, 0.0405) and IRMem is superior to EDSR with the

gain (2.03.0.0702) in terms of PSNR and SSIM. IRMem

achieves better SR results than MemEDSR.

Methods EDSR* MemEDSR IRMem

(B=16 F=64) (B=16 F=64) (B=16 F=64)

Set5 27.34/0.7774 29.64/0.8524 30.36/0.8655

Set14 24.93/0.6786 26.35/0.7293 26.88/0.7453

BSD100 23.54/0.5697 23.66/0.5815 23.65/0.5831

Urban100 21.13/0.5701 21.47/0.6002 21.52/0.6080

DIV2K VAL 27.03/0.7528 28.38/0.8033 29.06/0.8210

Table 6. Comparison between EDSR and our models with magni-

fication factor 4 on five datasets. In the experiments, EDSR* is the

model with B = 16 and F = 64.

In the following, we give the visual effect comparison of

the five compared methods. Figure 4 shows the comparison

of the visual effect on the last three track datasets. From the

visual effect, our proposed models can give more fine detail-

s than other SR methods. Because SRCNN, CDA, and VD-

SR are the original models proposed by their authors which

are trained on a bicubic downsampled training dataset, they

have little effect on noises. EDSR and IRCNN can mitigate

noises but their results look blurring. IRMem is superior to

other comparied SR methods, and it can not only denoise

but also keep fine details.

5. Conclusion

In this paper, we focus on the SR problem in which LR

images are degraded by complex degradation which con-

tains downsampling, blurring, and noises. DIV2K is a more

difficult SR dataset than the previous SR dataset. We im-

plement the core idea of human memory on the deep neural

network for SR. We design two models (i.e., MemEDSR

and IRMem) with the different memory blocks. Similar to

EDSR, which is the NTIRE2017 champion SR method, the

proposed models contain three parts: the head part, the body

part, and the tail part. In MemEDSR, we use a memory

block to replace the body part of EDSR. The memory block

contains four residual modules and each residual module

contains four residual blocks. The output of each residual

module links to a gate unit. In IRMem, we design a mem-

ory block which is composed by a residual dilated convo-

lutional block. Each memory block contains seven dilated

convolution layers and the each of them is linked to a gate

unit. The memory block is repeated several times for con-

structing fine detail. The experimental results show that the

two proposed models achieve better SR performance than

EDSR in Track 2, 3 and 4. It demonstrates the effectiveness

of our models.
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