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Abstract 

 
A receptive field is defined as the region in an input 

image space that an output image pixel is looking at. Thus, 
the receptive field size influences the learning of deep 
convolution neural networks. Especially, in single image 
dehazing problems, larger receptive fields often show more 
effective dehazying by considering the brightness and color 
of the entire input hazy image without additional 
information (e.g. scene transmission map, depth map, and 
atmospheric light). The conventional generative 
adversarial network (GAN) with small-sized receptive 
fields cannot be effective for hazy images of ultra-high 
resolution. Thus, we proposed a fully end-to-end learning 
based conditional boundary equilibrium generative 
adversarial network (BEGAN) with the receptive field sizes 
enlarged for single image dehazing. In our conditional 
BEGAN, its discriminator is trained ultra-high resolution 
conditioned on downscale input hazy images, so that the 
haze can effectively be removed with the original structures 
of images stably preserved. From this, we can obtain the 
high PSNR performance (Track 1 - Indoor: top 4th-ranked) 
and fast computation speeds. Also, we combine an L1 loss, 
a perceptual loss and a GAN loss as the generator’s loss of 
the proposed conditional BEGAN, which allows to obtain 
stable dehazing results for various hazy images. 

1. Introduction 
Images are often captured under bad weather conditions, 

which results in the degraded images with many obscured 
regions by fog, mist, and haze etc. Especially, the hazy 
images not only lower their aesthetical values, but also 
cause a significant performance degradation for object 
recognition. Thus, dehazing is an essential preprocessing to 
both aesthetic photography and computer vision 
applications. In general, the formulation of a hazy image 
can be modeled as 

        1I x J x t x A t x                      (1) 

where I(x) and J(x) are an input hazy image and a clean 
image, A is the global atmospheric light, and t(x) is the 

transmission ratio that the potion of lights reaches the 
camera sensors. As a result, the haze removal using only a 
single degraded hazy image is a very challenging and ill-
posed problem. The conventional haze removal methods 
estimate the global atmospheric light and the transmission 
ratio, and they remove the haze using the estimated 
parameters of (1) [1]-[4]. But, this approach is not a way to 
optimize the perceptual quality of generated dehazed 
images. Also, the inaccuracies of the estimated parameters 
can lead to weird distortions or to poor performance of haze 
removal. Instead, deep-learning-based convolutional neural 
networks can be used to effectively remove the image haze 
via fully end-to-end-learning. For an effective fully-end-to-
end learning, the network must be able to understand the 
characteristics of the entire hazy images. Especially, when 
the resolutions of hazy images are very large, the training 
of the haze removal networks with small receptive filed 
sizes becomes difficult since the networks cannot consider 
the properties of the entire hazy images. 

Thus, we proposed a fully end-to-end learning based 
single image dehazing method by extending the BEGAN as 
a conditional BEGAN. The proposed condition BEGAN 
uses relatively large receptive field sizes for downscaled 
input hazy images so that it can capture global property of 
hazy input images and yield stably dehazed output images 
with image structures preserved. In order to increase the 
receptive field size, we use the input hazy images of 
reduced sizes which are then processed through our 
conditional BEGAN, and increase the dehazed output 
image sizes back to their original sizes using a bicubic 
interpolation method. Also, we use a combined cost of L1 
loss, perceptual loss and an adversarial loss to train the 
conditional BEGAN, which helps enhancing the perceptual 
quality of dehazed images. We have experimentally 
confirmed that the conditional BEGAN has shown not only 
better perceptual quality but also better PSNR performance 
than that of convolution neural networks trained with the 
L1 loss and perceptual loss. Our proposed conditional 
BEGAN was ranked in the 4th place in NTIRE 2018 
Dehazing Challenge (Track 1: Indoor) [10]. 

2. Related works 

2.1. Single Image Dehazing 
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Early image dehazing methods performed by using 
multiple images captured under different weather 
conditions [1] or additional infrared versions of the hazy 
images [2]. But, the hazy removal should be performed by 
using only single hazy images since there is seldom 
additional information in realistic dehazing applications. 
Thus, single image dehazing methods have been studied 
extensively [3], [4], [5], [17], [18], [19], [20], [21], [22], 
[23]. Tan et al. [17] enlarges local contrast without 
exceeding the global atmospheric light value. He et al. [3] 
proposed a new dark channel prior based single image 
dehazing method. The dark channel is composed of the 
lowest intensity value of one pixel among three RGB 
channels. Using the dark channel prior, the thickness of the 
haze can be directly estimated. Tarel et al. [18] proposed a 
filtering method assuming that the depth-map must be 
continuous except along edges with large depth jumps. 
Ancuti et al. [19] presented an enhancing method based on 
the semi-inverse of the image. Tang et al. [21] proposed a 
framework that learns a set of features extracted from a 
single hazy image. Recently, the dehazing was also 
addressed using deep neural networks as an application of 
image-to-image translation. Ren et al. [4] proposed a multi-
scale convolutional neural network for single image 
dehazing by learning the mapping between input hazy 
images and their corresponding transmission ratio maps. 
The coarse-scale net predicts a transmission map based on 
an entire hazy image, and the fine-scale net refines the 
dehazing results using the local property of the hazy image. 
But, the above conventional dehazing methods only predict 
the transmission ratios and the global atmospheric lights 
from the single input hazy images. And then, the dehazed 
images are separately computed according to (1) for hazy 
images. These methods cannot be optimized for perceptual 

quality of the generated dehazed images. Thus, Swami et al. 
[5] firstly proposed a conditional adversarial networks 
based fully end-to-end system for single image haze 
removal. Also, Swami firstly applies GAN for single image 
haze removal. The discriminator network of GAN ensures 
that the generated dehazed images look as real clean images. 
The combination of these two approaches made it possible 
to optimize the perceptual quality of the generated dehazed 
image. But, when the size of each input hazy image is very 
large, the dehazing performance is degraded because it has 
a relatively small receptive field size. 

2.2. U-net 

For the image-to-image translation problems, an 
encoder-decoder network is commonly used [9], [11]-[12]. 
In this network, the input is passed through a series of layers 
that progressively downsample the output feature maps 
which are then passed through reverse processing. This 
encoder-decoder network passed only high-level features 
from each input hazy image to the decoder. But, there is 
also great deal of low-level features shared between the 
input images and the target images for specific image-to-
image translation problems. For example, in the single 
image dehazing and image colorization, the input images 
and output images share the edge locations and prominent 
structures of the images. Thus, we use U-Net [6] which adds 
skip connections from the encoder network to the decoder 
network as its generator network. Each skip connection 
simply concatenates all channels at encoder layer i and 
decoder layer n-i where n is the total number of layers. 
Using U-Net, we can increase the receptive field sizes as 
well as pass the low-level features for single high resolution 
image dehazing. 
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Figure 1: An illustration of the proposed conditional BEGAN 
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2.3. Boundary Equilibrium GAN 

GANs can generate very convincing images, sharper 
than the ones produced by auto-encoders using pixel-wise 
losses. But, GANs still have many unsolved problems, 
which is difficult to fairly train the generator and the 
discriminator in a balanced manner, and to appropriately 
determine the hyper parameters. Balancing the convergence 
of the generator and the discriminator is important and 
challengeable. Thus, Berthelot et al. [7] proposed a 
boundary equilibrium generative adversarial networks 
(BEGAN) which is a new equilibrium enforcing method 
paired with a loss derived from the Wasserstein distance in 
training the auto-encoder based GAN. The discriminator 
network of BEGAN is an auto-encoder network unlike the 
common discriminator networks of GAN. The output of the 
discriminator of BEGAN using the loss of the Wasserstein 
distance is neither real (0) nor fake (1). The discriminator 
of BEGAN is trained towards making the difference 
between the real image output of the discriminator and real 
image go to zero, and the difference between the fake image 
output of the discriminator and fake image go to infinite. 
And, by adjusting the parameters of the discriminator loss 
using the concept of equilibrium, the discriminator loss and 
the generator loss are both decreased during training. In this 
work, we use the U-Net as the generator network and an 
auto-encoder as the discriminator network with the loss 
derived from the Wasserstein distance with the concept of 
equilibrium. 

3. Our proposed method 

3.1. Downscale of input hazy images for large receptive 
field sizes 

For single image dehazing, the network must consider 
the characteristics of the entire hazy images. If the size of 
an input hazy image is not large, the network can learn the 
entire image property based on the patch learning. However, 
if the size of the hazy image is very large, simple patch 
learning is very ineffective for haze removal. This is 
because a network that only observes a narrow region 
cannot determine whether the local region is an originally 
homogeneous region or a hazy region. Therefore, the 
performance of haze removal has a lot of influence on the 
receptive field sizes of the network. However, simply 
expanding the input patch sizes is difficult due to the lack 
of hardware memory sizes. Thus, we propose to reduce the 
input image sizes by using a simple bicubic interpolation 
method, and then to extend the generated dehazed images 
by the same interpolation method. This is a simple method, 
but it can easily expand the sizes of the receptive fields. 
Also, by reducing the input image sizes, it can greatly 
reduce the runtime. Since the receptive field is enlarged, the 
haze removal performance gets improved. In a result, the 
generated dehazed images tend to have more vivid color. 
But, there is a problem that the edges are blurred due to the 
processing of the hazy images with reduced resolutions and 
the upscaling of the output hazy images. Due to this trade-
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Figure 2: The generator and discriminator network architectures of the proposed conditional BEGAN. 
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off, it is necessary to control the resizing ratio depending on 
the characteristics of the input hazy images. For examples, 
in the case of the hazy images with many homogenous 
regions, increasing the resizing ratio becomes effective for 
haze removal because the blurred edges are small. In 
contrast, in the case of the hazy images with many complex 
texture regions, large reduction ratios adversely affect the 
overall perceptual image qualities due to the resulting 
blurred edges. 

3.2. Proposed network architecture 

As shown in Figure 1, we proposed a fully end-to-end 
learning based conditional BEGAN for single image 
dehazing. Each input image is a single hazy RGB image and 
the output image is a single dehazed RGB image. In order 
to increase the receptive fields without the loss of low-level 
features, we adopt U-net as the generator network which is 
an auto-encoder architecture with skip connections. The 
discriminator has also auto-encoder architecture.  

As shown in Figure 2, the generator network is composed 
to 8 encoder layers, 8 decoder layers, and bicubic 
interpolator. Firstly, each input hazy image is down-
sampled by a decimation factor K using bicubic 
interpolation where K is experimentally determined as 4 for 
the data set of the NTIRE 2018 Indoor Dehazing Challenge 
[15]. The input patches of the first encoder layer are 
512512-sized RGB images extracted randomly from the 
down-sampled input hazy images. In order to pass the low-
level features to the decoder layers, the same spatial-
resolution features of the encoder sides and decoder sides 
are concatenated. The concatenated features are input to the 
next decoder layers. Lastly, the generated dehazed image is 
up-scaled by a factor K using bicubic interpolation. It is 
noted that the dehazed image inputted to the discriminator 
network is not the up-scaled dehazed image but the dehazed 
image of a reduced size outputted from the generator 
network. By doing so, we have the same effect of enlarging 
the receptive field sizes to the discriminator network. 

Additionally, when the convolution layer filter size is set 
to the multiples of the stride sizes, the checkerboard artifact 
from the auto-encoder network is known to be suppressed 
[13]. Thus, we set all convolution filter sizes to 44 since 
the stride size is 2. We divide the transposed convolution 
layer into a 2-times upsampling layer using the bilinear 
interpolation and a convolution layer. This technique also 
reduces the checkerboard artifact due to upscaling using the 
transposed convolution [13]. As shown in Figure 2, the 
discriminator is also an auto-encoder as the same as the 
generator except skip connections. Since we use the 
discriminator loss derived from the Wasserstein distance, 
the output of the discriminator is an image map which has 
the same resolution as that of the input image to the 
discriminator. Also, we combine the conditional GAN [8] 
with the basic discriminator of BEGAN, which is called a 
conditional BEGAN. The input image of the generator can 

help the discriminator distinguish whether the generated 
image is real or fake. In the case of the hazy removal 
problems, since the structure of the input hazy image and 
the structure of the generated dehazed image are not greatly 
different, only the brightness and the color are changed. 
Therefore, the information of the input hazy image can help 
the discriminator make a correct judgment. Thus, our 
proposed discriminator network receives the input hazy 
image by concatenating the input hazy image with the 
generated dehazed image or the clean image. 

3.3. Objective losses 

It is important to note that the proposed discriminator aims 
at optimizing the Wasserstein distance between auto-
encoder loss distributions, not between sample distributions. 
The loss of the discriminator for the target clean image is 
defined as 

 realerrD y D y ,x                          (2) 

where y is the target clean image, x is the input hazy image, 

and D(·) is the output of the auto-encoder discriminator. The 
loss of the discriminator for the generated dehazed image is 
defined as 

    fakeerrD G x D G x ,x                     (3) 

where G(x) is a generated dehazed image. The 
discriminator aims at minimizing errDreal and maximizing 
errDfake simultaneously. Thus, the proposed discriminator 
loss, LD, is defined as 

real fakeD tL errD k errD                    (4) 

where kt is the control parameter that maintains the 
equilibrium between errDreal and errDfake. The initial value 
of k0 is set to 0 and kt is updated as follows: 

   1 real fakemin max 0 1t t kk k λ γerrD errD , ,     (5) 

where kλ  is the proportional gain for k and γ  is the 

diversity ratio. We used 0.005 and 0.7 for kλ  and γ , 

respectively, in our experiments. The loss of the generator 
is the weighted sum of the adversarial loss, L1 loss, and 
perceptual loss using pre-trained VGG-16 network [9] for 
optimizing the perceptual quality of the generated dehazed 
image. Thus, our proposed generator loss, LG, is defined as 

 fake 1G GAN L VGG VGGL λ errD λ G x y λ L       (6) 

where GANλ , 1Lλ , and VGGλ are empirically determined 

to be 0.2, 0.6, and 0.2, respectively. The perceptual loss 
based on the pre-trained VGG-16 is defined as 

    2 2 2 216 16VGG relu _ relu _L vgg G x vgg y    (7) 
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The L1 loss plays a major role in estimating the structure of 
the dehazed image, and the perceptual loss helps restore the 
original color in the dehazed image. The GAN loss 
suppresses the artifacts caused by the L1 loss and the 
perceptual loss. Thus, the dehazed image of perceptually 
high quality can be generated by using the combinations of 
the losses. 

4. Experiment results 

4.1. Experiment settings 

For training images, we used 30 ultra-high resolution 
hazy-clean image pairs obtained from the NTIRE 2018 
Dehazing Challenge training and validation dataset [10], 
[15]. Hazy-Clean subimage pairs are extracted in random 
crop from the down-sized images. We use only the 
horizontal flip method for data augmentations. The 
subimages are extracted with 16 patches random crop per 
one training image per every epoch. The subimage sizes of 
the hazy image and the clean image are both set to 512512 
pixels. The batch size is set to 1, the learning rates of the 
generator and the discriminator are both set to 210-4. The 
network is trained using Adam optimizer (beta1=0.5, 
beta2=0.999) with a learning rate annealing [14]. It is 
necessary to vary the downscaling ratio depending on the 
characteristics of the input hazy image. That is, we set the 
downscaling ratio to 4 and 2, respectively, for the indoor 
and outdoor dehazing datasets [15], [16]. The number of 
epoch is set to 400. 

4.2. Experimental Results and discussion 

4.2.1 The effects of GAN loss for PSNR performance 
In general, for deep learning based image enhancement 

problems, it is known that the PSNR performance is 
degraded when the networks are trained with GAN loss 
instead of L1 or L2 norm. But, we have experimentally 
observed that when the generator uses a combined cost of 
L1 loss, perceptual loss and GAN loss, the PSNR 
performance is improved compared to the case without 
using the GAN loss. For comparison, our proposed 
conditional BEGAN and the CNN-based generator network 
without the discriminator are trained using the NTIRE 2018 
Dehazing Challenge 25 training images, and are tested for 
the 5 validation images [15]. For fair comparison, we utilize 
the same generator network for our conditional BEGAN as 
the CNN-based generator network without the 
discriminator, and also use the same hyper parameters. 
Figure 3 shows the PSNR performance for different training 
losses. As shown in Figure 3, the PSNR result of the 

 
(a)                                           (b)                                              (c)                                            (d) 

 
(e)                                           (f)                                              (g)                                            (h) 

Figure 4. Subjective quality comparison between the proposed conditional BEGAN and the network without GAN loss. (a) and 
(e) are original images of I2 image and I3 image. (b) and (f) are hazy images of (a) and (e). (c) and (g) are the output dehazed 
images of the network without GAN loss. (d) and (h) are the output dehazed images of the proposed conditional BEGAN. 

 
Figure 3. The average PSNR results of our proposed 
conditional BEGAN and the network without GAN loss for 
the validation hazy images. 
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proposed conditional BEGAN is average 0.6dB higher than 
that of the network without the GAN loss at 400 epochs. In 
Table I, it can be noted that our conditional BEGAN works 
considerably well for I3 and I5 images. Figure 4 shows the 
subjective quality comparison for the proposed conditional 
BEGAN and its generator-only network without GAN loss. 
As shown in Figure 4, I3 image looks relatively more 
severely hazy than I2 image. In the case of I2 image, the 
output dehazed image could be generated as being very 
similar to the original clean images based only on L1 loss 
and perceptual loss. However, in the case of I3 image, the 
network without GAN loss fails to effectively restore the 
shape of the obscured regions due to more severe haze, but 
the proposed conditional BEGAN successfully yields 
pleasing output dehazed image. Based on these results, it 
can be noted that the GAN loss can effectively enhance the 
perceptual quality and PSNR values of the hazy images 
having many obscured regions due to the severe haze. 

Table I. The PSNR results for each validation image 

Images 
PSNR (dB) of Proposed conditional BEGAN 
L1 + VGG losses GAN+L1+VGG losses 

I1 17.33 17.33 
I2 24.80 24.21 
I3 14.40 16.66 
I4 22.85 22.64 
I5 19.56 21.09 

Avg. 19.79 20.39 

4.2.2 Effects of receptive field sizes with respect to 
dehazing performance 

The receptive field sizes of a deep neural network can be 
effectively enlarged with down-scaling of input hazy 
images. That is, if the down-scaling by a decimation factor 
of N  is applied to the input images, the resulting receptive 
field sizes in the input images can be increased N times than 
those of the original input. We use the training images of 
the NTIRE 2018 Dehazing Challenge which are of 
4,6572,833 size [15]. Since our conditional BEGAN uses 

 
(a)                                                          (b) 

 
(c)                                                                    (d)                                                                     (e) 

Figure 7. The subjective quality comparison according to the different discriminator networks. (a) and (b) are the original clean 
image of I1 image and the hazy image of I1 image. (c), (d), and (e) are the dehazed image generated by Pix2Pix, the combination 
of U-Net and the original BEGAN without the conditional inputs, and the proposed conditional BEGAN. 

 

Figure 5. Average PSNR performance for different 
combinations of input patch sizes and downscaling factor 
values for the validation images of the Indoor track of NTIRE 
2018 Dehazing Challenge [15]. 
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as its generator network an autoencoder having 8 
convolution layers with stride 2, the sizes of the training 
input patches must be multiples of 28. Thus, we have tested 
various cases for different combinations of the training 
input patch sizes and the downscaling factors with respect 
to the PSNR performance. Figure 5 shows the PSNR 
performance for different combinations of the training input 
patch sizes and the downscaling factors. As shown in Figure 
5, the best PSNR performance is obtained when the 
downscaling is as small as possible and the receptive field 
size is as large as possible. It should be noted that if the 
training image samples are severely down-scaled to obtain 
extremely large receptive field sizes, the edges of the 
dehazed images get degraded with blurring artifacts. 
Therefore, it is necessary to consider appropriate receptive 
field sizes while maintaining edge information 
simultaneously. Thus, the input patch size of 512512 and 
the downscaling factor of 4 turns out to be best for the 
validation samples of the Indoor track of NTIRE 2018 
Dehazing Challenge [15]. 

4.2.3 Performance of the conditional BEGAN 

Our proposed conditional BEGAN is designed by 
adopting the U-Net as its generator and a conditional auto-
encoder network with the concept of equilibrium as the 
discriminator. Since the auto-encoder discriminator with 
the concept of equilibrium can be more appropriately 
trained with stable convergence than the general 
discriminator in the form of CNN structures [8], we adopt a 
condition auto-encoder for the discriminator network of our 
condition BEGAN. Note that a general image-to-image 
translator, called Pix2Pix [8], uses the U-Net as its 
generator and a CNN-based conditional encoder as its 
discriminator network. So, our first performance 
comparison is done between the two networks: the 
discriminator of ours is a conditional auto-encoder network 
with the concept of equilibrium and the discriminator of 
Pix2Pix is a CNN-based conditional encoder. 

Next, our second performance comparison is for the two 
cases of our proposed conditional BEGAN: (i) using 
conditional auto-encoder as its discriminator; and (ii) using 
a general auto-encoder without conditional input as its 
discriminator. Figure 6 shows PSNR performances for our 
proposed conditional BEGAN and the Pix2Pix network. As 
shown in Figure 6, the proposed conditional BEGAN with 
the conditional auto-encoder as its discriminator shows the 
highest PSNR performance than the Pix2Pix network and 
our network with a general a general auto-encoder without 
conditional input as its discriminator. Figure 7 shows the 
dehazed images for three different discriminators used in 
their networks in Figure 6. It can also be noted in Figure 7 
that the dehazed image of the proposed conditional BEGAN 
with the conditional auto-encoder as its discriminator 
shows the highest perceptual quality than the other two 
dehazed images. As shown in Figure 7, the dehazed image 

of Figure 7-(c) shows a lot of stains on the refrigerator 
surface and the chair back. In the dehazed image of Figure 
7-(d), the stains are less observed than the dehazed image 
of Figure 7-(c), but they still remain light. 

4.2.4 Comparison between the proposed conditional 
BEGAN and the conventional dehazing methods 

We also compared the PSNR performance between the 
proposed conventional BEGAN and the conventional 
dehazing methods [3]-[4], [18], [23]-[28] for the 500 
synthetic indoor hazy images of the Synthetic Objective 
Testing Set (SOTS) [29]. For fair comparison, our 
conditional BEGAN is newly trained using the REISDE 
training set which contains 13, 990 synthetic indoor hazy 
images [29]. Table II shows the average PSNR performance 
of our method and previous dehazing methods for 500 
synthetic indoor hazy images of SOTS. Since the training 
set and the test dataset are composed of low-resolution 
hazy-clean pair images, we did not perform the down-
scaling for input hazy images. As shown in Table II, it is 
noted that the proposed conditional BEGAN also shows the 
highest PSNR performance for dehazing of the small 
synthetic hazy images compared with the recent dehazing 
methods. 

Table II. Average PSNR performance of our method and the 
other dehazing methods for 500 synthetic indoor hazy 
images of SOTS (red bold: 1st and blue bold: 2nd) 

Dehazing Method PSNR (dB) SSIM 
DCP (3) 16.62 0.8179 

FVR (18) 15.72 0.7483 
BDDR (23) 16.88 0.7913 
GRM (24) 18.86 0.8553 
CAP (25) 19.05 0.8364 
NLD (26) 17.29 0.7489 

DehazeNet (27) 21.14 0.8472 
MSCNN (4) 17.57 0.8102 

AOD-net (28) 19.06 0.8504 
Proposed 22.07 0.9187 

 
Figure 6. Average PSNR results according to the different 
discriminator networks for the validation images of the Indoor 
track of the NTIRE 2018 Dehazing Challenge [15]. 
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5. Conclusion 
We have experimentally shown that the receptive field 

sizes are very important for the ultra-high resolution single 
image dehazing. Thus, we proposed the conditional 
BEGAN with the large receptive field sizes by downscaling 
the input hazy images. It is also observed that the PSNR 
performance of the proposed conditional BEGAN is higher 
than that of the network trained by the L1 loss and the 
perceptual loss without the GAN loss since the GAN loss 
works effectively in the severe hazy regions. Also, we 
experimentally showed that the proposed conditional 
BEGAN could generate the dehazed images of higher 
perceptual quality and has higher PSNR performance than 
the conditional GAN and the original BEGAN for the single 
image dehazing problems. 

Acknowledgement 
This work was supported by Institute for Information & 

communications Technology Promotion (IITP) grant 
funded by the Korea government (MSIT) (No. 2017-0-
00419, Intelligent High Realistic Visual Processing for 
Smart Broadcasting Media). 

References 
[1] S. G. Narasimhan, and S. K. Nayar. Vision and Atmosphere. 

Int. J. Comput. Vision, 48, 233-254, 2002.  
[2] L. Schaul, et al. Color Image Dehazing using the Near-

Infrared. Proc. IEEE Int. Conf. on Computer Vision Pattern 
Recognition (CVPR), 325-332, 2001. 

[3] K. He, et al. Single Image Haze Removal using Dark Channel 
Proc. IEEE Int. Conf. on Computer Vision Pattern 
Recognition (CVPR), 1956-1963, 2009. 

[4] Ren, Wenqi, et al. Single image dehazing via multi-scale 
convolutional neural networks. European conference on 
computer vision. Springer, Charm, 154-169, 2016. 

[5] Swami, Kunal, and Saikat Kumar. CANDY: Conditional 
Adversarial Networks based Fully End-to-End System for 
Single Image Haze Removal. arXiv preprint arXiv: 
1081.02892, 2018. 

[6] O. Ronneberger, P. Fischer, and T. Brox. U-net: 
Convolutional networks for biomedical image segmentation. 
In MICCAI, 234-241, Springer, 2015. 

[7] Berthelot, David, Tom Schumm, and Luke Metz. Began: 
Boundary equilibrium generative adversarial networks. 
arXiv preprint arXiv: 1703.10717, 2017. 

[8] Isola, Phillip, et al. Image-to-image translation with 
conditional adversarial networks. arXiv preprint, 2017. 

[9] Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. Perceptual 
losses for real-time style transfer and super-resolution. 
European Conference on Computer Vision (ECCV). Springer, 
Charm, 2016. 

[10] R. Timofte, et al. New trends image restoration and 
enhancement workshop and challenge on super-resolution, 
dehazing, and spectral reconstruction in conjunction with 
CVPR 2018, http://www.vision.ee.ethz.ch/ntire18, 2018. 

[11] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. 
Efros. Context encoders: Feature learning by inpainting. 

IEEE Int. Conf. on Computer Vision Pattern Recognition 
(CVPR), 2016. 

[12] X. Wang and A. Gupta. Generative image modeling using 
style and structure adversarial networks. European 
Conference on Computer Vision (ECCV), 2016. 

[13] Augustus Odena, Vincent Dumoulin, and Chris Olah. 
Deconvolution and Checkerboard Artifacts. https://distill. 
pub/2016/deconv-checkerboard/, 2016. 

[14] Kingma, P. Diederik, and Jimmy Ba. Adam: A method for 
stochastic optimization. arXiv preprint arXiv:1412.6980, 
2014. 

[15] C. O. Ancuti, C. Ancuti, R. Timofte and C. De Vleeschouwer. 
I-HAZE: a dehazing benchmark with real hazy and haze-free 
indoor images. arXiv , 2018. 

[16] C. O. Ancuti, C. Ancuti, R. Timofte and C. De Vleeschouwer. 
O-HAZE: a dehazing benchmark with real hazy and haze-
free outdoor images. arXiv , 2018. 

[17] Robby T. Tan, Visibility in bad weather from a single image. 
IEEE Conference on Computer Vision and Pattern 
Recognition, 2008. 

[18] J.-P. Tarel and N. Hautiere. Fast visibility restoration from a 
single color or gray level image. IEEE ICCV, 2009. 

[19] C. O. Ancuti, C. Ancuti, C. Hermans, and P. Bekaert. A fast 
semi-inverse approach to detect and remove the haze from a 
single image. ACCV, 2010. 

[20] C. O. Ancuti and C. Ancuti, “Single image dehazing by 
multiscale fusion,” IEEE Transactions on Image Processing, 
vol. 22(8), pp. 3271–3282, 2013. 

[21] K. Tang, J. Yang, and J. Wang. Investigating haze-relevant 
features in a learning framework for image dehazing. IEEE 
Conference on Computer Vision and Pattern Recognition, 
2014. 

[22] S. Emberton, L. Chittka, and A. Cavallaro. Hierarchical 
rankbased veiling light estimation for underwater dehazing. 
Proc. of British Machine Vision Conference (BMVC), 2015. 

[23] G. Meng, Y. Wang, J. Duan, S. Xiang, and C. Pan. Efficient 
image dehazing with boundary constraint and contextual 
regularization. IEEE Int. Conf. on Computer Vision, 2013. 

[24] C. Chen, M. N. Do, and J. Wang. Robust image and video 
dehazing with visual artifact suppression via gradient 
residual minimization. European Conference on Computer 
Vision, 2016. 

[25] Q. Zhu, J. Mai, and L. Shao. A fast single image haze 
removal algorithm using color attenuation prior. IEEE 
Transactions on Image Processing, vol. 24, no. 11, pp. 3522–
3533, 2015. 

[26] D. Berman, S. Avidan et al. Non-local image dehazing. IEEE 
Conference on Computer Vision and Pattern Recognition, 
2016. 

[27] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao. Dehazenet: An 
end-to-end system for single image haze removal. IEEE 
Transactions on Image Processing, vol. 25, no. 11, pp. 5187–
5198, 2016. 

[28] B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng. Aod-net: All-
in-one dehazing network. IEEE International Conference on 
Computer Vision, 2017. 

[29] Li, Boyi, et al. RESIDE: A Benchmark for Single Image 
Dehazing. arXiv preprint arXiv:1712.04143, 2017. 

937

http://www.vision.ee.ethz.ch/ntire18
https://distill/

