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Abstract

Hyperspectral cameras are used to preserve fine spectral

details of scenes that are not captured by traditional RGB

cameras that comprehensively quantizes radiance in RGB

images. Spectral details provide additional information that

improves the performance of numerous image based ana-

lytic applications, but due to high hyperspectral hardware

cost and associated physical constraints, hyperspectral im-

ages are not easily available for further processing. Moti-

vated by the performance of deep learning for various com-

puter vision applications, we propose a 2D convolution neu-

ral network and a 3D convolution neural network based ap-

proaches for hyperspectral image reconstruction from RGB

images. A 2D-CNN model primarily focuses on extracting

spectral data by considering only spatial correlation of the

channels in the image, while in 3D-CNN model the inter-

channel co-relation is also exploited to refine the extraction

of spectral data. Our 3D-CNN based architecture achieves

very good performance in terms of MRAE and RMSE. In

contrast to 3D-CNN, our 2D-CNN based architecture also

achieves comparable performance with very less computa-

tional complexity.

1. Introduction

Hyperspectral imaging is a technique which captures

numerous bands of electromagnetic wavelengths ranging

from infrared spectrum to ultraviolet spectrum. Every mat-

ter has different spectral characteristics, capturing the dif-

ferences in these characteristics can be of critical impor-

tance in a wide variety of applications like medical imag-

ing [12] [31][36], remote sensing [6][7][9][27][38] and

forensics[19]. Hyperspectral images capture the details

of the scene by sensing multiple narrow band intensities.

The additional spectral information embedded in hyper-
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spectral data has enabled the use of hyperspectral images

for various applications in computer vision tasks i.e recog-

nition [40][39][44], tracking [24][41], document analysis

and pedestrian detection [19][23]. It has also been used in

applications such as geosensing [32], food [45] and other

image analysis. Though hyperspectral imaging is highly

advantageous, the cameras are very costly to manufacture.

This creates a bottleneck for low-cost consumer applica-

tions. Further hyperspectral imaging requires high spec-

tral resolution, it also needs more exposure time to create

a noiseless hyperspectral image[26].

The development of a simple, compact and cost-effective

system is limited by conventional hyperspectral imaging

systems. These hyperspectral systems usually depend on

the use of an imaging spectrograph, a mechanical filter or

a liquid crystal filter. A spectrometer-free imaging sys-

tem is required to build an affordable and compact sys-

tem for hyperspectral imaging to spread its utilization. To

implement these types of systems, it would require an al-

gorithm which can effectively regenerate complete spec-

tral information from RGB image. Various methods have

been explored for spectral reconstruction from RGB data

[10][35][33][29].

1.1. Related Work

Hyperspectral images are used in remote sensing ap-

plication for more than three decades [17]. NASA’s

AVIRIS[18] uses hyperspectral imaging systems which ac-

quire images by using ’whisk broom’ scanning method. In

this method, set of mirrors and fiber optics are used to re-

direct the incoming light to a bank of spectrometers. Re-

cent systems use the ’push broom’ scanning strategy [20]

in which, hyperspectral image is obtained in a line-by-line

manner by using optical elements and light sensitive (i.e.

CCD) sensors. Some applications such as medical imaging

uses tuneable or interchangeable narrow band filters [28]

[37] to collect spectral data. However, hyperspectral im-

ages with the spatial and temporal resolution with special-

957



Figure 1. Comparison between RGB image and hypercube. Hypercube contains 3-dimensional data of a 2-dimensional image which are

captured on each wavelength The left most represent the spectral signature.The right most represents the RGB image intensity curve for

each pixel. Image reproduced from [26]

ized hardware based strategies is not physically possible. So

various methods have been proposed to get fast and accurate

hyperspectral images.

Computed tomography imaging spectrometers

(CTIS)[11] [21] is used to construct 3D hyperspectral

data from 2D imaging sensor. The hyperspectral image can

be constructed by using multiplexed 2D data, but post pro-

cessing and specialized hardware are required as a whole

to perform the operation. Due to sensor size limitation the

quality of hyperspectral images suffers in terms of spatial

and spectral resolution. Recent advancement in the field

of compressed sensing enhances the performance of CTIS

in term of sensor utilization[8] [15] however, complex

acquisition and significant post processing still remains

bottleneck. Systems such as ”Hyperspectral fovea” [13]

etc. which are capable of acquiring high resolution RGB

data, along with the spectral information of the central

image region in the image, are also proposed which acquire

real time hyperspectral images without causing much

computational costs. These systems are mostly used in

applications where occasional hyperspectral sampling area

are required rather than full hyperspectral cube. Matrix

factorization [22] method is used to construct hyperspectral

data with high resolution with the help of RGB image and

spectral images of low resolution. This methods produce

high estimation accuracy with high computation cost.

Recent literature [?] [14] [16] [30] in hyperspectral shows

the researcher are estimating spectral values by using color

images(RGB).In recent years deep learning techniques

have given effective and reliable performance for solving

non-linear problems. However, extraction of hyperspectral

data from image using deep learning has not been explored

extensively. The available literature [1] [14][2][42] showed

success of deep learning in constructing high resolution

hyperspectral images with simply using color images and

their corresponding low resolution spectral images. In this

paper, motivated by the potential of convolutional neural

network (CNN) based architectures in [1] [42][2], which

achieve on-par performance with state of art, we present 2D

and 3D CNN architectures for reconstruction of spectral

data from RGB images. In [2] spectral reconstruction

has been done using generative adversarial network. In

CNN, features are extracted from the image by convolving

kernels on the image, these kernels are updated using

various optimizers to construct the required features. In this

paper, we explore application of both 2D and 3D kernels

for spectral reconstruction from RGB image. A detailed

comparison of the results obtained from application of

these kernels is also given. In the next section we will

describe the problem of reconstructing spectral image from

RGB images.

2. Proposed Framework

2.1. Problem formulation

In basic color science the conventional color images are

formed by 3 channels i.e Red , Blue and Green which have

a strong dependency on the characteristics of imaging sys-

tem that include the illuminance for image acquisition. Un-

like color images, spectral reflectance is proven to be the

most accurate representation of the color of an object and it

is also completely independent of the imaging system. As

shown in Figure 1 hyperspectral image generally covers a

common portion of visible spectrum with numerous spec-

tral bands and higher spectral resolution than three-band

imaging (such as RGB images).

The mapping between a hyperspectral reflectance spec-

trum and an RGB reflectance spectrum [25] for each pixel

at (x, y) can be modeled as[10] [35],

µ3×1 = S3×N ∗ rN×1 + e3×1 (1)

where µ is a 3 × 1 vector that has RGB intensities, S is a

3×N matrix of spectral responses of the three-color camera

sensor, r is an N×1 vector that has the reflectance intensity

normalized by the reflectance standard, and e is a 3 × 1
vector of system noise with zero mean. N represents the
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Figure 2. 2D-CNN proposed architecture

number of wavelengths. In general, S is obtained from the

sensor manufacturer or it can be estimated analytically by

training RGB samples [5] [34].

The goal is to predict r, reflectance vector, provided S

and µ using equation 1. Please note that equation 1 belongs

to a system of linear equations and the dimension of S is

3×N , so there exists an infinite number of solutions which

satisfy equation 1.

Let us suppose, a color spectrum µ and respective re-

flectance spectrum r is collected for every sample, Xm×3

and R̂m×N can be formed by organizing the spectra from

numerous independent samples, where N is the number of

wavelength and m is the number of dissimilar samples. The

problem of reconstruction is supposed to learn conversion

matrix T from the training set such that

R̂n×N = Xm×3 ∗ T3×N (2)

Relative absolute error can be used to compute T by min-

imizing error between reconstructed spectra and original

spectra. After computing T using training set, (reflectance

spectrum) can be estimated by using a RGB spectrum X as

testing set.

The above formulation views the spectral reconstruction

from RGB images a linear problem. The frameworks used

in this work maps the nonlinear function from 3 channel

RGB to 31 channel hyperspectral image.

Yn×N = F (Xm×3) (3)

where F is a non linear mapping between X and Y and

Y ≈ R̂. Two frameworks have been proposed in this paper

based on its kernel type. The first framework has 2D con-

volutional kernels and the second has 3D convolutional ker-

nels. The models are trained to extract the frequency based

information from the image. The last layer of the models

have 31 feature maps with every feature map having 10nm
difference in wavelength from the consecutive feature. The

input to these models are RGB images which have wave-

length between 400nm to 700nm and the ground truth have

thirty one images having wavelength starting from 400nm

to 700nm with every image at 10nm step. 2D-CNN model

as shown in Figure 2, having 2D kernel extracts the hyper-

spectral information available in the spatial domain of the

specific channel. The kernel convolves on individual chan-

nels and the average of the values generated for each pixel

on these channels are considered. This technique efficiently

incorporates the spatial data however, an inter-channel co-

relation is left unnoticed and holds important information.

To incorporate the inter-channel co-relation we use 3D-

CNN as shown in Figure 3 with 3D kernel. A 3D kernel

convolves in three dimensions, two spatial and one chan-

nel, hence incorporates the related information between the

channels. Instead of simply averaging a 3D convolution op-

eration adds up the response of all the corresponding pixels,

thus incorporating the correlated information.

2.2. 2D­CNN

Representation of RGB to hyperspectral conversion us-

ing 2D-CNN is explained as follows:

Let X be the RGB input of dimension L × H × 3 and

Y be the ground truth hyperspectral image of dimension

L×H × 31, Here L is the length, H is height/width and 3

or 31 is channels. Input X is represented as C × L × H .

where C represent channel.

Feature Extraction: Feature extraction from input X is

given by

X1 = F1(X) = max(0, X ∗W1 +B1) (4)

Here W1 contains n1 filters of size C × f1 × f1 and B1

is n1-dimensional vector.

The dimension of x1 is n1×L×H , ′∗′ is 2D convolution

operator.

Non-Linear Mapping

X2 = F2(X1) = max(0, X1 ∗W2 +B2) (5)

Here W2 contains n2 filters of size n1 × f2 × f2 and B2

is n2 dimension vector. The dimension of X2 is n2×L×H

XL−1 = FL−1(XL−2) = max(0, XL−2 ∗WL−1 +BL−1)
(6)
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Figure 3. 3D-CNN proposed architecture

Reconstruction: Reconstruction of hyperspectral im-

ages is given by

XL = FL(XL−1) = max(0, XL−1 ∗WL +BL) (7)

Here WL is 31 filters of size fL×fL and B2 is 31 dimension

vector. The dimension of XL will be 31 × L ×H now the

loss can be calculated by

loss = ||Y −XL||
2

2
(8)

and we back propagate the gradient of loss to update the

weight and bias in each epoch.

2.3. 3D­CNN

We treat channels as depth by considering channel (c)

= 1 and depth(d) = 3. Mathematical formulation of RGB

to hyperspectral conversion using 3D-CNN is modeled as

follows:

Let X be represented as of dimension c× d×L×H or

1× d× L×H or d× L×H

Feature Extraction: Feature extraction from input X is

given by

X1 = F1(X) = max(0, X ⊗W1 +B1) (9)

Here F represents the operation by a 3D kernel ’⊗’ is

3D convolution operator and W1 contains n1 filters of size

d1xf1xf1 or 1× d1 × f1 × f1, Here (∵d1 < d)

The dimension of X1 will be n1 × L×H .

Non-linear Mapping in Multiple Steps :

X2 = F2(X1) = max(0, X1 ⊗W2 +B2) (10)

Here W2 contain n2 filter of size d2×f2×f2 (∵d2 < n1)

XL−1 = FL−1(XL12) (11)

Hence WL−1 contains nL−1 filter of size dL−1×fL−1×
fL− 1 (∵dL−1 ≤ nL−2)

Reconstruction:

Reconstruction of hyperspectral images given by

XL = FL(XL−1) = XL−1 ⊗WL +BL (12)

Here WL is 31 filter of size dL×fL×fL (∵dL ≤ nL−1)

The dimension XL will be 31 × L × H Same the loss is

calculated as by equation 3 and similarly the weights are

update by back propagating the gradient loss.

2.4. Training

Individual models have been trained on distinct datasets

[4][3][43]. We extracted the patches of size 64 × 64 × 3
from RGB input images and patches of size 64 × 64 × 31
are extracted from corresponding hyperspectral image. For

NTIRE challenge, total number of training patches are

84021. We trained a 5-layer architectures for both 2D

and 3D CNN with learning rate of 10−4 with different

hyper parameters. For training 3D-CNN, the channels of

the RGB image is considered as depth. To create such

dataset, we split the channels of RGB and reshaped them in

(height, width, 1) format followed by concatenating these

channels along third axis. This creates the data with the

shape (height, width, 1, channels). Similar approach is

followed to create corresponding ground truth. Patches of

size 64× 64 are then extracted from this dataset. This data

is then passed to the model as explained section 2.3 and

section 2.4. The kernel size for both the models are 3 × 3
and 3 × 3 × 3 respectively. CNN performs exceptionally

well for non-linear problems, however selection of train-

able parameters is quite a tedious task. The parameters are

chosen using brute force cracking. Parameters giving opti-

mum results with less complexity are considered. To train

the model we are using Adam optimizer and minimizing the

mean absolute error between the model output and ground

truth.

2.5. Testing

To test the model, learned model is inferred. Testing can

be represented for both 2D-CNN and 3D-CNN model by.

XL = GL(XL−1)

= GL(FL−1(XL−2))

= GL.FL−1......F1(X)

∵ XL = G(X) (13)

where G represents both F and F .
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Figure 4. Hyperspectral image comparison on NTIRE-2018 dataset

Figure 5. Hyperspectral image comparison on CAVE dataset

3. Experimental Results

We implemented our algorithms using Keras and Ten-

sorflow, running on Intel Core i7 CPU at 3.6 GHz with 16

GB RAM and Nvidia 8 GB GTX 1080 GPU. We evaluated

the proposed approach using the hyperspectral images from

NTIRE-2018[4], iCVL[3] and CAVE [43] databases. Root

Mean Square Error (RMSE), Mean Squared error(MSE)

and Mean Relative Absolute Error (MRAE) are used as

evaluation metrics. RMSE is useful in analyzing the re-

construction of individual spectral channels of the estimated

hyperspectral images and MRAE is sensitive to extreme val-

ues (i.e outliers) and to low values.

3.1. Datasets

2D-3D CNN model are tested and trained using NTIRE-

2018 image dataset[4], CAVE [43] and iCVL dataset [3].

NTIRE-2018 dataset consists of of 254 hyperspectral im-

ages captured by Specim PS Kappa DX4 camera with a ro-

tary stage for the spatial scanning. Out of 256 hyperspec-

tral images 201 images are taken from iCVL dataset [3].

The size of provided images are 1392× 1300× 31 with 31

spectral channels in the range 400-700nm with 10nm steps.

CAVE dataset consists 32 hyperspectral images taken by

Apogee Alta U260 camera size of each image is512× 512,

it also consists of 31 spectral bands with range 400-700nm

with 10nm steps.

The iCVL dataset consists of 202 images taken by

Specim DX4 hyperspectral camera. Each image is of size

1392× 1300× 31 spectral band images ranging from 400-

700nm with 10nm steps.

3.2. Result Analysis

Table 1. Results on NTIRE-2018 dataset

Approach RMSE MRAE Time (in seconds)

3D-CNN 20.010 0.018 11

2D-CNN 21.394 0.020 2.3

VIDAR1 14.45 0.0137 180

VIDAR2 13.98 0.0137 96

HypedPhoti 16.07 0.0153 57

LFB 16.19 0.0152 -

IVRL Prime 16.17 0.0155 170/2

sr402 16.92 0.0164 12

CVL 17.27 0.0174 1

advrgb3hs 24.81 0.0218 40

SPECRC 24.81 0.0401 -

sparse recovery(SR)[3] 24.03 0.056 -
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Figure 6. Hyperspectral image comparison on iCVL dataset

To illustrate the effectiveness of our proposed 2D & 3D

CNN based approach to convert RGB to hyperspectral im-

age, we have compared our techniques with other state-of-

the-art methods(Table 1, Table 2, Table 3). For evaluating

performance of our techniques we have used mean relative

absolute error (MRAE), root mean square error (RMSE),

mean squared error(MSE) and run time per image.

The results and comparison of methods from NTIRE-

2018 challenge can be seen from Table 1. The proposed

algorithms performs on par with other methods as can be

observed by comparing RMSE and MRAE in both of the

proposed methods with far less run time per image. We

have also shown the relative performance of the proposed

methods compared to other CNN based algorithms in Table

2 and Table 3 on CAVE and iCVL datasets respectively. As

can be seen Figure 4 the 400nm band and also in 700nm

band and Figure 5,Figure 6 for 420nm and 650 nm band

3D-CNN reconstruction has preserved finer details as com-

pared to sparse recovery (SR). It is also evident from Figure

5,Figure 6 2D-CNN has also out performed sparse recovery

(SR) method.

Table 2. Results on CAVE dataset
Approach RMSE MSE

3D-CNN 2.86 0.0065

2D-CNN 3.05 0.0075

S.R[3] 5.40 -

A+ 1× 1[1] 2.74 -

A+ 3× 3[1] 2.90 -

4. Conclusion

We have given a CNN based framework to reconstruct

multiple spectral bands (Hyperspectral image) from three

spectral bands (RGB). Subsequently, we have shown that

our CNN based deep learning model with minimal layer (5)

have outperformed the current traditional method of extract-

ing hyperspectral data from RGB images. It is also evident

Table 3. Results on iCVL dataset
Approach RMSE MSE

3D-CNN 1.115 0.0051

2D-CNN 2.12 0.0086

alvarez et. al[2] 1.457 -

S.R[3] 2.56 -

A+ 1× 1[1] 1.12 -

A+ 3× 3[1] 1.04 -

that our methods have very less run time requirement with

the performance on par as compared to other methods pre-

sented in the challenge. We have compared 2D and 3D ker-

nel based CNN for spectral reconstruction.
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