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Abstract

Haze removal is one of the essential image enhancement
processes that makes degraded images visually pleasing.
Since haze in images often appears differently depending
on the surroundings, haze removal requires the use of
spatial information to effectively remove the haze
according to the types of image region characteristics.
However, in the conventional training, the small-sized
training image patches could not provide spatial
information to the training networks when they are
relatively very small compared to the original training
image resolutions. In this paper, we propose a simple but
effective network for high-resolution image dehazing using
a conditional generative adversarial network (CGAN),
which is called DHGAN, where the hazy patches of scale-
reduced training input images are applied to the generator
network of the DHGAN. By doing so, the DHGAN can
capture more global features of the hazinessin the training
image patches, thus leading to improved dehazing
performance. Also, the discriminator of the DHGAN is
trained based on the largest binary cross entropy loss
among the multiple outputs so that the generator network
of the DHGAN can favorably be trained in accordance with
perceptual quality. From extensive training and test, our
proposed DHGAN was ranked in the second place for the
NTIRE2018 Image Dehazing Challenge Track2: Outdoor.

1. Introduction

geometry of an input hazy image should be preserved and
only haze should be removed in the input image during the
dehazing process, likemimageto-image translation.

Recently, deep learning-based methods have succeeded
for imageto-image translation$6], [15], [22]-[23]. The
deep learning-based method enables terehd learning
for image translatiorif the source and target images are
provided for training. The most basic auto-encoder
networks and many variations of generative adversarial
networks GANs) [1] have been applied to the image
translation problems. GANs were first introduced to
generatea new image froma noise and he& proved to be
beneficial in transforming the input imagés the new
imagesn ther target domain [3]-[6], [22]-[23].

In haze removal problespeach input image is not a well-
controlled single object. Input is a picture that the real world
in which many objects coexist in the scene. This means that
we need to consider the scene context in generating the
images with haze removal. As mentioned earlier, the
thickness (amount) of haze varies across different regions
in an image, but adjacent objects or regions often share the
haze of similar thicknessnlorder to make the networks
learn the contextual information, the sizes of the receptive
fields should be very large for the high-resolution images

As another important point of image translation, the
reconstructed (or translated) images are often judged by the
most prominent regions or points that may differ mostly
from their usual appearance. It is important to take it into
account for network training.

In this paper, we propose an effective network for high-
resolution image dehazing using a conditional generative
adversarial network (CGAN), which is called DHGAN. In

Image enhancement is crucial process before the proposed DHGAN, the hazy patches of scale-reduced
consuming the degraded imagess damaged images training input images are inpto its generator network to
degrade the visual perceptiohboth human and machines, effectively enlarge the receptive field sizes, and its
it is important to remove the disturbing part of the images generator and discriminator are trained focused on the worst
In many cases image enhancement is required as a region of outputs. This paper is organized as follows:
preprocessing. One of these challenging tasks hsze Section 2 provides a review of image dehazing works;
removal. Haze does not appear consistently across differerGection 3 describes our proposed DHGAN in details with
images and differs from various regions even within areceptive field sizes and training losses for dehazing
single image. Soijt is often non-uniformly distributed  problems; Experimental results are provided in Section 4
depending on the surrounding atmosphere. and finally we conclude our work in Section 5.

From an image process point of view, haze removal is
not a problem of generating something because the

1025



2. Related works truth. Hence, the paired input and ground truth images
] should be available for training This model, named as
2.1. Single Image Haze Removal pix2pix, was applied to translation tasks such as graphic

Single image haze removal is more challenging than themapsto aerial photosand semantic labels to real photos
one with multiple images since depth can be estimated mordvhile maintaining the inherent identity similar to haze
precisely with multiple images of a scene. The depthremoval.
information the distance between a camera and the subjects,
is directly related to the haze thickness by its nature. Hence3. Our proposed method

many previous works have studied the formula related to Our proposed haze removal network that adaf6AN

Fhe depth or tran_smission information to get haze-free ) eq DHGAN, is based on the pix2pix network [6] that
images from hazy image$§]-[21], [25]-{27]. Heet al. [18] was appliedto imageto-image translation. Note that the
defined a novel dark channel prior which is obtained from o~ removal from a hazy image can also be regarded as an

image statistics. The dark channel prior was then used tqmage transiation problem. The generator of our proposed
estimate transmission mapsncuti et al. [19] introduced  pGAN consists of a series of six 2-strided convolutional

computation of semi-inverse images to detect haze in pixe'layers as an encoder and six 2-strided transposed
levels so th.at the hgze in images can be effectively removed g olutional layers as a decodBhe outputs of each layer
on a per-pixel basis. Ancuti and AncuB(] employed @ iy the encoder are feedforward and concatenated with the

multi-scale fusion based haze removal with appropriatejn, s of the corresponding layers in the decoder, which is
weight maps and inputs. Mergg al. [21] considered the 5 gimjlar structure as U-net [7he discriminator, which is

boundary conditions of transmission maps for hazy images gimjlar to the patchGAN structure in [6], consists of a series

which turned out to be helpful for haze removal. of four 2-strided convolutional layers. The discriminator

As deep learning-based models have drawn muchyie|qs its final output in a form d82x32 score map. The
attention in image processing, some researchers have triefla| numbers of parameters in the generator and

to learn a mapping from a single hazy image to a cleanyjscriminator are about 5M and 44k, respectively.
image using neural networks [3]-[5], [25]-[2Zhanget al.

[3] have built a network using a GAN to predict the 3.1. Adjustingimage scales

transmission map for the inputimage and to remove its haze 1o NTIRE2018 Challenge dataset consists of very high-
jointly. Li et al. [4] also proposed a GAN-based model that o4 tion imageslf], [17]. We investigate the effective
predicts coarse and fine transmission maps S‘?”a”y and theQizes of receptive fields for haze removal of high-resolution
concatenates them to generate haze—f_ree |_méKjuEse hazy images.

networks were_all_owed for ertd-end 'ea”‘”?g with ground Seeing only narrow part of an image is not sufficient to
truth of transmission maps and haze-free imagewever, |65 engugh spatial information. For examples, some of

measuring such ground truth transmission maps is Very;5a.o56 patches as used in [6] can often contain all flat and

expensive and impracticahlternatively, we only utilize i ool0r regions in high-resolution hazy images, which is
paired hazy and haze-free images to train the networks gqy of spatial information. They can be small partsaof

ISW""mi atr;d Kgmar [S]f first.intlrod_uceadfugyhenq{o—endh white wall or heavy fog of the imagels is beneficial to
earning-based GAN for single image dehazing without utilize global context for effective haze removal as done in

translm]55|0tr11 maps. Howzven; fa|Is_ to dehaze h|g|]|h-_ ther image translation proces$8], [9]. This problem can
reso ugon _hazy images because 't_ uses a small-Siz€gyq gjjeviated by using large-sized training patches which
receptive field size which is not effective for haze removal can contain more global spatial information for haze

of high-resolution hazy images. characteristicsin general, for the larger the receptive field
2.2. Imagetransation with conditional GANs sizes, the better the quality performance is obtained.
However, enlarging the receptive fields requires increasing
the filter sizes and the depth of convolutional layers, which
entails the increase in computational complexity and
memory space. Also, it should be pointed out that two

ixels witha distance larger than receptive field sizeaim

put image do not affect their corresponding output pixels
each other. Hence, another way to enlarge the effective
receptive fields is to down-sample the original training
images and then crop theénto small-sized training patches.

Recently, GANs are proposed to resolve image
generation tasks [3]-[6], [22]-[23]Their discriminators
learn to distinguish between real samples from target
domain and fake made by thgeneratorsThe generators
learn to fool the discriminators so that the generated image
become close to the samples taken fromir tharget
domains The generators and discriminators are trained in
an adversarial fashion and are finally kept in a balance

between them. _ ) That is, for example$f aninput is scaled to the half size of
Isola et al. [6] combined an adversarial loss af s \yidth and height, the receptive field can be enlarged four

conditional GAN and a pixel-level reconstruction 10SS {jneg roughly speaking. Increasing training patch sizes and
between the images generated by U-net [7] and their ground
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down-scaling the input enlarge the effective receptive fieldsfocus of attention on the worst (the most prominent)

which can significantly improve restoration performance. degraded regions in quality assessment, we define a new
Another issue for scaling of input images sizes is aboutloss function by modifying (1) and (2) as follows:

testing phasesSimilar to the training phase, down-

sampling test images helps consider wider context Lomax = EnlMaxp,,[~109@~ Dy, (G(x), X))
information in the inference phase. However, the infgrgnce + Eq[maxy, w[—10g (D (Y, )]
requiresup-scaling the network output back to the original

resolution of the input. We use a Lanczos interpolation for Lemax = Enlmax;, y[=109(Dnnw(G(X), )] (4)

output up-scaling as well as for input down-scaling. Our . . . .
DHGAN was trained with an empirically found down- _Figure 1 |Ilustrates.the adversarial loss functions of the
scaling factor of 1/4 for both Indoor and Outdoor datasetsdiScriminators according to the average loss in (1) and (2),
of The NTIRE2018 Challenge For testing, the down- and max loss (3) and (4). While (1) and (2) penalize all

scaling and up-scaling factor of 1/4 (1/2) were used for'€9ions equally by takingan average, (3) and @)
Indoor (Outdoor) dataset. The patch size was set tobackpropagate only the error for the worst part of the output

by taking the maximum over the spatial dimension. In the

512x512. : ; .
generator’s perspective, the loss function penalizes the

3.2. Lossfunctions region for which the discriminator outputs the highest

Isola et al. [6] introduced a concept called patchGAN g.mb.‘”‘b.'“t)t/ ’to be fzatlfe. ?hn tz_e pthertdhanlds, in
that contains a different discriminator compared to those of; lscrtl.mma or SI' pertsﬁec Ve, h et |st(;1r|m|na ) 5 .035 q
general GANs. Originally, the discriminators in general unction penalizes the areas that are the most misjudged.

GANSs take an image as an input and outputs a single scalafr rl]rc1t_grndse_rnto3 SZﬁ dthj eﬁgctglr?gre;sa?; thee pg?ﬁ%srﬁd I_?hss
that determines whether it is real or fake. That s, it is likely unctl in (3) (4), we p y experi Wi

for the single scalar to take the entire image patch as & S'(TplTe ?AN [?r]] wrere .Ll and adversarltal !OSZ &tlrr]e only
receptive field. However, the discriminator of the used. To trace he learning process, we trained he same
GAN in two ways: (i) L1 loss and average adversarial loss

patchGAN outputs NxN values where each element.

corresponds to a small region in the input image as an (1) and (2), (i) L1 loss and max adversarial loss in (3)

receptive field So, the discriminator of the patchGAN and (4) Figure 2 shows the learning curves for the average

judges multiple overlapping regions by assigning multiple adversarial loss and the max adversarial loss. As shown in
probabilities for the regions. To compute the loss at the

output layer of the discriminator in general GANSs, the

elementwise binary cross entropy losses are averagec

which is expressed as 12

Loag = Ennul 1090~ Dino(G(3), X)) ~ l0g Oy, X)) (1)

I-GAvg = En,h,w[_ Iog(Dnhw(G(X)! X))] (2) 07 \/\V\/\/\/\/\A

where Xis an input hazy imagey is its corresponding 0.2
ground truth,G(+) is the generator’s output, D(-,-) is the 0 100 200 300
discriminator’s output, E is the expectation operator, amd ——model A - Gen. model A - Disc.

h, andw represent the sample index in a batch, the height
and width dimension, respectively.
Based on théwuman’s perception characteristic with a 0.9

0.8

07

0.6
[ /\ 0 100 200 300
Average ‘ Maximum — model B - Gen. model B - Disc.

(b) proposed max adversarial loss

(a) average adversarial loss

Figure 1 An illustration of the adversarial loss functions
according to average loss in (1) and (2), and max loss (! Figure 2 Average adversarial loss versus max adversa
and (4). loss during the training.
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Figure 2-(a), the generator is overwhelmed by the validation hazy images are used.
discriminator while in Figure 2-(b), the discriminator and  The total 58 training images are down-sampled so that
the generator are well balanced during the trainiig the widths and heights are one-fourth of their original image
observed this trend for various cases with different networkscales. To augment data, %522sized patches are
architectures and parameters. randomly cropped, flipped and rotated from the down-
In addition to the basic pixel level L1 loss, a feature-level sampled training images at every iteration. The indoor and
loss can alsbe used. It is also named as a perceptual loss outdoor test images are down-sampled to quarter and half,
Lvea, [10] which is defined as L1 norm between features of respectively before being feidto the trained DHGAN.
the generated image and the ground truth image. TheFinally, the output images are up-sampled tdrtheginal
features are extracted froapre-trained network. We used image sizesNote that the down-sampling factors of 4 and
‘relu2_2’ layers of VGG-16 [11], which is a convolutional 2 for indoor and outdoor images were empirically resulted.
neural network for image classificatidhis reported in]2] We trained the DHGAN for 500 epoch®ne patch is
and [L3] that the PSNR performance becomes worse whensampled per imagat each epoch. Adam optimizet4] is
adversarial and L1 loss are used together than the case used withg, = 0.5 andalearning rateof 0.0002. After 100
with only L1 loss for the rain removal task. Then, they epochs, the learning rate linearly decreases towards zero.
found that the combination of adversarial, L1 and The batch size is one of the most important hyper
perceptual losss could yield better performance. 8V  parameters in our task our DHGAN, we found that the
present the experimental results in Sectb with all batch size larger thahyields inferior results with stains in
combinations of the loss functions and compared them onehe generated images. So, we used the batch size of 1 for
another in terms of PSNR performance. Our final loss termtraining.
can be represented asveighted sum of the loss functions

as follows: 4.2. Analysis of image scales for dehazing perfor mance
Lo = 4ly + Avsclves + Aavgloawg + Avadcmax (O) We trained the DHGAN with various down-scaling
factors mentioned in Sectidl. To see only the effect of
Lo = Aawloavg + Amaxl-omax (6)  theimage scales, we set the weight parameters in (5) and (6)

) ) asl1=1,Avee =5 andiag= 0 andiyax= 0.01. Given training
whereLg is the loss for the generator abglis the loss for  jmages the width and height are reduced it of their

the discriminator. TheA’s are the weights for their  original sizes for a down-scaling factor of Then, the
corresponding losses and are empirically determined training patches are randbmcropped at every iteration.

The patch size is fixed to either 256 or 512 during training.
4. Experiment results The test images are reduced Itn for a down-scaling

factor of m. After feed-forward image translation, we
calculate PSNR betweergenerated imageap-scaled back
Training images are from NTIRE2018 Image Dehazing to the original size and its corresponding ground truth as the
Challenge training dataset [16], [1AJl 25 indoor training main evaluation metric. Table | shows the average PSNR
images and 33 outdoor training images are used. Note thagerformance of our DHGAN for 10 validation images under
2 out of the 35 outdoor images were not used because thgiven patch sizes and image scale factors. It is noted in
heights of the images are less than 2048 and cannot be usddble | thatn and m are the down-scaling factors for
in 512<512 size after down-scaling them by a factor of 4 training and test, respectively. As shown in Table I, the
Therefore, the training dataset consists of 25 indoor and 39PHGAN trained with the 512512-sized patches gives
outdoor images, targeting at the joint training of our higher performance with averadeB or higher than the
DHGAN for both indoor and outdoor dataséfe validate cases trained with the 2&B56-sized patches, if other
the training process of our DHGAN, 5 indoor and 5 outdoor settings are identical. In addition, the DHGAN trained with

4.1. Experiment settings

Table I. Average PSNR of generated images with each patch size, dowrastmie for training images and down
scale factom for validation imags.

Patch m 1 2 4

sizes | n Indoor Outdoor Indoor Outdoor Indoor Outdoor
4 19.75 22.61 19.85 22.93 20.08 22.70

512 2 18.34 21.75 18.27 22.15 18.47 21.43
4 17.95 21.46 17.73 21.86 17.66 21.51

256 2 16.64 20.21 16.78 20.36 17.06 19.81
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the down-scaling facton, of 4 is superior to the one with 4.3. Analysis of loss functions

2.1t can be implied from Table | that enlarging the receptive

fields helps the DHGAN see a wider range of the hazy scer Tablell. Average PSNR performance of the DHGAR
and get well trained for dehazing. Figure 3 shows one of tt for different combinations of various loss functions.

generated validation images. Compared to ground truth i
Figure 3-(b), the heavy haze covers the whole area of inp A Mee  Aag  Awax | Indoor Outdoor) Avg.
hazy image in Figure 3-(a). When the patch size is set1| ® 18.12  22.03 | 20.07
256x256 withn = 1/2 andm = 1/2, haze still remains in the . . 19.54  22.69 | 21.12
upper side of the output image. When the training imag — . 1792 2212 | 20.02
scale is further reduced and the patch size gets biggan
be observed in Figure 3-(c) and -(d) that the haze in tr | ° e | 1782 2210 | 19.96
upper side was more eliminated, so resulting in an improve | ® . ° 2056  21.93 | 21.24
PSNR performare ° . . 1985 2293 | 21.39

For the down-scaling factor af in the testing phase, we
only need to find the bestwhennis 1/4 and the patch size  |n this section, to test only the effect of loss functions,
is 512. One can expect that the same valueasfdm will the down-scaling factors afandmare fixed to 1/4 and 1/2,

give a better result since the differenceahdmcan cause  respectively. & use six combinations of different loss
to increase a heterogeneity between training and test datgynctions to analyze their effects on PSNR performance. As
In our experiments, we found that the DHGAN did notyield 3 pasic pixel-level L1 loss, we séf =1. The other

the best PSNR performance for the test hazy input imagesyeighting factors of the losses are setjta = 5, Javg=0.01
without down-scalingMoreover the down-scaling factor  andjy.= 0.01,if they are usedrable Il shows the PSNR

of mfor the testing images yields less impact on the PSNRperformance of the DHGAN for different combinations of
performance of the DHGAN than the down-scaling factor various loss functions with 10 validation imagas shown

of n for the training images. Down-scaling the input hazy in Table II, the most effective loss function turned out to be
images enlarges the receptive field entails losing the  the perceptual loss. In most cases, PSNR increased when
high frequency information from the resulting down-

scaling. Therefore, it is important to find an appropriate

down-scaling factor ofn depending on the datasets.

© ’ “ %)

Figure 3. The generated images with image sc@gsnput hazy image, (b) Ground truth, (c) 256-patch with/2, m=1/2
PSNR=11.28 and SSIM=0.6895, (d) 512-patch with/4,m=1/2 PSNR=16.28 and SSIM=0.7681.
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Figure 4 Some generated images using different loss functions: (a) Input hazy {imegeLvestLcag, PSNR=23.74 and
SSIM=0.8253, (cl1+LvestLomas, PSNR=21.40 and SSIM=@®98, (d) Ground truth.

the perceptual loss was added. Meanwhile, using thdoss in terms of PSNRAIthough PSNR of Figure 4-(b) is
adversarial loss without perceptual loss did not increasehigher thanthat in Figure 4-(c), Figure 4-(c) looks better
PSNR performance, which is consistent with the results invisually pleasing while the color of Figure 4-(b) looks
[12] and [L3]. However, the highest PSNRs were obtained washed out.

when the perceptual loss and adversarial loss are used in a Figure 5 shows some dehazed images for an indoor
combination. For the five indoor validation images, the validation image using our DHGAN trained with different
average adversarial loss in (1) and (2) has led to bettetoss functions. It should be noted that the original (clean)
PSNR performance than our proposed max adversarial lossnage in Figure 5-(e) contains the flat regions in a large
in (3) and (4). For the five outdoor validation images, our portion unlike the one in Figure 4-(d). Figure 5-(b) contains
alternative max adversarial loss yields better PSNRmuch of stains appearing in the smooth areas for which the
performance, based on which the DHGAN has takenhe 2 DHGAN was trained only with L1 loss. On the other hand,
rank PSNR performance foNTIRE2018 Image Dehazing when the DHGAN is trained with L1 and perceptual losses
Challenge Track2: Outdoor. Figure 4 shows some dehazed in combination, most of the stains disappeared, which is
images by the DHGAN for which average adversarial lossvisually more pleasing. Nevertheless, the DHGAN trained
outperforms the case with our proposed max adversarialvith L1 and perceptual losses yields dehazed images with

I'H

(a) (b) (©) (d) (©

Figure 5. Some generated images with different loss functions (a) Input hazy ifiopge,PSNR=18.42 and SSIM=0.732:
(c) Li+Lves, PSNR=21.47 and SSIM=0.7807, {d}Lvect+Leva, PSNR=22.53 and SSIM=0.7917, (e) Ground truth
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Table lIl.

Average PSNR and SSIM results of each dataset and each dehattings

Metric | DCP [18] BCCR[21]  DehazeNet[25] MSCNN[26] AOD-Net[27]  DHGAN

PSNR 16.62 16.88 2114 1757 19.06 25.60
SOTS —sgim 0.8179 07913 0.8472 0.8102 08504 0.9419

PSNR 14.84 15.08 2428 18.64 20.55 24.04
HSTS —Ssim 0.7609 07382 0.9153 0.8168 08973 0.9048

color washed out, which still bothers pleased perception ofseveral statef-the-art haze removal algorithms [18], [21],
visual quality. This is because both L1 and perceptual losg25]-[27] in terms of subjective and objective metrics. The

functions are based ora pixel- and feature-level

data-driven algorithms were trained with the common

comparison between ground truth and generated one, whickraining dataset ITS in [24]In order to evaluate our

tries to find the best fit in an average sense(@®)the other
hand,if our max adversarial loss is additionally ustgk

DHGAN under the same condition, we trained DHGAN
with training dataset ITS from scratch. Since the image

color washed-out problem is improved, thus leading to resolution of ITS is 620460 which is relatively lower than

perceptually more pleasing dehazed images.

4.4. Comparison to the previous dehazing methods

We quantitéively compared the performance of our
network and the previous dehazing methodst lal. [24]

provideda large-scale public benchmark dataset for single
image dehazing, called Realistic Single Image Dehazing

(RESIDE) RESIDE include three subsetndoor Training

Set (ITS) Synthetic Objective Testing Set (SOTS) and

Hybrid Subjective Testing Set (HSTSYS is a training
dataset and consists of syrtihdndoor hazy images and

ground truth imageg-or the test dataset, SOTS consists of

pairs of synthtic indoor hazy images and ground truth

images. Another test dataset HSTS consists of both re
outdoor hazy images and the pairs of synthetic outdoor haz

and ground truth image§he authors of [24] evaluated

the resolution of NTIRE2018 Image Dehazing Challenge
dataset [16], [17], we did not down-scale the training
images and just cropped 448x448-sized patches as large as
possibleAlso, the test images in SOTS and HSTS were not
down-scaled. The weight parameters in (5) and (6) were set
asli= 1, lvec = 5 andiag= 0 andimax= 0.01. Then we
computed objective metrics, PSNR and SSIM for the test
datasets SOTS and synthetic images of HSTS. Table Il
shows average PSNR and SSIM performance of the
previous methods and our DHGAN for each test dataset.
The first and second top values are highlighted as bold type
and blue in Table lll, respectively. From both PSNR and
SSIM perspective, our DHGAN achieved the best and the
econd-best performance among the dehazing algorithms
or the SOTS and HSTS test dataset, respectiMalie that

¥he other algorithms utilize the relation between the
transmission maps and the haze while proposed DHGAN

Figure 6. Some examples of (top row) input synthetic hazy imageglémalv) dehazed images by DHGAN and
(bottom row) ground truth images of HSTS.
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generates dehazed images directly from the hazy imaged9] S. lizuka, E. Simo-Serra, and H. Ishikawa. Globally and
Figure 6 shows some examples of input synthetic hazy  locally consistent image completioACM Transactions on
images, dehazed images by DHGAN, and ground truth __ Graphics (TOG), 2017 o

images of HSTS. In Figure 6, the haze of the scenes werdl0] J- JohnsonA. Alahi, and L. Fei-Fei. Perceptual losses for
removed successfully in the generated images by DHGAN ?;:%g";ceséxlzoﬁ:ﬁgf rVi :gg (ég%%r?;rmiéiurgﬂi%
(middle row). There is even more haze in the real photo 5416 ' ' ’

(bottom row) than dehazed one in the first and second[j1] k. Simonyan, and A. Zisserman. Very deep convolutional

examples. networks for large-scale image recognitit®LR, 2015.
[12] H. Zhang, V. Sindagi, and V. M. Patel. Image de-raining
5. Conclusion using a conditional generative adversarial netwariv

) ] preprint arXiv:1701.05957, 2017.

In this paper, we proposed a CGAN-based high-[13] C. wang, C. Xu, C. Wang, and D. Tao. Perceptual adversarial
resolution image dehazing network, where it can capture networks for imagéde-image transformatiorarXiv preprint
more global features of the haziness in the training image  arXiv:1706.09138, 2017. _
patches by using seareduced training input imagethis [14] D. P. Kingma, and JBa. Adam: A method for stochastic
proposed a max adversarial loss to train the DHGAN, which[15] Sés%gggé an?e}?hg;'é‘:l?' Prt‘gttxg:"’k‘spré%{'zma?ﬁt ;ﬁrgt?;f; with
pr:cks ulp_ tre maX|mur'T:1 values of e_ldvers_c’;lr_lal dassa(zjnong Conference on Computer Vision (ICCV), vol. 1, 2017.
the multiple outputs. From extensive training and test, our 16]C. O. Ancut, C. Ancuti, R. Timofte, and C. De

proposed DHGAN was ranked in the second place for the” ~ \jeeschouwer. I-HAZE: a dehazing benchmark with real

NTIRE2018 Image Dehazing Challenge Track2: Outdoor. hazy and haze-free indoor imagesrXiv preprint
arXiv:1804.05091, 2018.
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