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Abstract 

 
Haze removal is one of the essential image enhancement 

processes that makes degraded images visually pleasing. 
Since haze in images often appears differently depending 
on the surroundings, haze removal requires the use of 
spatial information to effectively remove the haze 
according to the types of image region characteristics. 
However, in the conventional training, the small-sized 
training image patches could not provide spatial 
information to the training networks when they are 
relatively very small compared to the original training 
image resolutions. In this paper, we propose a simple but 
effective network for high-resolution image dehazing using 
a conditional generative adversarial network (CGAN), 
which is called DHGAN, where the hazy patches of scale-
reduced training input images are applied to the generator 
network of the DHGAN. By doing so, the DHGAN can 
capture more global features of the haziness in the training 
image patches, thus leading to improved dehazing 
performance. Also, the discriminator of the DHGAN is 
trained based on the largest binary cross entropy loss 
among the multiple outputs so that the generator network 
of the DHGAN can favorably be trained in accordance with 
perceptual quality. From extensive training and test, our 
proposed DHGAN was ranked in the second place for the 
NTIRE2018 Image Dehazing Challenge Track2: Outdoor. 
 

1. Introduction 
Image enhancement is a crucial process before 

consuming the degraded images. As damaged images 
degrade the visual perception of both human and machines, 
it is important to remove the disturbing part of the images. 
In many cases, image enhancement is required as a 
preprocessing. One of these challenging tasks is a haze 
removal. Haze does not appear consistently across different 
images and differs from various regions even within a 
single image. So, it is often non-uniformly distributed, 
depending on the surrounding atmosphere. 

From an image process point of view, haze removal is 
not a problem of generating something because the 

geometry of an input hazy image should be preserved and 
only haze should be removed in the input image during the 
dehazing process, like an image-to-image translation. 

Recently, deep learning-based methods have succeeded 
for image-to-image translations [6], [15], [22]-[23]. The 
deep learning-based method enables end-to-end learning 
for image translation if  the source and target images are 
provided for training. The most basic auto-encoder 
networks and many variations of generative adversarial 
networks (GANs) [1] have been applied to the image 
translation problems. GANs were first introduced to 
generate a new image from a noise and have proved to be 
beneficial in transforming the input images to the new 
images in their target domain [3]-[6], [22]-[23]. 

In haze removal problems, each input image is not a well-
controlled single object. Input is a picture that the real world 
in which many objects coexist in the scene. This means that 
we need to consider the scene context in generating the 
images with haze removal. As mentioned earlier, the 
thickness (amount) of haze varies across different regions 
in an image, but adjacent objects or regions often share the 
haze of similar thickness. In order to make the networks 
learn the contextual information, the sizes of the receptive 
fields should be very large for the high-resolution images.  

As another important point of image translation, the 
reconstructed (or translated) images are often judged by the 
most prominent regions or points that may differ mostly 
from their usual appearance. It is important to take it into 
account for network training.  

In this paper, we propose an effective network for high-
resolution image dehazing using a conditional generative 
adversarial network (CGAN), which is called DHGAN. In 
the proposed DHGAN, the hazy patches of scale-reduced 
training input images are input to its generator network to 
effectively enlarge the receptive field sizes, and its 
generator and discriminator are trained focused on the worst 
region of outputs. This paper is organized as follows: 
Section 2 provides a review of image dehazing works; 
Section 3 describes our proposed DHGAN in details with 
receptive field sizes and training losses for dehazing 
problems; Experimental results are provided in Section 4; 
and finally we conclude our work in Section 5. 
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2. Related works 

2.1. Single Image Haze Removal 

Single image haze removal is more challenging than the 
one with multiple images since depth can be estimated more 
precisely with multiple images of a scene. The depth 
information, the distance between a camera and the subjects, 
is directly related to the haze thickness by its nature. Hence, 
many previous works have studied the formula related to 
the depth or transmission information to get haze-free 
images from hazy images [18]-[21], [25]-[27]. He et al. [18] 
defined a novel dark channel prior which is obtained from 
image statistics. The dark channel prior was then used to 
estimate transmission maps. Ancuti et al. [19] introduced 
computation of semi-inverse images to detect haze in pixel 
levels so that the haze in images can be effectively removed 
on a per-pixel basis. Ancuti and Ancuti [20] employed a 
multi-scale fusion based haze removal with appropriate 
weight maps and inputs. Meng et al. [21] considered the 
boundary conditions of transmission maps for hazy images, 
which turned out to be helpful for haze removal. 

As deep learning-based models have drawn much 
attention in image processing, some researchers have tried 
to learn a mapping from a single hazy image to a clean 
image using neural networks [3]-[5], [25]-[27]. Zhang et al. 
[3] have built a network using a GAN to predict the 
transmission map for the input image and to remove its haze 
jointly. Li et al. [4] also proposed a GAN-based model that 
predicts coarse and fine transmission maps serially and then 
concatenates them to generate haze-free images. These 
networks were allowed for end-to-end learning with ground 
truth of transmission maps and haze-free images. However, 
measuring such ground truth transmission maps is very 
expensive and impractical. Alternatively, we only utilize 
paired hazy and haze-free images to train the networks. 
Swami and Kumar [5] first introduced a fully end-to-end 
learning-based GAN for single image dehazing without 
transmission maps. However, it fails to dehaze high-
resolution hazy images because it uses a small-sized 
receptive field size which is not effective for haze removal 
of high-resolution hazy images. 

2.2. Image translation with conditional GANs 

Recently, GANs are proposed to resolve image 
generation tasks [3]-[6], [22]-[23]. Their discriminators 
learn to distinguish between real samples from target 
domain and fake made by their generators. The generators 
learn to fool the discriminators so that the generated images 
become close to the samples taken from their target 
domains. The generators and discriminators are trained in 
an adversarial fashion and are finally kept in a balance 
between them. 

Isola et al. [6] combined an adversarial loss of a 
conditional GAN and a pixel-level reconstruction loss 
between the images generated by U-net [7] and their ground 

truth. Hence, the paired input and ground truth images 
should be available for training. This model, named as 
pix2pix, was applied to translation tasks such as graphic 
maps to aerial photos, and semantic labels to real photos 
while maintaining the inherent identity similar to haze 
removal.  

3. Our proposed method 
Our proposed haze removal network that adopts a CGAN, 

called DHGAN, is based on the pix2pix network [6] that 
was applied to image-to-image translation. Note that the 
haze removal from a hazy image can also be regarded as an 
image translation problem. The generator of our proposed 
DHGAN consists of a series of six 2-strided convolutional 
layers as an encoder and six 2-strided transposed 
convolutional layers as a decoder. The outputs of each layer 
in the encoder are feedforward and concatenated with the 
inputs of the corresponding layers in the decoder, which is 
a similar structure as U-net [7]. The discriminator, which is 
similar to the patchGAN structure in [6], consists of a series 
of four 2-strided convolutional layers. The discriminator 
yields its final output in a form of 32×32 score map. The 
total numbers of parameters in the generator and 
discriminator are about 5M and 44k, respectively. 

3.1. Adjusting image scales 

The NTIRE2018 Challenge dataset consists of very high-
resolution images [16], [17]. We investigate the effective 
sizes of receptive fields for haze removal of high-resolution 
hazy images. 

Seeing only narrow part of an image is not sufficient to 
learn enough spatial information. For examples, some of 
256×256 patches as used in [6] can often contain all flat and 
solid color regions in high-resolution hazy images, which is 
lack of spatial information. They can be small parts of a 
white wall or heavy fog of the images. It is beneficial to 
utilize global context for effective haze removal as done in 
other image translation processes [8], [9]. This problem can 
be alleviated by using large-sized training patches which 
can contain more global spatial information for haze 
characteristics. In general, for the larger the receptive field 
sizes, the better the quality performance is obtained. 
However, enlarging the receptive fields requires increasing 
the filter sizes and the depth of convolutional layers, which 
entails the increase in computational complexity and 
memory space. Also, it should be pointed out that two 
pixels with a distance larger than receptive field size in an 
input image do not affect their corresponding output pixels 
each other. Hence, another way to enlarge the effective 
receptive fields is to down-sample the original training 
images and then crop them into small-sized training patches. 
That is, for examples, if  an input is scaled to the half size of 
its width and height, the receptive field can be enlarged four 
times, roughly speaking. Increasing training patch sizes and 
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down-scaling the input enlarge the effective receptive fields 
which can significantly improve restoration performance. 

Another issue for scaling of input images sizes is about 
testing phases. Similar to the training phase, down-
sampling test images helps consider wider context 
information in the inference phase. However, the inference 
requires up-scaling the network output back to the original 
resolution of the input. We use a Lanczos interpolation for 
output up-scaling as well as for input down-scaling. Our 
DHGAN was trained with an empirically found down-
scaling factor of 1/4 for both Indoor and Outdoor datasets 
of The NTIRE2018 Challenge. For testing, the down-
scaling and up-scaling factor of 1/4 (1/2) were used for 
Indoor (Outdoor) dataset. The patch size was set to 
512×512.  

3.2. Loss functions 

Isola et al. [6] introduced a concept called patchGAN 
that contains a different discriminator compared to those of 
general GANs. Originally, the discriminators in general 
GANs take an image as an input and outputs a single scalar 
that determines whether it is real or fake. That is, it is likely 
for the single scalar to take the entire image patch as a 
receptive field. However, the discriminator of the 
patchGAN outputs N×N values where each element 
corresponds to a small region in the input image as a 
receptive field. So, the discriminator of the patchGAN 
judges multiple overlapping regions by assigning multiple 
probabilities for the regions. To compute the loss at the 
output layer of the discriminator in general GANs, the 
elementwise binary cross entropy losses are averaged, 
which is expressed as 

))],(log())),((1log([,, xyDxxGDEL nhwnhwwhnDAvg     (1) 

))]),((log([,, xxGDEL nhwwhnGAvg                   (2) 

where x is an input hazy image, y is its corresponding 

ground truth, G(·) is the generator’s output, D(·,·) is the 
discriminator’s output, E is the expectation operator, and n, 
h, and w represent the sample index in a batch, the height 
and width dimension, respectively. 

Based on the human’s perception characteristic with a 

focus of attention on the worst (the most prominent) 
degraded regions in quality assessment, we define a new 
loss function by modifying (1) and (2) as follows:  
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Figure 1 illustrates the adversarial loss functions of the 
discriminators according to the average loss in (1) and (2), 
and max loss (3) and (4). While (1) and (2) penalize all 
regions equally by taking an average, (3) and (4) 
backpropagate only the error for the worst part of the output 
by taking the maximum over the spatial dimension. In the 
generator’s perspective, the loss function penalizes the 
region for which the discriminator outputs the highest 
probability to be fake. On the other hands, in 
discriminator’s perspective, the discriminator’s loss 
function penalizes the areas that are the most misjudged.  

In order to see the effectiveness of the proposed loss 
functions in (3) and (4), we perform a toy experiment with 
a simple GAN [6] where L1 and adversarial loss are only 
used. To trace the learning process, we trained the same 
GAN in two ways: (i) L1 loss and average adversarial loss 
in (1) and (2), (ii) L1 loss and max adversarial loss in (3) 
and (4). Figure 2 shows the learning curves for the average 
adversarial loss and the max adversarial loss. As shown in 

 
(a) average adversarial loss 

  
(b) proposed max adversarial loss 

Figure 2. Average adversarial loss versus max adversarial 
loss during the training. 
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Figure 1. An illustration of the adversarial loss functions 
according to average loss in (1) and (2), and max loss (3) 
and (4). 
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Figure 2-(a), the generator is overwhelmed by the 
discriminator while in Figure 2-(b), the discriminator and 
the generator are well balanced during the training. We 
observed this trend for various cases with different network 
architectures and parameters. 

In addition to the basic pixel level L1 loss, a feature-level 
loss can also be used. It is also named as a perceptual loss, 
LVGG, [10] which is defined as L1 norm between features of 
the generated image and the ground truth image. The 
features are extracted from a pre-trained network. We used 
‘relu2_2’ layers of VGG-16 [11], which is a convolutional 
neural network for image classification. It is reported in [12] 
and [13] that the PSNR performance becomes worse when 
adversarial and L1 losses are used together than the case 
with only L1 loss for the rain removal task. Then, they 
found that the combination of adversarial, L1 and 
perceptual losses could yield better performance. We 
present the experimental results in Section 4.2 with all 
combinations of the loss functions and compared them one 
another in terms of PSNR performance. Our final loss term 
can be represented as a weighted sum of the loss functions 
as follows: 

GMaxMaxGAvgAvgVGGVGGG LLLLL   11   (5) 

DMaxMaxDAvgAvgD LLL                              (6) 

where LG is the loss for the generator and LD is the loss for 
the discriminator. The ’s are the weights for their 
corresponding losses and are empirically determined 

4. Experiment results 

4.1. Experiment settings 

Training images are from NTIRE2018 Image Dehazing 
Challenge training dataset [16], [17]. All 25 indoor training 
images and 33 outdoor training images are used. Note that 
2 out of the 35 outdoor images were not used because the 
heights of the images are less than 2048 and cannot be used 
in 512512 size after down-scaling them by a factor of 4. 
Therefore, the training dataset consists of 25 indoor and 33 
outdoor images, targeting at the joint training of our 
DHGAN for both indoor and outdoor datasets. To validate 
the training process of our DHGAN, 5 indoor and 5 outdoor 

validation hazy images are used. 
The total 58 training images are down-sampled so that 

the widths and heights are one-fourth of their original image 
scales. To augment data, 512512-sized patches are 
randomly cropped, flipped and rotated from the down-
sampled training images at every iteration. The indoor and 
outdoor test images are down-sampled to quarter and half, 
respectively before being fed into the trained DHGAN. 
Finally, the output images are up-sampled to their original 
image sizes. Note that the down-sampling factors of 4 and 
2 for indoor and outdoor images were empirically resulted. 
We trained the DHGAN for 500 epochs. One patch is 
sampled per image at each epoch. Adam optimizer [14] is 
used with β1 = 0.5 and a learning rate of 0.0002. After 100 
epochs, the learning rate linearly decreases towards zero. 

The batch size is one of the most important hyper 
parameters in our task. In our DHGAN, we found that the 
batch size larger than 1 yields inferior results with stains in 
the generated images. So, we used the batch size of 1 for 
training. 

4.2. Analysis of image scales for dehazing performance 

We trained the DHGAN with various down-scaling 
factors mentioned in Section 3.1. To see only the effect of 
the image scales, we set the weight parameters in (5) and (6) 
as λ1 = 1, λVGG = 5 and λAvg = 0 and λMax = 0.01. Given training 
images, the width and height are reduced to 1/n of their 
original sizes for a down-scaling factor of n. Then, the 
training patches are randomly cropped at every iteration. 
The patch size is fixed to either 256 or 512 during training. 
The test images are reduced to 1/m for a down-scaling 
factor of m. After feed-forward image translation, we 
calculate PSNR between a generated image up-scaled back 
to the original size and its corresponding ground truth as the 
main evaluation metric. Table I shows the average PSNR 
performance of our DHGAN for 10 validation images under 
given patch sizes and image scale factors. It is noted in 
Table I that n and m are the down-scaling factors for 
training and test, respectively. As shown in Table I, the 
DHGAN trained with the 512512-sized patches gives 
higher performance with average 1dB or higher than the 
cases trained with the 256256-sized patches, if other 
settings are identical. In addition, the DHGAN trained with 

Table I. Average PSNR of generated images with each patch size, down-scale factor n for training images and down-
scale factor m for validation images. 

Patch 
sizes 

m 
n 

1 2 4 
Indoor Outdoor Indoor Outdoor Indoor Outdoor 

 
512 

4 19.75 22.61 19.85 22.93 20.08 22.70 

2 18.34 21.75 18.27 22.15 18.47 21.43 

 
256 

4 17.95 21.46 17.73 21.86 17.66 21.51 

2 16.64 20.21 16.78 20.36 17.06 19.81 
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the down-scaling factor, n, of 4 is superior to the one with 
2. It can be implied from Table I that enlarging the receptive 
fields helps the DHGAN see a wider range of the hazy scene 
and get well trained for dehazing. Figure 3 shows one of the 
generated validation images. Compared to ground truth in 
Figure 3-(b), the heavy haze covers the whole area of input 
hazy image in Figure 3-(a). When the patch size is set to 
256256 with n = 1/2 and m = 1/2, haze still remains in the 
upper side of the output image. When the training image 
scale is further reduced and the patch size gets bigger, it can 
be observed in Figure 3-(c) and -(d) that the haze in the 
upper side was more eliminated, so resulting in an improved 
PSNR performance. 

For the down-scaling factor of m in the testing phase, we 
only need to find the best m when n is 1/4 and the patch size 
is 512. One can expect that the same value of n and m will 
give a better result since the difference of n and m can cause 
to increase a heterogeneity between training and test data. 
In our experiments, we found that the DHGAN did not yield 
the best PSNR performance for the test hazy input images 
without down-scaling. Moreover, the down-scaling factor 
of m for the testing images yields less impact on the PSNR 
performance of the DHGAN than the down-scaling factor 
of n for the training images. Down-scaling the input hazy 
images enlarges the receptive fields but entails losing the 
high frequency information from the resulting down-
scaling. Therefore, it is important to find an appropriate 
down-scaling factor of m depending on the datasets. 

4.3. Analysis of loss functions 

In this section, to test only the effect of loss functions, 
the down-scaling factors of n and m are fixed to 1/4 and 1/2, 
respectively. We use six combinations of different loss 
functions to analyze their effects on PSNR performance. As 
a basic pixel-level L1 loss, we set λ1 =1. The other 
weighting factors of the losses are set to λVGG = 5, λAvg = 0.01 
and λMax = 0.01, if  they are used. Table II shows the PSNR 
performance of the DHGAN for different combinations of 
various loss functions with 10 validation images. As shown 
in Table II, the most effective loss function turned out to be 
the perceptual loss. In most cases, PSNR increased when 

Table II.  Average PSNR performance of the DHGAN 
for different combinations of various loss functions. 

1  VGG  Avg  Max  Indoor Outdoor Avg. 

●    18.12 22.03 20.07 

● ●   19.54 22.69 21.12 

●  ●  17.92 22.12 20.02 

●   ● 17.82 22.10 19.96 

● ● ●  20.56 21.93 21.24 

● ●  ● 19.85 22.93 21.39 

 

 
Figure 3. The generated images with image scales. (a) Input hazy image, (b) Ground truth, (c) 256-patch with n=1/2, m=1/2 
PSNR=11.28 and SSIM=0.6895, (d) 512-patch with n=1/4, m=1/2 PSNR=16.28 and SSIM=0.7681. 
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the perceptual loss was added. Meanwhile, using the 
adversarial loss without perceptual loss did not increase 
PSNR performance, which is consistent with the results in 
[12] and [13]. However, the highest PSNRs were obtained 
when the perceptual loss and adversarial loss are used in a 
combination. For the five indoor validation images, the 
average adversarial loss in (1) and (2) has led to better 
PSNR performance than our proposed max adversarial loss 
in (3) and (4). For the five outdoor validation images, our 
alternative max adversarial loss yields better PSNR 
performance, based on which the DHGAN has taken the 2nd 
rank PSNR performance for NTIRE2018 Image Dehazing 
Challenge Track2: Outdoor. Figure 4 shows some dehazed 
images by the DHGAN for which average adversarial loss 
outperforms the case with our proposed max adversarial 

loss in terms of PSNR. Although PSNR of Figure 4-(b) is 
higher than that in Figure 4-(c), Figure 4-(c) looks better 
visually pleasing while the color of Figure 4-(b) looks 
washed out.  

Figure 5 shows some dehazed images for an indoor 
validation image using our DHGAN trained with different 
loss functions. It should be noted that the original (clean) 
image in Figure 5-(e) contains the flat regions in a large 
portion unlike the one in Figure 4-(d). Figure 5-(b) contains 
much of stains appearing in the smooth areas for which the 
DHGAN was trained only with L1 loss. On the other hand, 
when the DHGAN is trained with L1 and perceptual losses 
in combination, most of the stains disappeared, which is 
visually more pleasing. Nevertheless, the DHGAN trained 
with L1 and perceptual losses yields dehazed images with 

 
Figure 5. Some generated images with different loss functions (a) Input hazy image, (b) L1, PSNR=18.42 and SSIM=0.7322, 
(c) L1+LVGG, PSNR=21.47 and SSIM=0.7807, (d) L1+LVGG+LGMax, PSNR=22.53 and SSIM=0.7917, (e) Ground truth 

 
Figure 4. Some generated images using different loss functions: (a) Input hazy image, (b) L1+LVGG+LGAvg, PSNR=23.74 and 
SSIM=0.8253, (c) L1+LVGG+LGMax, PSNR=21.40 and SSIM=0.7998, (d) Ground truth. 
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color washed out, which still bothers pleased perception of 
visual quality. This is because both L1 and perceptual loss 
functions are based on a pixel- and feature-level 
comparison between ground truth and generated one, which 
tries to find the best fit in an average sense [6]. On the other 
hand, if  our max adversarial loss is additionally used, the 
color washed-out problem is improved, thus leading to 
perceptually more pleasing dehazed images. 

4.4. Comparison to the previous dehazing methods 

We quantitatively compared the performance of our 
network and the previous dehazing methods. Li et al. [24] 
provided a large-scale public benchmark dataset for single 
image dehazing, called Realistic Single Image Dehazing 
(RESIDE). RESIDE include three subsets; Indoor Training 
Set (ITS), Synthetic Objective Testing Set (SOTS) and 
Hybrid Subjective Testing Set (HSTS). ITS is a training 
dataset and consists of synthetic indoor hazy images and 
ground truth images. For the test dataset, SOTS consists of 
pairs of synthetic indoor hazy images and ground truth 
images. Another test dataset HSTS consists of both real 
outdoor hazy images and the pairs of synthetic outdoor hazy 
and ground truth images. The authors of [24] evaluated 

several state-of-the-art haze removal algorithms [18], [21], 
[25]-[27] in terms of subjective and objective metrics. The 
data-driven algorithms were trained with the common 
training dataset ITS in [24]. In order to evaluate our 
DHGAN under the same condition, we trained DHGAN 
with training dataset ITS from scratch. Since the image 
resolution of ITS is 620×460 which is relatively lower than 
the resolution of NTIRE2018 Image Dehazing Challenge 
dataset [16], [17], we did not down-scale the training 
images and just cropped 448×448-sized patches as large as 
possible. Also, the test images in SOTS and HSTS were not 
down-scaled. The weight parameters in (5) and (6) were set 
as λ1 = 1, λVGG = 5 and λAvg = 0 and λMax = 0.01. Then we 
computed objective metrics, PSNR and SSIM for the test 
datasets SOTS and synthetic images of HSTS. Table III 
shows average PSNR and SSIM performance of the 
previous methods and our DHGAN for each test dataset. 
The first and second top values are highlighted as bold type 
and blue in Table III, respectively. From both PSNR and 
SSIM perspective, our DHGAN achieved the best and the 
second-best performance among the dehazing algorithms 
for the SOTS and HSTS test dataset, respectively. Note that 
the other algorithms utilize the relation between the 
transmission maps and the haze while proposed DHGAN 

Table III. Average PSNR and SSIM results of each dataset and each dehazing methods 

 Metric DCP [18] BCCR [21] DehazeNet [25] MSCNN [26] AOD-Net [27] DHGAN 

SOTS 
PSNR 16.62 16.88 21.14 17.57 19.06 25.60 

SSIM 0.8179 0.7913 0.8472 0.8102 0.8504 0.9419 

HSTS 
PSNR 14.84 15.08 24.48 18.64 20.55 24.04 

SSIM 0.7609 0.7382 0.9153 0.8168 0.8973 0.9048 

 

 

Figure 6. Some examples of (top row) input synthetic hazy images, (middle row) dehazed images by DHGAN and 
(bottom row) ground truth images of HSTS. 
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generates dehazed images directly from the hazy images. 
Figure 6 shows some examples of input synthetic hazy 
images, dehazed images by DHGAN, and ground truth 
images of HSTS. In Figure 6, the haze of the scenes were 
removed successfully in the generated images by DHGAN 
(middle row). There is even more haze in the real photo 
(bottom row) than dehazed one in the first and second 
examples. 

5. Conclusion 
In this paper, we proposed a CGAN-based high-

resolution image dehazing network, where it can capture 
more global features of the haziness in the training image 
patches by using scale-reduced training input images. This 
leads to improved dehazing performance. Also, we 
proposed a max adversarial loss to train the DHGAN, which 
picks up the maximum values of adversarial losses among 
the multiple outputs. From extensive training and test, our 
proposed DHGAN was ranked in the second place for the 
NTIRE2018 Image Dehazing Challenge Track2: Outdoor.  
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