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Abstract
This paper reviews the 2nd NTIRE challenge on single

image super-resolution (restoration of rich details in a low

resolution image) with focus on proposed solutions and re-

sults. The challenge had 4 tracks. Track 1 employed the

standard bicubic downscaling setup, while Tracks 2, 3 and

4 had realistic unknown downgrading operators simulat-

ing camera image acquisition pipeline. The operators were

learnable through provided pairs of low and high resolu-

tion train images. The tracks had 145, 114, 101, and 113

registered participants, resp., and 31 teams competed in the

final testing phase. They gauge the state-of-the-art in single

image super-resolution.

1. Introduction
Example-based single image super-resolution (SR) tar-

gets the reconstruction of the lost high frequencies (rich

R. Timofte (timofter@vision.ee.ethz.ch, ETH Zurich), S. Gu, L. Van

Gool, L. Zhang and M.-H. Yang are the NTIRE 2018 organizers, while the

other authors participated in the challenge.

Appendix A contains the authors’ teams and affiliations.

NTIRE webpage: http://www.vision.ee.ethz.ch/ntire18/

details) in an image with the help of a set of prior exam-

ples of paired low resolution (LR) and high resolution (HR)

images. This problem is ill-posed, for each LR image the

space of plausible corresponding HR images is huge and

scales up quadratically with the magnification factor.

In the recent years the research literature largely focused

on example-based single image super-resolution. The per-

formance achieved by the top methods [38, 32, 7, 16, 20,

31, 21] continuously improved.

The NTIRE 2017 challenge [31, 1] was a step forward

in benchmarking SR. It was the first challenge of its kind

with tracks employing standard bicubic degradation and

‘unknown’ operators (blur and decimation) on the 1000 DI-

Verse 2K resolution images from DIV2K [1] dataset.

The NTIRE 2018 challenge builds upon NTIRE 2017

and goes further. In comparison with the previous edition,

NTIRE 2018: (1) uses the same DIV2K [1] dataset; (2)

has only one bicubic downscaling track with magnification

factor ×8; (3) promotes realistic settings emulating camera

acquisition pipeline through three tracks with gradually in-

creased difficulty.
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2. NTIRE 2018 Challenge

The objectives of the NTIRE 2018 challenge on

example-based single-image super-resolution are: (i) to

gauge and push the state-of-the-art in SR; (ii) to compare

different solutions; and (iii) to promote realistic SR settings.

DIV2K Dataset [1] employed by NTIRE 2017 SR chal-

lenge [31] is used also in our challenge. DIV2K has 1000

DIVerse 2K resolution RGB images with 800 for training,

100 for validation and 100 for testing purposes. The man-

ually collected high quality images are diverse in contents.

2.1. Tracks

Access to data and submission of HR image results re-

quired registration on Codalab competition track.

Track 1: Classic Bicubic ×8 uses the bicubic downscal-

ing (Matlab imresize, default settings), the most common

setting from the recent SR literature, with factor ×8. It is

meant for easy deployment of recent proposed SR solutions.

Track 2: Realistic Mild ×4 adverse conditions assumes

that the degradation operators emulating the image acquisi-

tion process from a digital camera can be estimated through

training pairs of LR and HR images. The degradation op-

erators are the same (use the same controlling parameters)

within each image space and for all the images in train, val-

idation, and test sets. As in reality, the motion blur and

the Poisson noise are image dependent and can introduce

pixel shifts and scaling. Each ground truth (GT) image from

DIV2K is downgraded (×4) to LR images.

Track 3: Realistic Difficult ×4 adverse conditions is sim-

ilar to Track 2, only the degradation is stronger.

Track 4: Realistic Wild ×4 adverse conditions is similar

to Tracks 2 and 3, the degradation operators are the same

within an image space but different from one image to an-

other. Some images are less degraded than other images.

This setting is the closest to real ‘wild’ conditions. Due

to increased complexity of the task 4 degraded LR images

were generated for each HR train image.

Challenge phases (1) Development phase: the partici-

pants got pairs of LR and HR train images and the LR val-

idation images of the DIV2K dataset; an online validation

server with a leaderboard provided immediate feedback for

the uploaded HR results to the LR validation images; (2)

Testing phase: the participants got test LR images and

were required to submit super-resolved HR image results,

code, and a factsheet for their method. After the end of the

challenge the final results were released to the participants.

Evaluation protocol The quantitative measures are Peak

Signal-to-Noise Ratio (PSNR) measured in deciBels [dB]

and the Structural Similarity index (SSIM) [37], both full-

reference measures computed between the HR result and

the GT image. We report averages over sets of images.

https://competitions.codalab.org

As in [31] we ignore a boundary of 6 + s image pixels (s

is the zoom factor). Because of the pixel shifts and scal-

ings, for Tracks 2, 3, and 4 we consider all the translations

∈ [−40, 40] on both axes, compute PSNR and SSIM and

report the most favorable scores. Due to time complexity,

for Tracks 2, 3, and 4 we computed PSNR and SSIM using

a 60 × 60px centered image crop during validation phase

and a 800× 800px centered image crop for the final results.

Figure 1. Sample LR input images for Track 1,2,3, and 4, resp.

3. Challenge Results

From ∼110 registered participants on average per each

track, 31 teams entered in the final phase and submitted re-

sults, codes/executables, and factsheets. Table 1 reports the

final test results and rankings of the challenge, while in Ta-

ble 2 the self-reported runtimes and major details are pro-

vided. The methods are briefly described in section 4 and

the team members are listed in Appendix A.

Architectures and main ideas All the proposed methods,

excepting TSSR of UW18, are deep learning based. The

deep residual net (ResNet) architecture [10] and the dense

net (DenseNet) architecture [11] are the basis for most of

the proposed methods. For fast inference, thus train and test

time benefits, most of the teams conduct the major SR op-

erations in the LR space. Several teams, such as UIUC-IFP,

BMIPL-UNIST, Pixel Overflow, build their methods based

on EDSR [21], the state-of-the-art approach and the winner

of the previous NTIRE 2017 SR challenge [31, 1]; while,

other teams, such as Toyota-TI, HIT-VPC, DRZ, PDN, pro-

posed new architectures for SR.

Restoration fidelity The top 4 methods from ‘Classic

Bicubic’ achieved similar PSNR scores (within 0.04dB).

DeepSR entry, ranked 12th, is only 0.17dB behind the

best PSNR score of Toyota-TI. On the realistic settings,

Tracks 2,3, and 4, due to the existence of noise and mo-

tion blur, the training strategy and the network architecture

plays are equally important. Although UIUC-IFP ranked

7th on ‘Classic Bicubic’, below DRZ and Duke Data Sci-

ence, it adopted a pre-alignment step for the training phase

and achieved the best performance on the realistic tracks 2

and 3, significantly better than DRZ and Duke Data Sci-

ence. PDN ranked 1st on Track 4, however, without sub-

mitted results for the other tracks we cannot tell if their so-

lution/architecture is better than that of UIUC-IFP.

Ensembles and fusion Most teams employ pseudo-

ensembles [33]. The inputs are flipped/rotated and the HR

results are aligned and averaged for enhanced prediction.

966

https://competitions.codalab.org


Table 1. NTIRE 2018 SR Challenge results and final rankings. Note that the ‘lpj008’ results are not ranked.
(a) Track 1 Classic Bicubic ×8
Team Author PSNR SSIM

Toyota-TI iim lab 25.455 0.7088

Pixel Overflow McCourt Hu 25.433 0.7067

rainbow zheng222 25.428 0.7055

DRZ yifita 25.415 0.7068

Faceall Xlabs xjc faceall 25.360 0.7031

Duke Data Science admian98 25.356 0.7037

UIUC-IFP jhyume 25.347 0.7023

Haiyun XMU cr2018 25.338 0.7037

BMIPL UNIST BMIPL UNIST 25.331 0.7026

Ajou-LAMDA-Lab nmhkahn 25.318 0.7023

SIA mikigom 25.290 0.7014

DeepSR enoch 25.288 0.7015

Mrobot0 25.175 0.6960

reveal.ai muneebaadil 25.137 0.6942

HIT-VPC cskzh 25.088 0.6943

MCML ghgh3269 24.875 0.7025

BOE-SBG boe sbg 24.822 0.6817

SRFun ccook 24.819 0.6829

KAIST-VICLAB JSChoi 24.817 0.6810

zeweihe 24.773 0.6813

jingliting 24.714 0.6913

CEERI harshakoundinya 24.687 0.6719

APSARA MingQiu 24.618 0.6817

UW18 zzsmg 24.192 0.6531

Baseline Bicubic 23.703 0.6387

(b) Realistic Tracks 2, 3, & 4 ×8
Track 2 Mild Track 3 Difficult Track 4 Wild

Team Author PSNR SSIM PSNR SSIM PSNR SSIM

UIUC-IFP jhyume 23.631(1) 0.6316 22.329(1) 0.5721 23.080(2) 0.6038

PDN xixihaha 23.374(1) 0.6122

BMIPL UNIST BMIPL UNIST 23.579(2) 0.6269 22.074(2) 0.5590

HIT-VPC∗ lpj008 22.249 0.5637 22.879 0.5936

HIT-VPC cskzh 23.493(3) 0.6174 21.450(9) 0.5339 22.795(3) 0.5829

SIA mikigom 23.406(5) 0.6275 21.899(3) 0.5623 22.766(4) 0.6023

KAIST-VICLAB jschoi 23.455(4) 0.6175 21.689(6) 0.5434 22.732(6) 0.5844

DRZ yifita 23.397(6) 0.6160 21.592(8) 0.5438 22.745(5) 0.5881

srFans yyuan13 23.218(9) 0.6222 21.825(4) 0.5573 22.707(7) 0.5932

Duke Data Science adamian98 23.374(7) 0.6252 21.658(7) 0.5400

bighead 23.247(8) 0.6165

ISP Team hot milk 23.098(11) 0.6167 21.779(5) 0.5550 22.496(8) 0.5867

BOE-SBG boe sbg 23.123(10) 0.6008 21.443(10) 0.5275 22.352(10) 0.5612

MCML ghgh3269 22.953(12) 0.6115 21.337(11) 0.5354 22.472(9) 0.5842

DeepSR enoch 21.742(15) 0.5572 20.674(16) 0.5168 21.589(12) 0.5444

jingliting 21.710(16) 0.5384 20.973(12) 0.5187 20.956(14) 0.5214

Haiyun XMU cr2018 21.519(17) 0.5313 20.866(13) 0.5072 21.367(13) 0.5321

Ajou-LAMDA-Lab nmhkahn 21.240(18) 0.5376

Juanluisgonzales juanluisgonzales 22.625(13) 0.5868

APSARA mingqiu 20.718(15) 0.4977

NMH nmh 20.645(17) 0.4890

join16 20.453(19) 0.4928

Baseline Bicubic 22.391(14) 0.5336 20.830(14) 0.4631 21.761(11) 0.4989

Table 2. Reported runtimes [s] per test image and details from the factsheets.
runtime [s]

Team Track 1 Track 2,3,4 Platform CPU/GPU (at runtime) Ensemble

Ajou-LAMDA-Lab 13.84 13.84 Pytorch GTX 1080Ti flip/rotation (×8)

APSARA 30 30 Tensorflow GTX 1080Ti flip/rotation (×8)

BOE-SBG 0.15 1.11 Pytorch Nivida P100 -

bighead - 1.5

BMIPL UNIST 2.52 4.68 Pytorch ? flip/rotation (×8)

CEERI 12.23 - Tensorflow,Keras GTX 1080 -

DeepSR 9.89 1.83 Tensorflow Titan X flip/rotation (×8)

DRZ 11.65 2.91 Pytorch Titan Xp Track1: flip/rotation (×8)

Duke Data Science 6.99 18 ??? Nivdia P100 flip/rotation (×8)

Faceall Xlabs 7.31 - Pytorch GTX 1080 flip/rotation (×4)

Haiyun XMU 14.52 2.14 Pytorch Track 1: Titan X Track 2,3,4: GTX 1080 Track1: flip/rotation (x8)

HIT-VPC 0.26 0.2 Matconvnet GTX 1080Ti -

ISP Team - 2.1 Tensorflow Titan X -

jingliting 1.27 0.72 ??? ??? -

join16 - 4.12 ??? GTX 1080 -

juanluisgonzales - 0.02 ??? ??? -

KAIST-VICLAB 0.44 1.60 Track1: Matconvnet, Track2,3,4: Tensorflow Titan Xp Track1: - Track2,3,4: flip/rotation (×8)

MCML 5.95 1.08 Tensorflow GTX 1080 Track1: flip/rotation (×8)

Mrobot0 10 - ??? ??? -

NMH - 3.31 ??? ??? -

PDN - 13.07 Pytorch 4 Titan Xp Ensemble two variations of the proposed methods

Pixel Overflow 20 - Tensorflow Nvidia P100 -

rainbow 6.75 - Pytorch GTX 1080Ti flip/rotation (×8)

reveal.ai 92.95 - Pytorch Tesla K80 flip/rotation (×8)

SIA 396.0 396.0 Tensorflow CPU flip/rotation (×8)

srFans - 0.10 Pytorch Tesla K80 -

SRFun 1 - Tensorflow GTX 1080Ti -

Toyota-TI 35 - Pytorch Titan X flip/rotation (×8)

UIUC-IFP 5.03 7.28 Pytorch P100 flip/rotation (×8)

UW18 300 - Matlab Intel Core i7-6700K CPU @ 4.00GHz -

zeweihe 1.02 - ??? ??? -

Runtime / efficiency BOE-SBG reported the lowest run-

time, 0.15s to super-resolve ×8 one LR image on GPU, but

ranked 17th on ‘Classic Bicubic’ 0.63dB lower than the best

ranked method of Toyota-TI. Among the top 4 methods on

‘Classic Bicubic’ track, rainbow achieved the best trade-off

between efficiency and performance. On a GTX 1080Ti

GPU, it takes 6.75s for rainbow, while 35s are necessary for

Toyota-TI per LR image to generate the HR image, includ-

ing self-ensemble for both methods.

Train data Data augmentation by scaling (only Track 1),

flipping, and rotation [33] is another commonly used tech-

nique. Only a couple of teams, including Pixel Overflow,

used extra data for training. Pixel Overflow used images

from www.pexels.com, which is also the source of

many DIV2K images. HIT-VPC used Track 1 images to es-

timate downgrading operators on Tracks 3 and 4, thus their

‘lpj008’ entry in Table 1 is just for reference and not ranked

in the challenge.

Conclusions By analyzing the settings, the proposed meth-

ods and their results we can conclude: (i) The proposed

methods improve the state-of-the-art in SR. (ii) The top so-

lutions are consistent across the realistic tracks, yet the top

methods in ‘Classic Bicubic’ are not the top methods of the

realistic tracks – domain specific knowledge (pre-alignment

of train images) was critical. (iii) As expected, the realistic

tracks are more challenging than the bicubic, reflected by

the relatively lower PSNR (up to 2dB for the winners) of the

results even if we compare ×8 with ×4. (iv) SSIM is more
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(a) DBPN architecture

(b) the up- and down-projection units in DBPN
Figure 2. Toyota-TI’s DBPN network structure.

correlated with PSNR on ‘Classic Bicubic’ than on realistic

tracks. (v) High magnification factors and realistic settings

pose the extra problem of (subpixel) alignment between HR

results and ground truth. (vi) Other ranking measures are

necessary (such as perceptual ones). (vii) Further realistic

challenges could introduce non-uniform degradations.

4. Challenge Methods and Teams

4.1. Toyota-TI team proposed a deep back-projection net-

works (DBPN) [9] (see Fig. 2) which uses error feedbacks

from the up- and down-scaling steps to guide the network to

achieve optimal result. Unlike the previous methods which

predict the SR image in feed-forward manner, DBPN adopts

mutually connected up- and down-sampling stages to gen-

erate LR as well as HR features, and accumulate both up-

and down-projection errors to predicting the final SR re-

sults. A group of LR features are firstly extracted from the

input LR image. Then, back-projection stages are utilized

to alternatively generate LR and HR feature maps Lt and

Ht, which further improved by dense connection where the

input for each projection unit is the concatenation of the

outputs from all previous units. At last, all the HR fea-

ture maps are utilized to reconstruct the final SR estimation

Isr = fRec([H
1, H2, . . . , Ht]).

The structure of he newly introduced up-projection and

down-projection units are shown in Fig. 2(b). To deal with

classic bicubic ×8 downsampling SR problem, DBPN uses

12 × 12 convolutional layer with eight striding and two

padding in the projection units, and 19 projection units (10

up- and 9 down-projection units) have been adopted for gen-

erating the SR result.

The network is trained on images from DIV2K with aug-

mentation [33]. At training phase, the input patch size is

set to 40 × 40 and the mini-batch size to 18. The model

is trained with L1 loss using ADAM optimizer [18] with

Figure 3. rainbow’s network architecture.

Figure 4. DRZ’s asymmetric pyramidal architecture with DCU.

learning rate 1× 104 and decrease by a factor of 10 for ev-

ery 5× 105 iterations for total 106 iterations. In the testing

phase, the authors adopt the self-ensemble strategy [33] to

further improve the SR results.

4.2. Pixel Overflow team [4] utilized the same network

structure as EDSR [21]. To get better SR performance,

external training data is adopted in the training phase.

Pixel Overflow uses Sobel filter to extract output and tar-

get image edges to emphasize loss on the edges and details.

4.3. rainbow team proposed a method based on EDSR [21]

and SRDenseNet [11, 34] (Fig. 3). They employed a pyra-

mid architecture to gradually generate the HR image. In

order to trade-off the performance and the inference time,

they adopted a two-step enlargement strategy. They trained

the network with L1 loss and fine-tuned with L2 loss.

4.4. DRZ team proposed an asymmetric pyramidal struc-

ture for image SR [36] (see Fig. 4). Each level of the

pyramid consists of a cascade of dense compression units

(DCUs), and a sub-pixel convolution layer is utilized to gen-

erate the residual map to reconstruct the HR image. DCU

consists of a smaller, modified densely connected block [11]

followed by 1 × 1 convolution. Compared with the origi-

nal densely connected block proposed for classification, the

batch normalization (BN) layer has been removed in DCU.

In the training phase, curriculum learning [5] strategy

has been adopted to achieve better SR performance and

shorter training time. Specifically, DRZ firstly trains the 2×
portion of the network and then gradually blend a new level

of pyramid to reduce the impact on the previously trained

layers. Curriculum learning adds an average of 0.07dB

PSNR on the validation set of DIV2K for 2×/4×/8× scales

compared to 0.03dB using normal multiscale training.

4.5. UIUC-IFP team proposed a wide activation SR net-

work (WDSR, see Fig. 5), which is a deep residual SR
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ReLU
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Conv

Conv

(a) Residual blocks in EDSR [21] and WDSR.

(b)The overall network structure of EDSR [21] and WDSR.

Figure 5. UIUC-IFP’s WDSR unit architecture.

network (two-layer residual blocks) similar to the baseline

EDSR [21]. To improve the SR performance, WDSR mod-

ify the original EDSR in three aspects. Firstly, in com-

parison with EDSR, WDSR reduces the width of iden-

tity mapping pathway and increases the width of feature

maps before the ReLU function in each residual block (see

Fig. 5(a)). Their experiments showed that WDSR is ex-

tremely effective for improving accuracy. Secondly, UIUC-

IFP follows recent works [8, 21, 31] which remove the BN

layer in the residual blocks and adopts weight normaliza-

tion in their WDSR approach, although the introducing of

weight normalization in training SR networks may not help

that much, it enables the authors to use higher learning rate

to train the network. Thirdly, WDSR removes some convo-

lution layers used in EDSR and directly generate the shuf-

fled SR estimation (see Fig. 5(b)), such a strategy is able to

improve the processing speed while not affect accuracy of

SR network.

For Track 1, UIUC-IFP utilized similar training parame-

ters as EDSR, the only difference is that weight normaliza-

tion enables UIUC-IFP to increase the learning rate 10× to

0.001. After training with L1 loss, the model is finetuned

with PSNR loss, directly. The finetune step leads to around

0.03dB PSNR improvement on the DIV2K validation set.

For Tracks 2, 3 and 4, UIUC-IFP utilized a pre-align step to

alleviate the random shift effects between the LR and HR

images. Specifically, the HR images are shifted up to 40

pixels, and then bicubic downscaled HR images are com-

pared with given realistic LR images to find coarse aligned

HR images for each LR image.

In the testing phase, a self-ensemble inference strategy

has been adopted to improve SR performance [33].

4.6. PDN team proposed the PolyDenseNet (PDN)

(see Fig. 6) for image SR. The basic building block of

PDN is PolyDense Block (PDB), which is motivated by

PolyNet [42] and DenseNet [11]. Each PDB contains three

5-layer dense block and use three parameters α1, α2 and

α3 to combine the dense block outputs D1, D2 and D3 to
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(b) variant with skip connections between two PDBs
Figure 6. PDN’s PolyDenseNet, a variant of PolyDenseBlock.

Figure 7. BMIPL UNIST’s network structures.

get the output. PDN team investigated also a PDN variant

by building skip connections between adjacent PDBs (see

Fig. 6(b)). The results by the two variants are ensembled at

test time. In the training phase, the authors upsample the

LR images and calculate the best shifting parameters w.r.t.

ground truth based on PSNR. For brightness scaling, the au-

thors adjust the pixel mean of LR images by the mean of its

corresponding ground-truth image.

4.7. BMIPL UNIST team decomposed the original prob-

lems of NTIRE 2018 challenge into subproblems (SR at

various scales and denoising / deblurring) and proposed an

efficient module-based single image SR network [27] (EM-

BSR, see Fig. 7). For an individual module network on SR,

they proposed EDSR-PP which integrated pyramid pooling

into the upsampling layer of EDSR [21] for better utilizing

both the global and local context information. For a module

network on denoising / deblurring, they proposed a residual

convolution network (DnResNet) which replaced convolu-

tion blocks of DnCNN [40] by residual blocks with BN and
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(a) iMwCNN for the Track 1 ‘Classic Bicubic’ ×8.

(b) SRMD for the realistic settings: Track 2, 3, and 4.

Figure 8. HIT-VPC’s solutions.

scaling. A pre-processing step aligning the input and target

images have been adopted in the training process of DnRes-

Net, which is reportedly critical for good performance.

4.8. HIT-VPC team utilized different strategies for solving

the bicubic and realistic experimental settings. For Track 1

‘Classic bicubic’ ×8, HIT-VPC proposed an inverse multi-

level wavelet convolutional neural network (iMwCNN). As

shown in Fig. 8(a), iMwCNN is designed as pyramid struc-

ture with multi-level wavelet packet transform (WPT) [22].

The input LR image is firstly bicubic interpolated by a scale

factor 2, and the DWT coefficients of the interpolated im-

age are the network input. To get a scale factor of 8, 3-

level networks have been adopted for estimating the inverse

DWT coefficients. Between each level of networks, a fixed

inverse wavelet transform is adopted to transform the co-

efficients back to the image space. Each level of network

contains 8 convolutional layers, and feature map number

for the three levels are set as 256, 256 and 128, respectively.

In the training phase, the loss is defined on each scale of

estimations.

For the realistic settings (Tracks 2, 3, and 4), HIT-VPC

built upon their recently proposed super-resolution network

for multiple degradations (SRMD) [39]. As illustrated in

Fig. 8(b), SRMD takes the parameterized degradation map

as well as LR image as the network inputs, and utilizes 20

convolution + BN + ReLU blocks to estimate the HR subim-

ages. In order to apply SRMD to tracks 2, 3 and 4, the blur

kernel of which is unknown, HIT-VPC centers the blur ker-

nels based on the largest values to align the LR image and

HR image, and calculates the mean (aligned) degradation

maps for each track. Then, the mean degradation maps for

each track is used for super-resolve images from the corre-

sponding tracks.

HIT-VPC∗ (‘lpj008’, not ranked) submitted additional

results of a single SRMD model for Tracks 3 and 4. They

used Track 1 images for degradation operator estimation

and showed the advantages of non-blind SRMD: (i) it can

handle Tracks 3 and 4 in a single model while (ii) produc-

Figure 9. KAIST-VICLAB’s proposed network architecture.

ing better results with accurate blur kernel than the blind

SRMD.

4.9. Faceall Xlabs team ’s architecture is based on

EDSR [21]. The filter number for each convolution layer

has been changed to 256, and 80 residual blocks were used.

4.10. Duke Data Science team [4] also adopted different

strategies for the bicubic and realistic settings. For the bicu-

bic setting, they utilized EDSR [21] with a different training

strategy. Warm restarts and cosine annealing approach has

been introduced to allow the network to jump out the local

minima.

For the realistic settings, the authors firstly trained a

DnCNN [40] and an EDSR [21] for denoising and SR sep-

arately, and then finetuned the two networks in tandem.

4.11. SIA team reproduced EDSR [21] and used Charbon-

nier loss instead of L1 loss, as suggested in [19]. To take

full advantage of convolution operation for the full image,

the CPU was used at test time. For Tracks 2, 3, and 4, the

train pairs were first aligned based on PSNR.

4.12. KAIST-VICLAB team [15] designed, for Track 1, a

43-layer CNN (see Fig. 9) for progressively upscaling the

input RGB image to the final target resolution. Two sub-

pixel convolution layers are inserted after the 20-th and the

40-th convolution layer to enlarge the feature maps by 2 and

4, resp. The network is trained in a coarse-to-fine manner:

first for 2× upscaling, then for 4×, and finally for 8×.

For Tracks 2, 3 and 4, KAIST-VICLAB developed a so-

lution comprised from: 1) Four 5×5-sized filters are learned

between LR and HR training sub-images, which are applied

to create noise-reduced and luminance-corrected intermedi-

ate images of HR sizes. 2) Aligned HR training images are

generated by aligning original HR training images with the

intermediate images. 3) A 58-layered CNN with 2M pa-

rameters is trained using the noisy LR training images and

the newly aligned HR training images. Specifically, residual

learning, residual units and two subpixel convolution layers

are adopted in the network.

4.13. Haiyun XMU team [6] adopted different strate-

gies for the bicubic and realistic settings. For Track 1

an EDSR [21]-based model with 50 residual blocks were

trained to reconstruct the HR image. While, for the real-

istic settings, Haiyun XMU design the persistent memory
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block [30] in two ways and then embed it into EDSR [21].

First, for MemEDSR, the authors replace the body part of

EDSR with a memory block with 4 residual blocks, and

each memory module links to the gate unit, which adap-

tively selects the features needed to store. Second, for

IRMem, the authors design a memory block with an IR-

CNN [41] block, which delete all the BN layer and add

residual factor assigned 0.1, and embeded this memory

block into EDSR [21]. The MemEDSR is adopted in Tracks

2 and 3, while the IRMem is adopted in Track 4.

4.14. Ajou-LAMDA-Lab team proposed progressive

CARN [3] which apply progressive training [14] based on

the CARN [2]. Specifically, the structure of the CARN

module is shown in Fig. 10 (b), the local and global cascad-

ing modules are expected to extract multi-level representa-

tions. Upon this, three-stage of CARN modules are progres-

sively trained to reconstruct the ×8 HR image as depicted in

Fig. 10 (a). In the training process, extra CARN module is

added after at the end of the stage and replace the previous

reconstruction layers with the one that produces the image

in double resolution. Further, learning rate of pre-trained

modules is decayed ten times to stabilize overall training.

Training Progresses

Stage 3

Conv

CARN_1

toRGB_3

CARN_2

CARN_3

Conv

CARN_1

toRGB_2

CARN_2

Stage 2

Conv

CARN_1

toRGB_1

Stage 1

(a) Progressive CARN (b) CARN

Block CARN

Figure 10. Ajou-LAMDA-Lab’s networks.

4.15. srFans team improved EDSR [21] in two aspects:

(i) the number of residual blocks have been changed to 30

for generating sharper details, and (ii) the first convolution

layer in each res-block has been changed to dilated convo-

lution with size 2. srFans adopted a pre-processing step to

align the LR and HR image pairs before training.

4.16. DeepSR team proposed a deeply progressive memory

network (DPMN). Specifically, the authors utilized convo-

lution, summation, concatenation and deconvolution layers

to build the DPMN block, and used 5 DPMN blocks to deal

with the SR problem (see Fig. 11). Each convolution layer

is followed by a leaky rectified unit (LReLU).

4.17. reveal.ai team proposed a network structure based on

the DenseNet [11] (see Fig. 12. reveal.ai also introduced

dense connections across dense blocks. Furthermore, each

layer inside the dense-block is changed to a convolution +

ReLU + convolution layer, which is similar to EDSR [21].

4.18. ISP Team used blur maps to improve the SR results

in realistic conditions. Specifically, after estimating the blur

Figure 11. DeepSR’s proposed DPMN unit.

Figure 12. reveal.ai’s network architecture.

Figure 13. BOE team’s Multigrid Back-projection Recursion.

map of testing image, ISP Team puts the blur map as well as

the LR image into the SR-net to reconstruct the HR image.

4.19. BOE-SBG team developed a multi-scale SR sys-

tem (see Fig. 13), for zooming factor 8 and 4, 3 and

2 levels of ×2 network are utilized to progressively up-

scale a LR image. In each scale of upsampling network,

the authors adopted a multi-grid version of iterative back-

projections [13, 35] in the latent space (e.g. features within

a network) to further improve the SR performance. The

authors utilized the learned upscale and downscale lay-

ers to improve the SR estimation with the LR residu-

als. In the upscale and downscale steps, the stride con-

volution/deconvolution operations and the newly proposed

Muxout and TransposedMuxout [26, 24, 25] layers have

been adopted for track 1, 3 and 2, 4, respectively.

4.20. MCML team proposed a network architecture [17]

based on MDSR [21]. To improve the performance of

MDSR [21], they proposed enhanced upscaling module

(EUM) shown in Fig. 14. Compared with the original up-

scaling layer in MDSR, which uses only one convolution

layer without an activation function to increase the number

of features, they introduce four residual modules and con-

catenate the outputs of the modules to increase the number

of feature maps. The proposed EUM has the advantages

that it can handle nonlinear operations and exploit skip con-
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Figure 14. The network architecture used by MCML.

nections. They proposed a novel deep residual network for

super-resolution (EUSR) by utilizing the EUM and multi-

scale learning (×2, ×4, and ×8), whose structure is illus-

trated in Fig. 14.

For track 1, they used 48 residual blocks and 2 residual

blocks in each residual module for feature extraction and

upscaling, respectively. They used a single EUSR for the

other three tracks, which exploit the information of multi-

ple degradation processes (mild, difficult, and wild) instead

of the multiple scales. They used 64 residual blocks and

2 residual blocks in each residual module for feature ex-

traction and upscaling, respectively. They also used three

additional feature maps as input, which are obtained by a

residual module consisting of three residual blocks. The

self-ensemble strategy [33] is adopted for track 1 at testing.

4.21. SRFun team divided the 8× SR problem into 3

2× SR problems [12]. A modified version of ResNet and

DenseNet deep autoencoder has been utilized to estimate

the residual between target HR image and a pre-defined up-

sampled image.

4.22. APSARA team used the LR image to estimate the

wavelet coefficients of HR image. Since each sub-band map

of HR wavelet coefficients are with the same size of LR im-

age, the proposed network (see Fig. 15) do not need decon-

volution or subpixel layers. The network uses the first 32

residual blocks and a 1 × 1 convolution layer to compute

the detail coefficients of HR image and utilize another 32

residual blocks to compute the approximation coefficients

of HR image. Then, the two component are combined to-

gether to generate the final HR reconstruction.

4.23. CEERI team proposed an improved residual based

gradual upscaling network (IRGUN) [29]. The IRGUN has

a series of up-scaling and enhancement blocks (UEB) con-

nected end-to-end and fine-tuned together to give a gradual

magnification and enhancement. The up-scaling network is

a 6 layer architecture, which contains 3 convolutional layers

followed by 3 de-convolutional layers. While the enhance-

ment network contains 10 layer residual enhancement net-

work (RED-10) [23]. The authors repeated the UEB until

they reach the required SR factor.

Figure 15. APSARA’s WaveletSR architecture.

Figure 16. UW18’s TSSR diagram.

Furthermore, the authors firstly perform the SR opera-

tion only on the Y channel of the YCbCr format of input

image, and then combine the super-resolved Y channel with

the bicubic enlarged CbCr channel. After transforming the

image back to the RGB space, a 10 layers network has been

adopted for further enhance the output image.

4.24. UW18 team proposed a two-step SR (TSSR) ap-

proach (see Fig. 16) which utilizes two successive resolu-

tion enhancement operation to super-resolve the input LR

image. In the first step, a set of rough filters, which is based

on the hash mechanism proposed in RAISR [28], is utilized

to generate a coarse SR result. Then, a set of refined reso-

lution enhancement filters are applied to yield the final HR

patches.

4.25 NMH team improved EDSR [21] by expanding the

number of feature maps before the last convolution layer to

512 and introducing an 1× 1 convolution layer to generate

the HR reconstruction.
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