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Abstract

Haze adversely degrades quality of an image thereby af-

fecting its aesthetic appeal and visibility in outdoor scenes.

Single image dehazing is particularly challenging due to

its ill-posed nature. Most existing work, including the re-

cent convolutional neural network (CNN) based methods,

rely on the classical mathematical formulation where the

hazy image is modeled as the superposition of attenuated

scene radiance and the atmospheric light. In this work, we

explore CNNs to directly learn a non-linear function be-

tween hazy images and the corresponding clear images. We

present a multi-scale image dehazing method using Percep-

tual Pyramid Deep Network based on the recently popular

dense blocks and residual blocks. The proposed method in-

volves an encoder-decoder structure with a pyramid pool-

ing module in the decoder to incorporate contextual in-

formation of the scene while decoding. The network is

learned by minimizing the mean squared error and percep-

tual losses. Multi-scale patches are used during training

and inference process to further improve the performance.

Experiments on the recently released NTIRE2018-Dehazing

dataset demonstrates the superior performance of the pro-

posed method over recent state-of-the-art approaches. Ad-

ditionally, the proposed method is ranked among top-3

methods in terms of quantitative performance in the re-

cently conducted NTIRE2018-Dehazing challenge. Code

can be found at https://github.com/hezhangsprinter/NTIRE-

2018-Dehazing-Challenge

1. Introduction

Haze is a common atmospheric phenomenon where the

presence of floating matter in the air such as dust, smoke

and water particles absorb or scatter the light reflected by

objects in the scene, thus causing serious degradation of

image quality. In addition to adversely affecting the aes-

thetic appeal of the image, these degradations introduce se-

vere challenges to computer vision-based systems such as

autonomous navigation and driving, where accuracy is of

critical importance. Hence, dehazing is an important prob-

lem and is being actively addressed by the research commu-

nity.

Numerous methods have been proposed in the past and

most of these methods, including the recent convolutional

neural network (CNN) based approaches, rely on the classi-

cal mathematical formulation where the observed hazy im-

age is modeled as a combination of attenuated scene radi-

ance and atmospheric light [3, 9, 14, 19] as described by the

following equation:

I(x) = J(x)t(x) +A(x)(1− t(x)), (1)

where I is the observed hazy image, J is the true scene

radiance, A is the global atmospheric light indicating the

intensity of the ambient light, t is the transmission map

and x is the pixel location. Transmission map is the

distance-dependent factor that affects the fraction of light

that reaches the camera sensor. When the atmospheric light

A is homogeneous, the transmission map can be expressed

as t(x) = e−βd(x), where β represents the attenuation co-

efficient of the atmosphere and d is the scene depth. Most

existing single image dehazing methods attempt to recover

the clear image or scene radiance J based on the observed

hazy image I via estimation of the transmission map t.

Image dehazing is a difficult problem due to it ill-posed

nature. It can be observed from Equation 1 that multiple

solutions can be found for a single input hazy image. While

some approaches tackle this problem by using multiple im-

ages [39, 35] or scene depth [27], others add constraints into

the optimization framework by including prior information.

Other challenges include (i) dependency of haze transmis-

sion on unknown depth that varies at different locations, and

(ii) inconsistency of haze concentration in different regions

of the scene that results in non-uniform dehazing.

Several approaches have been proposed to systematically

tackle one or more of the above issues. Initial approaches

involved traditional image processing techniques such as

histogram-based [25], contrast-based [42] and saturation-

based [13] methods to perform dehazing. Methods such as

[39, 35] improved over the existing approaches by employ-

ing multiple images. Schechner et al. used multiple im-
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(a) (b)
Figure 1. Sample dehazing results using the proposed method. (a)

Input (b) Dehazed output.

ages which are taken with different degrees of polarization.

Similarly, Narasimhan et al. [35] employed multiple images

of the same scene, however under different weather condi-

tions.

Further progress was made based on the physical model

by using better assumptions and priors [3, 9, 14, 19]. For

instance, Tan et al. [43] maximized local contrast of an im-

age using Markov Random Field (MRF) by assuming that

local contrast of a clear image is higher as compared to

that of a hazy image. He et al. [19] proposed dark channel

prior method which is based on the assumption that most

local image patches in outdoor haze free images consist

of some pixels that have very low intensity values. While

these methods used local patch-based priors, Berman et al.

[6] proposed a non-local prior that relies on the observation

that colors of a haze-free image are well approximated by a

few hundred distinct colors, that form tight clusters in RGB

space.

Most recently, several CNN-based approaches [8, 37, 53]

have been proposed that demonstrate more robustness as

compared to the traditional non-learning based methods.

CNN-based methods attempt to learn a non-linear mapping

between input image and the corresponding transmission

map while following the atmospheric scattering model de-

scribed by Equation 1. Cai et al. [8] presented DehazeNet

which is a trainable end-to-end system for medium trans-

mission estimation and consists of specially designed CNN

layers that embody existing assumptions/priors. Similarly,

Ren et al. [2] learned a non-linear mapping using a multi-

scale deep neural network. Li et al. [30] reformulated the

atmospheric scattering model and presented a light weight

CNN to produce clear images from hazy images.

As it can be observed from the above discussion, most

existing methods rely heavily on the atmospheric scatter-

ing model to first estimate the transmission map, followed

by the calculation of clear image using Equation 1. Con-

sidering this observation, we explore the use of CNNs for

directly learning a non-linear mapping between hazy and

clear images, which is contrary to existing approaches that

learn a mapping between hazy image and the transmission

map. This idea is largely motivated by other similar com-

plex computer vision tasks such as visible face synthesis

from sparse sample [47, 10], saliency detection [54], de-

blurring [57], de-raining [16, 52, 51], crowd density esti-

mation [40, 41] etc., where CNNs have been successfully

used to directly learn a non-linear mapping between input

and output. In this attempt, we present a multi-scale image

dehazing method using Perceptual Pyramid Deep Network

based on the recently popular dense blocks [22] and resid-

ual blocks [21]. The proposed method involves an encoder-

decoder structure, where the encoder is constructed using

dense blocks and the decoder is based on a set of resid-

ual and dense blocks followed by a pyramid pooling mod-

ule [58] to incorporate contextual information. In addition

to mean squared loss, perceptual loss based on VGG-16 is

used to learn the network weights. To further improve the

performance, multi-scale patches are used during training

and inference process. Figure 1 shows sample results from

the proposed method. Experiments are conducted on two

synthetic datasets and a real world dataset to demonstrate

the superior performance of the proposed method.

2. Related work

In this section, we review some related work on single

image dehazing, starting from the traditional approaches to

the most recent CNN-based approaches.

As discussed earlier, some of the initial work on dehaz-

ing involved the use of classical image enhancement tech-

niques [25, 42, 13] such as histogram processing, contrast

and saturation-based processing to improve the visual ap-

peal of hazy images. Most methods follow the physical

atmospheric scattering model and attempt to recover the

scene radiance. In order to address the ill-posed nature of

the problem, researchers make different assumptions and

use appropriate priors. Methods such as [39, 35] employed

multiple images to improve the performance. Among the

other early approaches, Tan et al. [43] proposed to maxi-

mize the per-patch contrast based on the observation that

haze or fog reduces the contrast of the color images. Kratz

and Nishino [28] proposed a factorial MRF model to esti-

mate the albedo and depths field. Fattal et al. [14] proposed

a physically grounded method by estimating albedo of the

scene. He et al. in [19] proposed a dark-channel model to

estimate the transmission map which is based on the ob-

servation that in case of haze-free image patches, at least

one color channel has some pixels with very low intensi-
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ties. In the haze image, the intensity of these dark pixels in

that channel is mainly contributed by the airlight and hence,

these dark pixels can directly provide accurate estimation

of the transmission map. Combining a haze imaging model

and a soft matting interpolation method, the authors recover

a high-quality haze-free image.

To improve the computational efficiency of the dark

channel prior-based method, standard median filtering [17],

median of median filter [45] and guided image filter [18]

are used to replace the time-consuming soft matting [19].

Tang et al. [44] combined different types of haze-relevant

features with Random Forests to estimate the transmission.

Zhu et al. [59] estimated the scene depth of a hazy image

under color attenuation prior using a linear model whose

parameters are learned with a supervised method. Re-

cently, Fattal et al. [15] proposed a color-line method based

on the observation that small image patches typically ex-

hibit a one-dimensional distribution in the RGB color space.

While most of these approaches were based on local patch

priors, Berman et al. [6] introduced a non-local prior based

on the assumption that colors of a haze-free image are well

approximated by a few hundred distinct colors, that form

tight clusters in the RGB space.

While these methods relied on hand-crafted representa-

tions, the success of CNNs in various computer vision tasks

motivated researchers to explore their ability to directly

learn a non-linear mapping between input hazy image and

its corresponding transmission map. Cai et al. [8] proposed

an end-to-end CNN network for estimating the transmission

map given an input hazy image. Ren et al. [36] proposed a

multi-scale deep neural network to learn the mapping be-

tween hazy images and their corresponding transmission

maps. The authors first employed a coarse-scale network

to predict a holistic transmission map, followed by a refine-

ment stage where a fine-scale network is used to obtain a

more detailed transmission map. Dudhane and Murala [12]

addressed the issue of color distortion in the earlier CNN-

based work by presenting a multi-stage CNN. In the first

stage, their network fuses color information present in hazy

images and generates multi-channel depth maps, where as

the second stage estimates the scene transmission map us-

ing a multi channel multi scale CNN.

Since these methods consider only the transmission

map in their CNN frameworks, they are limited in their

abilities to perform end-to-end dehazing. More recent

methods [30, 50, 53] address this issue by considering the

dehazing task in addition to transmission map estimation

in their frameworks. Li et al. [30] designed a light-weight

CNN by including the atmospheric scattering model into

the network. By doing so, these methods minimize the

reconstruction errors thereby improving the quality of

dehazing. More recently, He and Patel [50] proposed an

end-to-end dehazing method called Densely Connected

Pyramid Dehazing Network (DCPDN), which can jointly

learn the transmission map, atmospheric light and dehazing

all together. The end-to-end learning is achieved by directly

embedding the atmospheric scattering model into the

network, thereby ensuring that the proposed method strictly

follows the physics driven scattering model for dehazing.

For training their transmission map estimation network,

they use additional edge-preserving loss to preserve sharp

edges and avoid halo artifacts. Simultaneously, several

benchmark datasets for both synthetic and real-world

hazy images for dehazing problems are introduced to the

community [56, 31, 1, 46, 38].

3. Proposed method

Figure 2 illustrates the overview of the proposed CNN-

based multi-scale single image dehazing framework. In-

spired by the success of encoder-decoder architectures in

various tasks such as image denoising [55, 48], segmen-

tation [33] and other image-to-image translation [23], our

proposed network consists of an encoder, that takes in input

hazy image and maps it to a latent space (intermediate fea-

ture maps), and a decoder that maps the latent space to the

corresponding clear haze-free image. We carefully design

the architecture of the encoder and decoder with appropri-

ate type and set of convolution blocks. Our work is closely

related to that of [50] with a few important differences such

as (i) unlike their method where they involve transmission

map estimation as an intermediate step, we aim to directly

learn a non-linear mapping between hazy image and its cor-

responding clear image, (ii) the network architectures are

different, and (iii) in our case, we use the perceptual loss

function in addition to the standard L2 loss to train the net-

work, which results in substantial improvements in the qual-

ity of the dehazed images. In the following subsections,

we present the details of the proposed network architecture,

loss functions and the training methodology.

3.1. Network architecture

As discussed earlier, we aim to directly learn a mapping

between the input hazy image and its corresponding clear

image using an encoder-decoder type network.

Encoder. The encoder is constructed using dense blocks

from Densely Connected Convolutional Networks [22] and

a residual block as shown in Figure 2. Huang et al., based

on the observation that CNNs can be significantly deeper

and can be trained efficiently if they contain shorter con-

nections between layers close to the input and those close to

the output, introduced densely connected networks, where

each layer is connected to every other layer in the feed-

forward fashion. In contrast to earlier approaches, the fea-

ture maps of all preceding layers are used as inputs to a par-

ticular layer. By employing these dense connections, the au-
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Figure 2. Overview of the proposed Multi-scale Single Image Dehazing using Perceptual Pyramid Deep Network.

thors are able to address the issue of vanishing gradients and

strengthen feature propagation while substantially reducing

the number of parameters in the network. Due to these con-

vincing advantages, we construct the encoder using dense

blocks. The dense-net blocks have a similar structure to

that of Dense-net 121 network [22], where the first dense-

block contains 12 densely-connected layers, second block

contains 16 densely-connected layers and the third block

contains 24 densely-connected layers. The weights for each

stream are initialized from the pre-trained Dense-net 121

network. Each block consists of a set of layers where each

layer receives feature maps from all earlier layers as input

as shown in Figure 3(a). This type of connectivity ensures

maximum information flow to occur during the forward and

backward pass thus making the training process much easier

especially when using deeper networks.

(a) (b)

Figure 3. (a) Illustration of dense connections in a dense-block

with 6 layers. (b) Residual block.

Decoder. Similar to the encoder, we carefully design the

decoder structure with a set of residual and dense blocks.

The residual blocks are mainly inspired by residual learn-

ing in ResNet [21], where network layers are intelligently

reformulated to learn residual functions with reference to

the layer inputs, instead of learning unreferenced functions.

This reformulation eases the training process, especially in

case of deeper networks. The residual block (illustrated in

Figure 3(b)), which is the building block in ResNet, is de-

fined as:

u = F (v,Wi) + v, (2)

where v and u are input and output features of a particular

layer and F (x,Wi) is the residual function that has to be

learned.

The basic building block of the proposed decoder, which

we call as dense-residual block, consists of a two-layer

dense block and an upsampling transition block, followed

by two residual blocks. Such a configuration allows us to ef-

ficiently combine the advantages offered by these two types

of blocks thereby enabling high quality reconstruction of

dehazed images. Note that, the dense-block along with the

upsampling transition block behaves as a refinement func-

tion to recover the high-level details lost during the encod-

ing process, thereby resulting in better quality results. The

decoder consists of a set of five dense-residual blocks fol-

lowed by a pyramid pooling module. Similar to [58], where

context at various levels in the image is fused for scene

parsing, the key idea is to include hierarchical global prior,

containing information at different scales and different sub-

regions. Four pyramid scales of bin sizes 1×1, 2×2, 4×4

and 8×8 are used. The pooled features undergo dimension-

ality reduction along the depth via 1×1 convolutions. These

pooled and reduced features are upsampled using bilinear

interpolation and concatenated to the input features. Finally,

these feature maps are combined using 1×1 convolutions to

produce the dehazed output.

3.2. Loss function

It has been demonstrated in many earlier work [23, 49,

32] that, it is very important to choose an appropriate loss

function especially while training a CNN-based reconstruc-

tion network. Traditional methods that use L2 error have

known to produce blurry output and several recent work

have attempted to address this issue by using additional

loss functions [24, 11]. Inspired by these methods, the

weights of the proposed network are learned by minimizing

the combination of LE reconstruction error and perceptual

loss (LP ) function as shown below:

L = LE + λPLP , (3)

where LE is the standard L2 loss function and is defined as:

LE =
1

CWH

C∑

c=1

W∑

w=1

H∑

h=1

‖G(I(c, w, h),Θ)−It(c, w, h)‖2.

(4)
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Here, I is a C-channel input hazy image with a resolution

of W×H , It is the corresponding target clear image, G rep-

resents the network function and Θ are network parameters.

The perceptual loss function LP is defined using high-level

features extracted from a pre-trained convolutional network.

The aim is to minimize the perceptual difference between

the reconstructed image and the ground truth image. In this

work, LP is based on VGG-16 architecture and is defined

as follows:

LP =
1

CvWvHv

Cv∑

c=1

Wv∑

w=1

Hv∑

h=1

‖φV (G(I,Θ))− φV (It)‖2,

where φV is a non-linear transformation that produces a

Cv ×Wv ×Hv-dimensional feature map. In our work, we

use features at layer relu3 1 in the VGG-16 model.

4. Datasets and training details

In this section, we describe the dataset used for train-

ing along with other details about training and inference

methodology.

4.1. Dataset

For training the proposed network, we use the

NTIRE2018-Dehazing challenge dataset1. This is one of

the most recent datasets introduced to benchmark the cur-

rent state-of-the-art image dehazing techniques and pro-

mote further research in the field. This dataset consists of a

wide variety of images categorized into two subsets: indoor

set and outdoor set.

Indoor: The NTIRE-Dehazing Indoor dataset [4] consists

of 25 training images, 5 validation images, and 5 test im-

ages. All images are with very large image sizes (approxi-

mately 3000×3000). As the test dataset ground truth is not

released, we report and compare the performances on the

validation set.

Outdoor: The NTIRE-Dehazing Outdoor dataset [5] con-

sists of 35 training images, 5 validation images, and 5 test

images. All images are with very large image sizes (approx-

imately 3000×3000). The haze has been produced using a

professional haze/fog generator that imitates the real condi-

tions of hazy scenes. As the test dataset ground truth is not

released, we report and compare the performances on the

validation set.

4.2. Training

The resolution of images in the NTIRE2018-Dehazing

challenge dataset is very large and due to memory consid-

erations, it is infeasible to use the entire image for train-

ing. A potential solution is to downsample the images

to smaller resolution and use them for training/inference.

1http://www.vision.ee.ethz.ch/en/ntire18/

However, this might result in loss of crucial high-level de-

tails thereby affecting the test performance. Hence, we ad-

dress this issue by following a patch-based training strategy,

where the whole image is divided into different smaller-

sized patches. Then the network is optimized using the

cropped pairs (input and ground truth). Although the mem-

ory issue is addressed using the cropping strategy, the patch-

based learning reduces receptive field of the network due to

which the global context information is lost. To overcome

this, we employ a multi-scale cropping strategy, where

we crop patches of different sizes (512×512, 1024×1024,

1024×2048, 2048×2048 and original resolution). These

patches are then resized to a resolution of 640×640 before

training.

During training, we use ADAM [26] as the optimization

algorithm with learning rate of 2× 10−3 for both generator

with batch size of 1. All the training samples are resized to

640× 640 2. We trained the network for 400000 iterations.

We choose λE,l2 = 1, λE,g = 0.5 for the losses.

4.3. Multiscale ensemble inference

In order to maximize the potential performance of our

model, we employ the multi-scale ensemble strategy sim-

ilar to the one used to improve performance in object de-

tection systems [34], where a multi image pyramid is used

during the inference process and detection results are then

combined using non-maximum suppression. Similarly, we

use multi-scale inference as described below.

Indoor. For indoor dataset, we leverage a two-scale strat-

egy for testing. Basically, we created two sets of overlap-

ping patches from the test image. For the first set, the size

of the overlapping patch is chosen such that width is larger

than the height (2048×1024). For the second set, the size of

the overlapping patch is chosen such that the width is equal

to the height (2048×2048). Patches in both the sets are for-

warded through the network to obtain the dehazed results

(patches). The output patches in each set are then merged

appropriately to form the entire output image. The output

images from both sets are then combined using a simple en-

sembling method, where the final output is computed as the

mean of the two output images from the two sets.

Outdoor. For outdoor dataset, we follow a slightly differ-

ent strategy that involves two scales. We created two sets

of overlapping patches from the test image. For the first set,

the size of the overlapping patch is chosen such that width is

greater than the height (3072×1536). The second set con-

sists of a single image that is obtained by downsampling the

input test image to a resolution of 1024×1024. The patches

in the first set are forwarded through the network and the re-

sulting patches are merged into a single image and resized

to the original resolution. The image in the second set is

forwarded through the network and the result is upsampled

2This is the largest image size that can be fitted in Titan X.
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(a) (b)

Figure 4. Ablation study on loss function. (a) Without perceptual

loss (only LE is used). (b) With perceptual loss.

(a) (b)

Figure 5. Ablation study on the type of inference used. (a) Single-

scale. (b) Multi-scale.

Table 1. Ablation study: Quantitative results for different configu-

rations of the proposed network.

S-LE S-LE-LP M-LE-LP

PSNR (dB) 21.38 21.45 22.53

SSIM 0.8467 0.8576 0.8705

to the original resolution. In addition, we upsample the re-

sults from the second set to original resolution. The output

images from both sets are then combined using a simple en-

sembling method, where the final output is computed as the

mean of the two output images from the two sets.

5. Experiments and results

In this section, we first present the results of ablation

studies conducted to understand the effects of different

components in the proposed method. This is followed by a

detailed comparison of results of the proposed method with

several recent approaches [20, 60, 36, 6, 7, 29] on both syn-

thetic and real datasets.

Table 2. Quantitative results on the NTIRE2018-Dehazing chal-

lenge indoor and outdoor datasets.
Indoor Outdoor

Method PSNR (dB) SSIM PSNR (dB) SSIM

Input 13.8 0.7302 13.56 0.5907

He et al. [20] 14.43 0.7516 16.78 0.6532

Zhu et al. [60] 12.24 0.6065 16.08 0.5965

Ren et al. [36] 15.22 0.7545 17.56 0.6495

Berman et al. [6, 7] 14.12 0.6537 15.98 0.5849

Li et al. [29] 13.98 0.7323 15.03 0.5385

Ours 22.53 0.8705 24.24 0.7205

5.1. Ablation Study

In order to study the effect of different components in the

proposed method such as perceptual loss and multi-scale

inference, we conduct experiments to perform a detailed

ablation study. Following five configurations of the pro-

posed method are trained and evaluated on the NTIRE2018-

Dehazing challenge indoor dataset: (i) S-LE : Single scale

inference with the proposed netowrk optimized using only

LE loss, (ii) S-LE-LP : Single scale inference with the pro-

posed netowrk optimized using LE and LP loss, and (iii)

M-LE-LP : Multi-scale inference with the proposed net-

work optimized using LE and LP loss.

The quantitative results of these configurations are

shown in Table 1. It can be observed that the addition of

perceptual loss results in improved performance. Similarly,

the use of multi-scale ensemble-based inference results in

additional improvements. Similar observations about the

qualitative performance can be made from Figure 4 and Fig-

ure 5.

5.2. Comparison with Stateoftheart Methods

In this section, we demonstrate the effectiveness of the

proposed approach by conducting various experiments on

two synthetic datasets (NTIRE2018-Dehazing challenge

indoor and outdoor) and a real-world dataset. All the results

are compared with five state-of-the-art methods: He et al.

(CVPR’09) [20], Zhu et al (TIP’15) [60], Ren et al. [36]

(ECCV’16), Berman et al. [6, 7] (CVPR’16 and ICCP’17)

and Li et al. [29] (ICCV’17).

Evaluation on real dataset. The proposed method is

evaluated and compared against recent approaches on many

real-world images that are downloaded from the Internet

published by earlier work. Figure 6 shows results for

sample real images. It can be observed that some of the

methods such as [19] and [36] are unable to completely

remove haze, while the other methods ([60, 6]) tend to

darken some regions or result in color distortion. In

contrast, our method is able to remove the haze completely,

in most cases, while generating realistic colors.

Evaluation on synthetic dataset. The proposed network
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INPUT CVPR’09[20] TIP’15[60] ECCV’16[36] CVPR’16[6] ICCV’17[29] OURS

Figure 6. Qualitative comparison of results on real world images.

INPUT CVPR’09[20] TIP’15[60] ECCV’16[36] CVPR’16[6] ICCV’17[29] OURS GT

Figure 7. Qualitative comparison of results on the NTIRE2018-Dehazing indoor dataset.

is evaluated on two synthetic datasets Indoor and Out-

door. Since the datasets are synthesized, the ground truth

images for validation set are available, enabling us to eval-

uate the performance qualitatively and quantitatively. Ta-

ble 2 shows the quantitative performance of the proposed

method against several recent methods on indoor and out-

door dataset respectively. It can be observed that the pro-

posed method outperforms other approaches by significant

margin.

Figures 7 and 8 illustrate dehazing results of the pro-

posed method compared with recent approaches on indoor

and outdoor validation sets respectively. It can be observed

that even though previous methods are able to remove haze

from the input image, they tend to either over-dehaze or

under-dehaze the image making the result either darker or

hazier in the result. In contrast, it can be observed from our

results that the proposed approach preserve sharp contours

with less color distortion and are more visually closer to the

ground-truth.
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