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Abstract

We present a real-time, data-driven algorithm to en-

hance the social-invisibility of autonomous robot naviga-

tion within crowds. Our approach is based on prior

psychological research, which reveals that people notice

and–importantly–react negatively to groups of social ac-

tors when they have negative group emotions or entitativity,

moving in a tight group with similar appearances and tra-

jectories. In order to evaluate that behavior, we performed

a user study to develop navigational algorithms that min-

imize emotional reactions. This study establishes a map-

ping between emotional reactions and multi-robot trajec-

tories and appearances and further generalizes the finding

across various environmental conditions. We demonstrate

the applicability of our approach for trajectory computation

for active navigation and dynamic intervention in simulated

autonomous robot-human interaction scenarios. Our ap-

proach empirically shows that various levels of emotional

autonomous robots can be used to both avoid and influence

pedestrians while not eliciting strong emotional reactions,

giving multi-robot systems socially-invisibility.

1. Introduction

As autonomous vehicles/robots are becoming more com-

mon in social environments, people’s expectations of their

social skills have increased. People often want these robots

to be more socially visible–more salient social agents within

group contexts [13]. This social visibility includes being

more capable of drawing the attention of humans and evok-

ing powerful emotions [18]. Cases of social visibility in-

clude tasks in which robots must work collaboratively with

humans. However, not all contexts require socially visible

autonomous robots. There are situations in which robots

are not used to collaborate with people but instead used to

monitor them. In these cases, it may be better for robots to

be socially invisible. For sake of simplicity, we refer to all

kinds of autonomous robots and vehicles as just robots.

Social invisibility refers to the ability of agents to escape

the attention of other people. Evolution has attuned the hu-

man brain to respond rapidly to threatening stimuli, thus

the less a person–or a robot–induces negative emotion, the

less likely it is to be noticed within a social milieu. The

social invisibility conferred by not inducing emotion is es-

pecially important in contexts in which robots are expected

to move seamlessly among people without being noticed.

[8] Research reveals a number of ways of decreasing nega-

tive emotional reactions towards social agents [7], but one

element may be especially important for multi-robot sys-

tems: entitativity [9], “groupiness”) is tied to three main el-

ements, uniformity of appearance, common movement, and

proximity to one another. The more agents look and move

the same, and the closer agents are to each other, the more

entitative a group seems, which is why a marching military

platoon seems more grouplike than people milling around a

shopping mall.

The threatening nature of groups means that the more

entitative (or grouplike) a collection of agents seem, the

greater the emotional reaction they induce and the greater

their social visibility. As maximizing the social invisibility

of collections of agents requires minimizing perceptions of

threat, it is important for multi-robot systems to minimize

their entitativity. In other words, if multi-robots systems

are to move through groups without eliciting negative reac-

tions [12], they must seem more like individuals and less
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Figure 1: Multi-robot navigation systems (vehicles (cx) marked by yellow trajectories) navigate amongst crowds. Our novel

navigation algorithm takes into account various levels of physical and social constraints and use them for: (a) Active Naviga-

tion in the presence of pedestrians (teal trajectories) while moving through them with no collisions; (b) Dynamic intervention

where the robots try to influence the crowd behavior and movements and make the pedestrians avoid the area marked by a

dark blue overlay.

like a cohesive and coordinated group.

Main Results: We present a novel, real-time planning

algorithm that seeks to optimize entitativity within pedes-

trian environments in order to increase socially-invisible

navigation (by minimizing negative emotional reactions).

This work extends our prior work on learning entitativity

of robot groups [3]. We automatically classify the entita-

tivity of a group of humans or pedestrians in a crowd video

by analyzing their motion trajectories. Our algorithm ex-

tracts the trajectory of each pedestrian in a video at interac-

tive rates. We cluster the pedestrians in a group and learn

various group trajectory-level characteristics. We combine

these characteristics to yield an overall entitativity measure.

We establish a mapping between the characteristics and en-

titativity measure using an elaborate web-based perception

user study comparing the participants’ emotional reactions

towards videos of multiple pedestrians. Specifically, peo-

ple report being made more unnerved and uncomfortable

by those collections of pedestrians classified by the algo-

rithm as highly entitative. Results of our mapping are well

supported by psychology literature on entitativity [31].

The rest of the paper is organized as follows. In Section

2, we review the related work in the field of psychology and

behavior modeling. In Section 3, we give a background on

quantifying entitativity and introduce our notation. In Sec-

tion 4, we present our interactive algorithm, which com-

putes the perceived group entitativity from trajectories ex-

tracted from video. In Section 5, we describe our user study

on the perception of multiple simulated robots with varying

degrees of entitativity.

2. Related Work

Human beings are inherently social creatures, making in-

teracting with and perceiving others an important part of

the human experience. Complex interactions within brain

regions work harmoniously to navigate the social land-

scape [34]. Interesting patterns emerge when attempting to

understand how humans view groups of people.

2.1. Psychological Perspectives on Group Dynamics

A long-standing tenet of social psychology is that peo-

ple’s behaviors hinge upon their group context. Importantly,

the impact of social dynamics is highly influenced by group

contexts [37]–often for the worse. Decades of psycholog-

ical research reveals that people interact more negatively

with groups than with individuals [31], expressing more

hostility towards and feeling more threatened by a group

than an individual [12]. Such reactions to groups have

real world implications, especially when onlookers have the

ability to act violently. At the heart of these anti-social

actions are negative emotional reactions, which can be di-

rected at any social agent, whether human or robot [16].

Most often, these emotions are unease [6], threat [16], and

fear [27].

2.2. Human­Aware Robot Navigation

Many approaches have been applied towards the navi-

gation of socially-aware robots [28, 22, 26, 15, 23, 21, 5,

39, 30]. This type of navigation can be generated by pre-

dicting the movements of pedestrians and their interactions

with robots [23]. Some algorithms use probabilistic mod-

els in which robots and human agents cooperate to avoid

collisions [38]. Other techniques apply learning models

which have proven useful in adapting paths to social con-
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Figure 2: Our method takes a live or streaming crowd video as an input. We extract the initial set of pedestrian trajectories

using an online pedestrian tracker. Based on the level of social invisibility we want to achieve, we compute motion model

parameters of the autonomous robot navigation model using a data-driven entitativity mapping (which we compute based on

a user-study(Section IV)).

ventions [24, 29, 32, 10]. Yet other methods model personal

space in order to provide human-awareness [1]. This is

one of many explicit models for social constraints [36, 20].

While these works are substantial, they do not consider psy-

chological constraints or pedestrian personalities.

2.3. Behavior Modeling of Pedestrians

There is considerable literature in psychology, robotics,

and autonomous driving on modeling the behavior of pedes-

trians. Many rule-based methods have been proposed to

model complex behaviors based on motor, perceptual, be-

havioral, and cognitive components [35, 11]. There is

extensive literature focused on modeling emergent behav-

iors [33]. Other techniques have been proposed to model

heterogeneous crowd behaviors based on personality traits

[4, 2, 19].

3. Social Interaction

In this section, we present our interactive algorithm for

performing socially-invisible robot navigation in crowds.

Our approach can be combined with almost any real-time

pedestrian tracker that works on dense crowd videos. Fig-

ure 2 gives an overview of our approach. Our method takes

a live or streaming crowd video as an input. We extract the

initial set of pedestrian trajectories using an online pedes-

trian tracker. Based on the level of social invisibility we

want to achieve, we find motion model parameters of the

robot group using a data-driven entitativity mapping (which

we compute based on a user-study(Section IV)).

3.1. Entitativity

Entitativity is the perception of a group comprised of in-

dividuals as a single entity. People sort others into entities

like they group together objects in the world, specifically by

assessing common fate, similarity, and proximity [9]. When

individuals are connected by these properties, we are more

likely to perceive them as a single entity. Larger groups are

more likely to be perceived as entities, but only when there

is similarity among the groups individual members [25].

Entitativity is the extent to which a group resembles a

single entity versus of collection of individuals; in other

words, it is the groups “groupiness” or “tightness” [9, 17].

Overall, entitativity is driven by the perception of three

main elements:

1. Uniformity of appearance: Highly entitative groups

have members that look the same.

2. Common movement: Highly entitative groups have

members that move similarly.

3. Proximity: Highly entitative groups have members

that are very close to each other.

3.2. Notation and Terminology

Notation used in the rest of the paper will be presented

in this section. A collection of agents is called a crowd.

The agents in a crowd are called pedestrians, while the au-

tonomous vehicles that must navigate through a crowd are

called robots. Each agent has a state describing its trajec-

tory and movement parameters. These parameters dictate

the agent’s movement on a 2D plane. An agent’s state is

defined as x ∈ R
6:

x = [p vc vpref ]T, (1)

where p is the agent’s position, vc is its current velocity,

and vpref is the preferred velocity on a 2D plane. The pre-

ferred velocity describes the velocity that the agent takes

if there are no other agents or obstacles nearby. In real-

world situations, other agents and obstacles in an agent’s

vicinity cause a difference between vpref and vc, which

indicates the degree of the agent’s interactions with its envi-

ronment. The current state of the environment, denoted by

S, describes the states of all other agents and the current po-

sitions of obstacles in the scene. The state of the crowd, de-
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fined as the union of each pedestrian’s state, is represented

as X =
⋃

i xi, where subscript i denotes the ith pedestrian.

Within a crowd, pedestrians can be partitioned into groups

(also called clusters) based on their motion. We represent a

group of pedestrians as G =
⋃

j xj where subscript j de-

notes the jth pedestrian in the group.

The motion model is the local navigation rule or scheme

that each agent uses to avoid collisions with other agents or

obstacles and has a group strategy. The parameters of the

motion model is denoted P ∈ R
6. We based our model on

the RVO velocity-based motion model [40]. In this model,

the motion of each agent is governed by these five individual

pedestrian characteristics: Neighbor Dist, Maximum Neigh-

bors, Planning Horizon, (Radius) Personal Space, and Pre-

ferred Speed and one group characteristic: Group Cohesion.

We combine RVO with a group navigation scheme in Sec-

tion 4.2. In our approach, we mainly analyze four parame-

ters (GP ∈ R
4): Neighbor Dist, (Radius) Personal Space,

Group Cohesion, and Preferred Speed.

Trajectories extracted from real-world scenarios are

likely to have incomplete tracks and noise [14]. Therefore,

the state of each agent is computed using a Bayesian infer-

ence technique in order to compensate for such errors.

Entitativity Metric: Prior research in psychology

takes into account properties such as uniformity, common

movement, and proximity, and models the perception of en-

titativity using the following 4-D feature vector:

E =









Friendliness
Creepiness
Comfort
Unnerving









(2)

Friendliness, Creepiness, Comfort and Unnerving (abil-

ity to unnerve) are the emotional impressions made by the

group on observers. Using Cronbach’s α (a test of statistical

reliability) in pilot studies we observed that the parameters

were highly related with α = 0.794, suggesting that they

were justifiable adjectives for socially-invisible navigation.

4. Data-Driven Entitativity Model

In order to evaluate the impact of the various parameters

of the group motion model on the perception of entitativity

of a group of pedestrians, we performed a user study using

simulated trajectories. We provide the details of this user

study in this section.

4.1. Study Goals

The aim of this study was to understand how the percep-

tion of multiple pedestrians is affected by the parameters

of the group motion model. We use the results of this user

study to compute a data-driven statistical mapping between

the group motion model parameters and the perception of

groups in terms of friendliness, creepiness, and social com-

fort.

4.2. Experimental Design

Here, we provide details of the design of our experiment.

4.2.1 Participants

We recruited 40 participants (27 male, x̄age = 32.85, sage =

10.10) electronically and also from Amazon MTurk.

4.2.2 Procedure

A web-based study was performed in which the participants

were asked to watch pairs of simulated videos of pedestri-

ans and compare the entitativity features. Each video con-

tained 3 simulated agents with various settings of the group

motion model parameters. We consider variations in four

group motion models parameters(GP): Neighbor Dist, Ra-

dius, Pref Speed, and Group Cohesion. In each pair, one of

the videos corresponds to the default values of the parame-

ters. The other video was generated by varying one parame-

ter to either the minimum or the maximum value. Thus each

participant watched 8 pairs of videos corresponding to the

minimum and the maximum value for each motion model

parameter. The participants watched the two videos side

by side in randomized order. They could watch the videos

multiple times if they wished and compared the entitativity

features of the pedestrian groups in the two videos. Demo-

graphic information about participants’ gender and age was

collected at the beginning of the study.

Parameters (GP) min max default

Neighbor Distance (m) 3 10 5

Radius (Personal Space) (m) 0.3 2.0 0.7

Preferred speed (m/s) 1.2 2.2 1.5

Group Cohesion 0.1 1.0 0.5

Table 1: Default values for simulation parameters used in

our experiments

4.2.3 Questions

For each trial, the participant compared the two videos (Left

and Right) on a 5-point scale from Left (-2) - Right (2).

We used the following questions to record participants’ re-

sponses on friendliness, creepiness, or social comfort expe-

rienced:

1. In which of the videos, the characters seemed more

friendly?
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2. In which of the videos, the characters seemed more

creepy?

3. In which of the videos, did you feel more comfortable

around the characters?

4. In which of the videos, did you feel more unnerved by

the characters’ movement?

These questions were motivated by previous studies [31].

We define an entitativity feature corresponding to each

question. Thus, we represent the entitativity features of a

group as a 4-D vector: Friendliness, Creepiness, Unnerving

(Ability to Unnerve), Comfort.

4.3. Analysis

We average the participant responses to the each video

pair to obtain 8 entitativity feature data points (Ei, i =
1, 2, ..., 8}). Table 2 provides the correlation coefficients

between the questions for all the participant responses. The

high correlation between the questions indicates that the

questions measure different aspects of a single perception

feature, entitativity. As expected, creepiness and unnerving

are inversely correlated with friendliness and comfort. Prin-

cipal Component Analysis of the four entitativity features

also reveals that only 2 principal components are enough

to explain over 96% of the variance in the participants’ re-

sponses. We still use the four features instead of the princi-

pal components because they provide more interpretability.

Friendliness Creepiness Comfort Unnerving

Friendliness 1 -0.829 0.942 -0.802

Creepiness -0.829 1 -0.906 0.858

Comfort 0.942 -0.906 1 -0.833

Unnerving -0.802 0.858 -0.833 1

Table 2: Correlation Between Questions: We provide the

correlation coefficients between the questions. The high

correlation between the questions indicates that the ques-

tions measure different aspects of a single perception fea-

ture, entitativity.

We vary the motion model parameters one by one be-

tween their high and low values (while keeping the other

parameters at default value). The range of entitativity fea-

tures obtained by this variation is presented in Table 3. We

also present the standard deviation in the features.

Given the entitativity features obtained using the psy-
chology study for each variation of the motion model pa-
rameters, we can fit a generalized linear model to the en-
titativity features and the model parameters. We refer to
this model as the Data-Driven Entitativity Model. For each
video pair i in the gait dataset, we have a vector of param-
eter values and a vector of entitativity features Ei. Given
these parameters and features, we compute the entitativity

Min Max STD

Friendliness -0.675 0.725 0.564095

Creepiness -0.425 0.55 0.361297

Comfort -0.675 0.65 0.466644

Unnerving -0.25 0.65 0.327327

Table 3: Range of the Entitativity Features: For low and

high values of motion model parameters (keeping the other

parameters at default value) we obtain the above range of

entitativity features.

mapping of the form:









Friendliness

Creepiness

Comfort

Unnerving









= Gmat∗











1

14
(Neighbor Dist− 5)
1

3.4
(Radius− 0.7)

1

2
(Pref. Speed− 1.5)

1

1.8
(Group Cohesion− 0.5)











(3)

We fit the matrix Gmat using generalized linear regres-

sion with each of the entitativity features as the responses

and the parameter values as the predictors using the normal

distribution:

Gmat =









−1.7862 −1.0614 −2.1983 −1.7122
1.1224 1.1441 1.7672 −0.2634
−1.0500 −1.2176 −2.1466 −0.9220
1.1948 1.7000 0.9224 0.3622









.

(4)

We can make many inferences from the values of Gmat.

The negative values in the first and third rows indicate that

as the values of motion model parameters increase, the

friendliness of the group decreases. That is, fast approach-

ing and cohesive groups appear to be less friendly. This val-

idates the psychological findings in previous literature. One

interesting thing to note is that creepiness increases when

group cohesion decreases. When agents/pedestrians walk

in a less cohesive group, they appear more creepy but they

may appear less unnerving.

We can use our data-driven entitativity model to predict

perceived entitativity of any group for any new input video.

Given the motion parameter values GP for the group, the

perceived entitativity or group emotion GE can be obtained

as:

GE = Gmat ∗GP (5)

4.4. Socially­Invisible Vehicle Navigation

To provide socially-invisible navigation, we use the enti-

tativity level of robots. We control the entitativity level de-

pending on the requirements of the social-invisibility. We

represent the social-invisibility as a scalar s ∈ [0, 1] with

s = 0 representing very low social-invisibility and s = 1
representing highly socially-invisible robots. Depending on
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the applications and situations, the social-invisibility can be

varied.

We relate the desired social-invisibility (s) to entitativity

features GE as follows:

s = 1−
‖GE − GEmin‖

‖GEmax − GEmin‖
(6)

where GEmax and GEmin are the maximum and minimum

entitativity values obtained from the psychology study.

According to Equation 6, there are multiple entitativ-

ity features GE for the desired social-invisibility s. This

provides flexibility to choose which features of entitativ-

ity we wish to adjust and we can set the desired entitativ-

ity GEdes that provides the desired social-invisibility level.

Since Gmat is invertible, we can compute the motion model

parameters GPdes that achieve the desired entitativity:

GPdes = Gmat
−1 ∗ Edes (7)

These motion model parameters GPdes are the key to

enabling socially-invisible collision-free robot navigation

through a crowd of pedestrians. Our navigation method

is based on Generalized Velocity Obstacles (GVO) [41],

which uses a combination of local and global methods. The

global metric is based on a roadmap of the environment.

The local method computes a new velocity for each robot

and takes these distances into account. Moreover, we also

take into account the dynamic constraints of the robot in

this formulation - for example, mechanical constraints that

prevent the robot from rotating on the spot.

At a given time instant, consider a robot i with posi-

tion pc
roboti

and preferred velocity v
pref
roboti

(Figure 3). The

preferred velocity is computed from the global navigation

module of GVO and represents the velocity it would have

for navigating to its goal position in the absence of social

constraints. In each time step, it must choose a velocity

that navigates it closer to its (current) goal while remain-

ing as socially invisible as permissible. If it were to use

the predicted positions p
pred
human of pedestrians to update

its own velocity to v
pred
roboti

, it would certainly avoid colli-

sions with both pedestrians and scene obstacles, but may

fail at its assigned task. For example, if a robot is tasked

with preventing pedestrians from encroaching on a demar-

cated zone, it is not enough to predict their positions in the

upcoming time step and update its own velocity accord-

ingly. We therefore sacrifice some level of social invisi-

bility by increasing the entitativity of the robots so as to

dynamically intervene in pedestrian movement. The aim

in such a scenario is to induce pedestrians to walk away

from the restricted zone by presenting them with a more

entitative group of robots. Concretely, we use the motion

model parameters GPdes discussed earlier to compute a

goal position p
pred+inv
roboti

for the pedestrian and a new veloc-

ity v
pred+inv
roboti

for the robot. The robot velocity v
pred
roboti

com-

puted from the nave approach may lead to pedestrians in-

truding on restricted zones, whereas the velocity v
pred+inv
roboti

computed from our entitative approach will prevent this

while crucially maintaining a desired level of social invisi-

bility for the robots.

5. Applications

We present some driving applications of our work that

are based on use of multiple autonomous car navigation sys-

tems. In these scenarios, our method optimizes multi-robot

systems so that they can interact with such crowds seam-

lessly based on physical constraints (e.g. collision avoid-

ance, robot dynamics) and social invisibility. We simulate

our algorithm with two sets of navigation scenarios based

on the level of increasing social interaction between the

robots and the humans:

5.0.1 Active Navigation

This form of navigation includes autonomous robots that

share a physical space with pedestrians. While perform-

ing navigation and analysis, these robots will need to plan

and navigate in a collision-free manner in real-time amongst

crowds. In this case, the robots need to predict the behavior

and trajectory of each pedestrian. For example, marathon

races tend to have large populations, with a crowd whose

location is constantly changing. In these scenarios, it is nec-

essary to have a navigation system that can detect shifting

focal points and adjust accordingly.

In such scenarios, the robots need to be highly socially-

invisible (s = 0). We achieve this by setting the entitativity

features to the minimum E = Emin (Equation 6).

5.0.2 Dynamic intervention

In certain scenarios, robots will not only share a physical

space with people but also influence pedestrians to change

or follow a certain path or behavior. Such interventions can

either be overt, such as forcing people to change their paths

using visual cues or pushing, or subtle (for example, nudg-

ing). This type of navigation can be used in any scenario

with highly dense crowds, such as a festival or marathon.

High crowd density in these events can lead to stampedes,

which can be very deadly. In such a scenario, a robot can

detect when density has reached dangerous levels and inter-

vene, or “nudge” individuals until they are distributed more

safely.

For dynamic intervention with pedestrians or robots, we

manually vary the entitativity level depending on urgency

or agent proximity to the restricted area. In these situations,

we restrict the entitativity space by imposing a lower bound
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Figure 3: To provide socially-invisible navigation, we use the entitativity level of robots. We control the entitativity level

depending on the requirements of the social-invisibility.

smin on the social-invisibility (Equation 6):

smin ≤ 1−
‖E − Emin‖

‖Emax − Emin‖
. (8)

5.1. Performance Evaluation

We evaluate the performance of our socially-invisible

navigation algorithm with GVO [41], which by itself does

not take into account any social constraints. We compute

the number of times a pedestrian intrudes on a designated

restricted space, and thereby results in issues related to nav-

igating through a group of pedestrians. We also measure

the additional time that a robot with our algorithm takes to

reach its goal position, without the pedestrians intruding a

predesignated restricted area. Our results (Table 4) demon-

strate that in < 30% additional time, robots using our nav-

igation algorithm can reach their goals while ensuring that

the restricted space is not intruded. Table 4 also lists the

time taken to compute new trajectories while maintaining

social invisibility. We have implemented our system on a

Windows 10 desktop PC with Intel Xeon E5-1620 v3 with

16 GB of memory.

Dataset Additional Time Intrusions Avoided Performance

NPLC-1 14% 3 3.00E-04 ms

NDLS-2 13% 2 2.74E-04 ms

IITF-1 11% 3 0.72E-04 ms

NDLS-2 17% 4 0.98E-04 ms

NPLC-3 14% 3 1.27E-04 ms

NDLS-4 13% 2 3.31E-04 ms

IITF-2 11% 3 1.76E-03 ms

MANKO 17% 4 1.21E-04 ms

879-38 14% 3 4.82E-04 ms

Students 13% 2 3.47E-05 ms

Campus 11% 3 1.2E-05 ms

Street 17% 4 0.34E-05 ms

Table 4: Navigation Performance for Dynamic Interven-

tion: A robot using our navigation algorithm can reach its

goal position, while ensuring that any pedestrian does not

intrude the restricted space with < 15% overhead. We eval-

uated this performance in a simulated environment, though

the pedestrian trajectories were extracted from the original

video. In all the videos we have manually annotated a spe-

cific area as the restricted space.

We have also applied our algorithm to perform active

navigation (Table 5). The pedestrian density in these crowd

videos varies from low-density (less than 1 robot per square
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meter) to medium-density (1-2 robots per square meter), to

high-density (more than 2 robots per square meter).

Dataset Analyzed Input Performance

Pedestrians Frames

IITF-1 15 450 2.70E-04 ms

IITF-3 27 238 7.90E-04 ms

IITF-5 25 450 8.30E-04 ms

NPLC-1 17 238 3.80E-04 ms

NPLC-3 42 450 1.80E-04 ms

NDLS-2 38 238 1.90E-04 ms

Manko 16 373 1.01E-03 ms

Marathon 27 450 9.10E-04 ms

Explosion 28 238 5.80E-04 ms

Street 67 9014 1.0E-05 ms

Table 5: Navigation Performance for Active Navigation:

Performance of our entitativity computation on different

crowd videos for performing active Navigation. We high-

light the number of video frames used for extracted trajec-

tories, and the running time (in milliseconds).

6. Conclusions, Limitations and Future Work

Drawing from work in social psychology, we develop a

novel algorithm to minimize entitativity and thus maximize

the social invisibility of multi-robot systems within pedes-

trian crowds. A user-study confirms that different entita-

tivity profiles–as given by appearance, trajectory and spa-

tial distance–are tied to different emotional reactions, with

high entitativity groups evoking negative emotions in par-

ticipants. We then use trajectory information from low-

entitative groups to develop a real-time navigation algo-

rithm that should enhance social invisibility for multi-robot

systems.

Our approach has some limitations. Although we did

generalize across a number of environmental contexts, we

note that motion-based entitativity is not the only feature

involved in social salience and other judgments. People use

a rich set of cues when forming impressions and emotion-

ally reacting to social agents, including perceptions of race,

class, religion, and gender. As our algorithm only uses mo-

tion trajectories, it does not exhaustively capture all relevant

social features. However, motion trajectories are an impor-

tant low-level feature of entitativity and one that applies es-

pecially to robots, who may lack these higher-level social

characteristics.

Future research should extend this algorithm to model

the appearances of robots in multi-robot systems. Although

many social cues may not be relevant to robots (e.g., race),

the appearance of robots can be manipulated. Research sug-

gests that robots that march will have higher entitativity and

hence more social visibility. This may prove a challenge to

manufacturers of autonomous vehicles, as mass production

typically leads to identical appearances. Another key fu-

ture direction involves examining the interaction of the per-

ceiver’s personality with the characteristics of multi-robot

systems, as some people may be less likely to react neg-

atively to entitative groups of robots, perhaps because they

are less sensitive to general threat cues or, more specifically,

have more experience with robots.
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