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Abstract

Pixel-wise semantic image labeling is an important, yet

challenging task with many applications. Especially in au-

tonomous driving systems, it allows for a full understanding

of the system’s surroundings, which is crucial for trajectory

planning. Typical approaches to tackle this problem involve

either the training of deep networks on vast amounts of im-

ages to directly infer the labels or the use of probabilistic

graphical models to jointly model the dependencies of the

input (i.e. images) and output (i.e. labels). Yet, the former

approaches do not capture the structure of the output labels,

which is crucial for the performance of dense labeling, and

the latter rely on carefully hand-designed priors that require

costly parameter tuning via optimization techniques, which

in turn leads to long inference times.

To alleviate these restrictions, we explore how to arrive

at dense semantic pixel labels given both the input image

and an initial estimate of the output labels. We propose a

parallel architecture that: 1) exploits the context informa-

tion through a LabelPropagation network to propagate cor-

rect labels from nearby pixels to improve the object bound-

aries, 2) uses a LabelReplacement network to directly re-

place possibly erroneous, initial labels with new ones, and

3) combines the different intermediate results via a Fusion

network to obtain the final per-pixel label. We experimen-

tally validate our approach on two different datasets for

semantic segmentation, where we show improvements over

the state-of-the-art. We also provide both a quantitative and

qualitative analysis of the generated results.

1. Introduction

The problem of assigning dense semantic labels to im-

ages finds application in many tasks, like indoor navigation

[17, 25], human-computer interaction [31], image search

engines [39], and VR or AR systems, to name a few. For ex-

ample, in the autonomous driving task it enables the system

to understand what and where the surrounding objects are,

Figure 1. The pipeline of the proposed method. Given an input

image and a corresponding initial segmentation map, our model

predicts a refined segmentation map by implicitly considering the

dependencies in the joint space of both the input (i.e. images) and

output (i.e. labels) variables.

in order to plan its path accordingly. The goal in each case

is to assign a class label to every pixel, from a pre-defined

set of labels.

In the literature, several methods [23, 16, 2, 13, 34]

have been proposed to tackle this problem. Recently, Deep

Convolutional Neural Networks (DCNNs) have become the

mainstream for dense semantic image labeling, starting

with the Fully Convolutional Network (FCN) proposed by

Long et al. [28, 36]. Despite their great representational

power, feed-forward DCNN-based approaches tend to pro-

duce overly smooth results near the object boundaries and

do not consider the relations among nearby pixels when pre-

dicting the semantic labels [1]. Different strategies have

been proposed to cope with these issues. One popular way

is to apply probabilistic graphical models, like dense Con-

ditional Random Fields (CRFs) [19, 7], as a post-processing

step as is done in [6]. The pairwise potentials in the CRF

impose the consistency of labeling between nearby pixels,

and the fully connected CRF delineates the object bound-

ary. Although dense CRFs perform well on the refinement

of the segmentation results, these pairwise potentials have

to be carefully hand-designed in order to model the struc-

ture of the output space and it takes quite some parameter

hyper-tuning to arrive at a satisfactory result with consider-

able computation time.

To mitigate these restrictions, we look into ways of
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achieving the same goal in a more efficient way. Our start-

ing point is a variant of the current problem: given an RGB

image and an initial estimate of the segmentation map, de-

rived from any dense labeling approach, we seek to esti-

mate a refined segmentation map. By doing so, we can

exploit the dependencies in the joint space of input image

and output labels. We propose a parallel architecture, based

on encoder-decoder networks, to deal with the two main

sources of error coming from the initialization. First, a La-

belPropagation network exploits the context information to

predict a pair of displacement vectors (∆x,∆y) per pixel,

i.e. a 2D displacement field, in order to propagate labels

from nearby pixels to refine the object’s shape. Obviously,

propagating existing labels would not correct cases where

the initial labels of all nearby pixels are erroneous and new

ones need to be generated. In this case, a second Label-

Replacement network, which runs in parallel with the La-

belPropagation network, generates new labels directly from

the input pair of RGB image and initial segmentation map.

As a final stage, a Fusion network combines the results of

these parallel branches by predicting a mask to obtain the

optimal label for each pixel. Fig. 1 gives an overview of our

pipeline.

Our contributions can be summarized as follows: (1) We

introduce an efficient post-processing technique for error

correction in dense labeling tasks, that works on top of any

existing dense labeling approach. (2) We propose an end-

to-end pipeline that employs different correction strategies

by propagating correct labels to nearby pixels (LabelProp-

agation network), replacing the erroneous labels with new

ones (LabelReplacement network) and fusing the interme-

diate results (Fusion network) in a multi-task learning man-

ner. Different from other work [11], our method tackles the

problem in a parallel rather than sequential way. (3) We

show that our model is able to improve two semantic seg-

mentation models for two different tasks, object segmenta-

tion and scene parsing.

The paper is organized as follows. Sec. 2 positions our

work w.r.t. earlier work. Sec. 3 describes the proposed ar-

chitecture for error correction in dense semantic labeling.

Experimental results are presented in Sec. 4. Sec. 5 con-

cludes the paper.

2. Related Work

The literature on dense semantic labeling is substantial.

We consider three main categories of related papers.

Deep learning The great success of deep learning tech-

niques, such as DCNNs [22], in the image classification

and object recognition tasks [20, 37, 38] has motivated re-

searchers to apply the same techniques for dense labeling

tasks, like semantic segmentation. First, Long et al. [28, 36]

transformed existing classification CNN models into FCNs

by replacing fully connected layers with convolutional ones

such that the network can output label maps. Next, Badri-

narayanan et al. [3] proposed an encoder-decoder architec-

ture with skip connections to up-sample the low-resolution

feature maps to pixel-wise predictions for segmentation.

Many following works explore to include more context

knowledge. On the one hand local information is important

for pixel-level accuracy; on the other hand integrating infor-

mation from global context can help with local ambiguities.

The most characteristic works involve the use of dilated

convolutions [41, 7, 32], multi-scale prediction [9, 35, 42],

attention models [5, 1] and feature fusion [26, 33]. Despite

the great representational power of DCNNs, their inabil-

ity to capture the structure of the output labels negatively

affects the performance of dense labeling tasks, especially

near the object boundaries. In particular, feed-forward DC-

NNs do not explicitly consider the relations among nearby

pixels in a local neighborhood of the label space.

Probabilistic graphical models As explained above, the

DCNNs’ inherent invariance to spatial transformations also

limits their spatial accuracy in semantic segmentation tasks.

A second line of work explicitly handles this inability by

trying to jointly model the dependencies of both the in-

put (i.e. images) and the output (i.e. labels) variables. The

most common approach is to apply CRFs [21] as a post-

processing stage of a DCNN. The DeepLab models [6, 7]

use the fully connected pairwise CRF by Krähenbühl and

Koltun [19] to refine the segmentation result of the DCNN.

Their models incorporate prior knowledge about the struc-

ture of the output space in the pairwise potential term

to enforce consistency among neighboring or ”similarly-

looking” pixels. In general, in all CRF-based approaches

the pairwise potentials have to be carefully hand-designed

in order to model the structure in the output space and it

takes expensive parameter hyper-tuning to arrive at a satis-

factory inference. Another relevant work is CRF-RNN [43],

which uses a neural network to approximate the dense CRF

inference process to obtain a good semantic segmentation

result. However, their model still requires considerable time

to do inference.

Error correction Most recently, a third line of work

goes beyond the restrictions imposed by DCNNs and CRFs

and tries to model the joint space of input and output vari-

ables. These approaches solve a variant of the traditional

dense labeling task: given the input image and an initial es-

timate of the output labels a network is trained to predict

new refined labels, thus being implicitly enforced to reason

about the joint input-output space. These methods come in

two flavors, the transform-based ones [41, 24, 40, 30] that

learn to directly predict new labels from the initial estimate,

and the residual-based ones [4] that estimate residual cor-

rections which are added to the initial estimate. Gidaris and

Komodakis [11] combined these two flavors for the dense

disparity estimation task by proposing a sequential DCNN
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Figure 2. The architecture of our pipeline. The LabelPropagation network P propagates probability distributions from nearby pixels to

refine the object boundaries. In parallel, the LabelReplacement network R predicts a new segmentation probability map directly from the

input pair of RGB image and initial segmentation map. Finally, the Fusion network M combines the results of these branches with a

predicted mask to obtain the optimal labeling. The image in the parenthesis denotes the colored label map.

architecture that is end-to-end trainable. Their approach de-

tects the errors in the initial labels, then replaces the incor-

rect labels with new ones, and finally refines the labels by

predicting residual corrections. Although this method pro-

vides good results for improving the continuous values in

the dense disparity estimation task, its residual correction

stage is difficult to apply to discrete, dense labeling tasks

such as semantic segmentation. Different from that method,

we elaborate two branches that account for different types

of errors: one for propagating existing labels from nearby

pixels and the other for predicting new labels. Finally a fu-

sion module is added to take advantage of both branches.

Moreover, these two branches run in parallel instead of se-

quentially, thus allowing for faster inference times.1

3. Our Approach

Given an input RGB image I and an initial segmentation

probability map S, we propose an end-to-end pipeline for

error correction (see Fig. 2) which is built upon three net-

works, i.e. the LabelPropagation, LabelReplacement and

Fusion networks. This section provides the details.

1Since the source code for their method is not available, and it is not

trivial to directly apply it to dense labeling tasks as it was originally de-

signed for discrete labels, we can not generate numerical or visual com-

parisons in the experiments section.

3.1. LabelPropagation network

We propose to estimate a displacement vector (∆x,∆y)
for each pixel, i.e. a 2D displacement field, in order to prop-

agate labels from nearby pixels. A warping layer is fol-

lowed to apply the estimated displacements in order to ar-

rive at an improved segmentation probability map. Inspired

by [44], we adopt an encoder-decoder architecture with skip

connections for the displacements estimation, which is de-

noted as LabelPropagation network P . Our work resembles

flow-based networks [44, 27], but unlike those our network

learns to predict the displacements from the joint space of

both the input and the output variables instead of finding

correspondences among different views.

To sum up, given an input image I and the initial seg-

mentation probability map S our goal is to train a network

P that computes an improved segmentation probability map

Sprop by re-sampling S according to the predicted 2D dis-

placement field. It can be formulated as minimizing the loss

function between Sprop and the ground truth segmentation

map Sgt,

Lprop =
1

|D|

∑

<I,S,Sgt>∈D

L(Sgt, P (I, S)), (1)

where D is the training dataset, P (·) refers to the Label-

Propagation network whose parameters we aim to opti-

mize, and L denotes the cross-entropy loss.

1113



The LabelPropagation network P aims at leveraging

the context information from the probability distribution

of nearby pixels to predict a pair of displacement vectors

(∆x,∆y), one for each direction, such that a pixel’s prob-

ability distribution can be re-estimated with respect to its

neighbors. Here, (∆x,∆y) denotes the displacement vec-

tors where the model samples the probability distribution

from. For every pixel (xi, yi) in S, the coordinates w.r.t.

the ones after propagation (xprop
i , y

prop
i ) are associated as,

xi = x
prop
i −∆xi, yi = y

prop
i −∆yi. (2)

Finally, the initial probability map S is warped according

to the estimated displacement vectors to generate the refined

probability map Sprop. Regarding the warping operation,

we use the bilinear sampling kernel in the same way as in

[15] to allow for end-to-end training,

S
prop
i =

∑

k∈N(xi,yi)

Sk(1− |xi − xk|)(1− |yi − yk|), (3)

where S
prop
i denotes the value of the i-th pixel at

(xprop
i , y

prop
i ) in the output Sprop, and N(xi, yi) is the 4-

neighborhood region of the pixel at (xi, yi) in the input S.

Its gradients w.r.t. the parameters for displacement estima-

tion can be efficiently computed as in [15].

3.2. LabelReplacement network

As explained in the previous section, the LabelPropaga-

tion network P is able to correct the segmentation error by

propagating the possibly correct labels into their neighbor-

hood. However, it fails to correct the labels when almost

all pixels in a region have initially wrong labels. To deal

with this case, we propose to feed both the input image I

and the initial segmentation probability map S into a fully

convolutional LabelReplacement network R to directly re-

compute a new segmentation probability map Srepl. The

network re-estimates a probability vector for each pixel, but

this time based on both its appearance and the probability

distribution of its neighbors. Following the same encoder-

decoder architecture as in our LabelPropagation network,

we replace the last layer of the LabelPropagation network

with a convolutional layer to output the new segmentation

probability map.

In short, given an image I and its corresponding initial

segmentation probability map S, we train a network La-

belReplacement network R to predict a new segmentation

probability map Srepl based on the initial one S. The task

can be formulated as minimizing the cross-entropy loss be-

tween the newly generated segmentation map Srepl and cor-

responding ground truth labels Sgt,

Lrepl =
1

|D|

∑

<I,S,Sgt>∈D

L(Sgt, R(I, S)). (4)

3.3. Fusion network

The LabelPropagation and LabelReplacement networks

work in parallel and are specialized at correcting different

types of errors. On the one hand, the LabelPropagation net-

work P takes into account the nearby pixels and their cor-

responding class probabilities to propagate the probability

vector based on the appearance similarity. On the other

hand, the LabelReplacement network R re-estimates the

class labels pixel by pixel. To get the best of both worlds,

we combine the outputs of these two parallel branches us-

ing a Fusion network M , and train the whole architecture

jointly. Since the two branches complement each other, our

combined model can benefit from a joint training by enforc-

ing each branch to focus on what they are specialized at and

leave for the other branch what they are not good at. The

overall pipeline, including all three networks, can be found

in Fig. 2.

Design-wise, we use a shared encoder to learn features

for both sub-tasks, i.e. the LabelPropagation and LabelRe-

placement networks, and to also reduce the total number of

parameters to be optimized. The network then splits into

two different decoders in a branched manner, one for pre-

dicting the displacement and the other for directly predict-

ing new labels. At the final stage, to combine the interme-

diate results from the two branches, we add the Fusion net-

work M that takes those intermediate results as input, and

predicts a mask m to generate the final segmentation result.

The final result is then computed as a weighted average of

the two branches’ output in pixel-level,

Sfuse = m⊙ Sprop + (1−m)⊙ Srepl, (5)

where Sprop and Srepl are the intermediate segmenta-

tion probability maps of the two branches and ⊙ denotes

element-wise multiplication. Now, the overall loss function

can be formulated as:

Lfuse = L(Sgt, Sfuse) + L(Sgt, Sprop) + L(Sgt, Srepl).
(6)

3.4. Network architecture

The LabelPropagation and LabelReplacement networks

share the base architecture, which is based on fully-

convolutional encoder-decoders. For the encoder, there are

four blocks with each one containing two convolutional lay-

ers with kernel size 3x3 and a max pooling layer. For the

decoders, there are three blocks containing one bilinear up-

sampling layer and two convolutional layers with kernel

size 3x3. We add three skip connections at the beginning

of the three blocks to incorporate information from differ-

ent resolutions. This has been shown to be helpful in pro-

ducing more details in the decoding process [29, 27]. The

Fusion network predicts a mask to combine both the Label-

Propagation and LabelReplacement networks. It has three
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convolutional layers with kernel size 3x3 and another con-

volutional layer to generate the one-channel mask. More

details on the network hyper-parameters (e.g. feature map

size, number of channels) can be found in the supplemen-

tary material of our arXiv paper [14].

3.5. Training details

Regarding the training details, we initialize the weights

in our networks with Xavier initialization. To learn the net-

work parameters, we adopt the ADAM optimizer [18] with

a learning rate of 0.0001, β1 = 0.9, β2 = 0.999 and a batch

size of 8. The overall training procedure includes about

20,000 iterations. For data augmentation, we adopt random

mirror, resize between 0.5 and 1.5 for all datasets, and crop

to a fixed size according to each dataset. The input image

is then normalized to [-1,1] and the corresponding initial

segmentation probability map is applied using the softmax

operation.

4. Experiments

To demonstrate the effectiveness of the proposed

method, we evaluate it on two dense labeling tasks, that is,

object semantic segmentation and scene parsing. We also

analyze the influence of each component by comparing their

performance when trained independently. In the following

experiments we apply our models on top of semantic seg-

mentation results of several state-of-the-art approaches.

4.1. Datasets

To evaluate the performance of our method on the ob-

ject semantic segmentation task, we choose the PASCAL

VOC2012 segmentation benchmark [10] as our testbed. In

total, it consists of 20 classes plus the background class.

The performance is measured in terms of mean intersection-

over-union (IoU). Including the additional augmented set

annotated by [12], there are 10,582 images for training,

1,449 images for validation and 1,456 images for testing.

Regarding the scene parsing task, we work on the

Cityscapes dataset [8]. It contains 19 classes, represent-

ing objects observed in driving scenarios, plus 1 void class,

which is not taken into account during evaluation. In to-

tal, there are 5,000 images, divided into a training set with

2,975 images, a val set with 500 images and a test set with

1,525 images. The images are fully annotated with pixel-

wise labels. There are also 20,000 coarsely annotated im-

ages provided, but we do not use them in our experiments.

For evaluation, we also adopt the metric of mean IoU.

4.2. PASCAL VOC 2012 benchmark

For the PASCAL VOC2012 segmentation benchmark,

we apply our networks on DeepLab v2-ResNet (multi-

scale) [7]. In particular, we first run the inference of the

Table 1. Results of applying our error correction models on top of

DeepLabv2-ResNet on the PASCAL VOC 2012 val set.

Method Training mIoU

Deeplab v2-ResNet (multi-scale) independently 76.5

+ Dense CRF [7] 77.7

+LabelPropagation (ours) independently 77.9

+LabelReplacement (ours) independently 77.0

+Full model (ours) jointly 78.2

Figure 3. Trimap plot of our full model and its intermediate

branches, i.e. LabelPropagation and LabelReplacement networks,

on PASCAL VOC 2012.

model to obtain the initial segmentation probability maps on

the train+aug and val sets. Note that, the model was trained

on the training set without finetuning on the val set2. Using

the image and corresponding initial segmentation probabil-

ity maps as input, we train our models on the training set

and evaluate them on the val set.

Table 1 summarizes the results of our ablation study.

Here, the different proposed networks are trained indepen-

dently and applied on top of the DeepLab v2-ResNet seg-

mentation result. From this table, we can see that adding

only the LabelPropagation network on top of DeepLab

brings 1.4% improvement compared to the baseline, while

adding only the LabelReplacement network brings 0.5%

improvement. When we train the LabelPropagation and

LabelReplacement networks together with the Fusion net-

work, which from now on will be referred to as our full

model, this brings the highest improvement, 1.7%.

So far, we have evaluated the performance of the Label-

Propagation and LabelReplacement networks when trained

independently. Next, we investigate the intermediate results

generated by these two networks when training them jointly

with the Fusion network. In this case, the LabelPropagation

2The model is provided by the authors.
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Table 2. Quantitative results in per-class IoU on the PASCAL VOC 2012 test set.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

Deeplab 91.5 58.8 90.3 64.6 76.0 94.3 88.6 91.4 33.6 87.5 67.3 88.3 91.3 86.6 86.2 61.7 87.9 58.8 86.0 73.5 79.1

+dense CRF [7] 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7

Ours (+full model) 92.9 63.2 91.8 66.7 77.3 95.4 89.1 92.3 35.4 88.0 69.5 89.1 92.3 87.2 87.3 63.3 88.6 61.8 86.6 75.1 80.4

Table 3. Quantitative results on the Cityscapes val set.

Method road sidewalk building wall fence pole tr.light tr.sign vege. terrain sky person rider car truck bus train mbike bike mIoU

ENet[32] 94.4 71.2 85.2 46.1 44.2 45.1 43.2 53.7 87.8 52.4 89.6 61.1 42.2 87.8 42.7 60.5 46.0 29.0 59.5 60.1

Ours (+full model) 96.5 75.1 87.7 46.0 45.8 49.6 48.2 59.8 88.6 58.1 92.0 65.0 41.7 88.0 45.4 62.0 48.8 28.6 63.0 62.6

network scores 77.8% while the LabelReplacement network

scores 78.0%. For joint training, the LabelReplacement net-

work shows 1% improvement compared to an independent

training, while the performance of the LabelPropagation

network remains roughly the same. The improvement of

our full model is 1.7% compared to the baseline. We con-

clude that a joint training brings further improvement com-

pared to an independent training.

Since the LabelPropagation and LabelReplacement net-

works complement each other, we hypothesize that we ben-

efit from their joint training by enforcing each network to

focus on what they are specialized at and leave for the other

network what they are not good at. To prove this point, we

show the trimap result in Fig. 3 which quantifies the per-

formance at the object boundary region (details of trimap

are described in Sec. 4.4). It shows that the LabelPropa-

gation branch outperforms the LabelReplacement branch at

pixels near the boundary region, which indicates that our

full model indeed relies more on this branch for the object’s

boundaries. When we train the two networks jointly, the

LabelPropagation branch focuses on the object boundaries,

and as such the LabelReplacement branch can pay less at-

tention to these regions where it does not perform well and

put more emphasis on the object’s inner part.

Visualizations of the segmentation results using our

full model, and baseline models (DeepLabv2-ResNet and

DeepLabv2-ResNet + Dense CRF), can be found in Fig. 4.

In the first and the third row, the human leg becomes more

delineated after applying our method. Also for the car class,

the images from the rows other than the second row have

better shape compared to both baseline methods. For the

bus in the second and fifth row of the figure, our result looks

closer to the ground truth.

Regarding the performance on the test set of PASCAL

VOC 2012, we directly apply our networks (full model) on

top of precomputed semantic segmentation results on the

test set. Table 2 summarizes the per-class performance of

the compared methods based on the DeepLab-v2-ResNet.

For DeepLab-v2-ResNet, adding Dense CRF brings the per-

formance from 79.1% up to 79.7%, while adding our full

model further improves it to 80.4% (+1.3%). Our method

achieves top performance in classes related to autonomous

driving (cf. gray columns in Table 2), which indicates its

added value in such tasks.

Compared to DeepLab-v2-CRF, our full model scores

0.5% and 0.7% higher on the PASCAL VOC val and test set,

respectively. In terms of speed, the 10-iteration mean-field

dense CRF implementation takes 2,386 ms/image on aver-

age on an Intel i7-4770K CPU, while our full model takes

396 ms/image on average on an NVIDIA Titan-X GPU,

which is about six times faster than dense CRF. In addition

to computational efficiency, our model is able to be plugged

into any deep segmentation network for end-to-end train-

ing. There is no extra hyper-parameter tuning specific to

our model.

4.3. Cityscapes benchmark

For the Cityscapes segmentation benchmark, we apply

our full model on top of the ENet [32] segmentation results.

For that, we first run the inference of ENet on the downsized

images (512x1024) from Cityscapes train/val set to obtain

the initial segmentation probability maps. The results of the

val set serve as our baseline. Using the corresponding im-

ages and probability maps from the train set as inputs, we

train our full model, and then test it on the val set. As men-

tioned previously, we only adopt the train set with the fine

annotations for training our error correction models. For

evaluation, we first upsample the segmentation result back

to the original size and use the official evaluation scripts to

obtain the mean IoU performance.

Table 3 presents the mean IoU of our full model and

the baseline on the Cityscapes val set. The mean IoU of

our model scores 62.6% while the baseline method scores

60.1%. In terms of class-wise performance, our method is

superior in almost every class.

Fig. 5 presents qualitative results on the Cityscapes val

set. We observe that our method is able to find a large por-

tion of initially wrongly classified parts on the road, which

are removed after applying our method. For example, the

bike and its rider in the first row are better delineated com-

pared with the baseline method. The same goes for the sky-

line above the buildings in the second row.
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Figure 4. Visualization results on the PASCAL VOC 2012val set. The first five rows present successful cases while the last row present

failure cases. For each row, we present (a) input image, (b) ground truth label, (c) baseline DeepLab-v2 result, (d) DeepLab-v2+Dense

CRF result, (e) result after applying our full model.

In general, the numerical and visual improvements for

both PASCAL VOC and Cityscapes val/test sets are consis-

tent and show a steady increase in performance when ap-

plying our full model.

4.4. Error analysis

In this section, we analyze the improvement our method

brings to the object boundaries and discuss its failure cases.

Trimap Following previous works [7, 1], we quantify

the performance near object boundaries. For the PASCAL

VOC 2012 dataset, we compute the performance on the nar-

row band (’trimap’) near the object boundary. Two exam-

ples can be found in the left part of Fig. 6. The right part

illustrates a plot of mean IoU versus various trimap widths

ranging from 1 to 40 pixels. It shows that our full model (in

blue dotted line) outperforms the baseline and CRF-based

method by a certain margin near the object boundaries.

Failure cases Here, we further analyze some failure

1117



Figure 5. Visualization results on the Cityscapes val set. For each row, we present (a) input image, (b) ground truth label, (c) baseline ENet

result, (d) segmentation result with our full model.

Figure 6. Performance in mean IoU near object bound-

aries(’trimap’). The left side illustrates two examples of trimap

size in three (middle) and in ten (bottom). The right side shows

the mean IoU at different trimap sizes from 1 to 40 on PASCAL

VOC 2012.

cases and conclude that our method can better delineate the

boundary but has difficulties in correcting the wrong class

labels when a major part of the object is initially wrongly

labeled. The last row of Fig. 4 illustrates one typical such

example. Our model can better recover the shape of the dog

but with the wrong class label.

4.5. Joint training with the segmentation model

In this section, we explore the possibility to train the er-

ror correction model end-to-end together with the seman-

tic segmentation model that provides the initial probability

maps. We first train DeepLab-v2 model on the PASCAL

VOC 2012 train set for 20,000 iterations. After that, we add

our LabelPropagation module right after the Atrous Spa-

tial Pyramid Pooling (ASPP) module of DeepLab-v2 and

jointly train both parts for another 20,000 iterations.

The mean IoU of the DeepLab-v2 (single scale) scores

74.6 / 75.9% before / after adding the LabelPropagation

module. If we train the LabelPropagation module without

joint training, the mean IoU is 75.4%. The result shows

that our error correction module has further potential when

jointly trained with a semantic segmentation network.

5. Conclusion

We have presented two strategies for error correction in

dense labeling prediction, and a final model that combines

the advantages of these two strategies. Our experiments

show that our full model improves over state-of-the-art se-

mantic segmentation models for the object semantic seg-

mentation and scene parsing tasks. Compared to other post-

processing methods, our approach provides a simpler so-

lution by considering nearby context information for label

propagation and at the same time it directly generates new

labels for initially wrongly labeled regions. In the future,

we plan to further reduce the network’s size in order to al-

low for even faster inference times.
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