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Abstract

We propose a novel method for class-specific, single-view,
object detection, pose estimation and deformable 3D recon-
struction, where a two-pronged (sparse semantic and dense
shape) representation is learned from natural image data
automatically. Then, given a new image, it can estimate cam-
era pose and deformable reconstruction using an effective,
incremental optimization. Our method extracts a continuous,
scaled-orthographic pose (without resorting to regression
and/or discretized 1D azimuth-based representations). The
method reconstructs a full free-form shape (rather than re-
trieving the closest 3D CAD shape proxy, typical in state-
of-the-art). We learn our two-pronged model purely from
natural image data, as automatically and faithfully as pos-
sible, reducing the human effort and bias typical to this
problem. The pipeline combines data-driven deep learn-
ing based semantic part learning with principled modelling
and effective optimization of the problem’s physics, shape
deformation, pose and occlusion. The underlying sparse
(part-based) representation of the object is computationally
efficient for purposes like detection and discriminative tasks,
whereas the overlaid dense (skin like) representation, mod-
els and realistically renders comprehensive 3D structure
including natural deformation, occlusion. The results for the
car class are visually pleasing, and importantly, outperform
the state-of-the-art quantitatively too. Our contribution to
visual scene understanding through the two-pronged object
representation shows promise for more accurate 3D scene
understanding for real world applications on virtual/mixed
reality, autonomous navigation, to cite a few.

1. Introduction

The ability to jointly reason about the shapes, viewpoints
and locations of objects and their relative interactions from
input images, is fundamental to almost all strands of research
in computer vision, e.g., object recognition, scene reconstruc-
tion, content-based retrieval and problem parametrization.
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Each individual research strand in computer vision, has been
pushed to its limits in terms of peak performance in the
past few years; hence the final lap of progress lies in being
able to perform joint reasoning and scene understanding.
This will enable applications at the intersection of vision
and robotics, e.g. robotic navigation, autonomous driving
etc., to become more "intelligent", robust and efficient. The
need for joint scene understanding has been long recognized
but progress has been made in only small and steady steps
owing largely to the fact that the underlying computer vision
problems are ill-posed (many combinations of 3D object
shapes and viewpoints can result in a given image), entail a
combination of discrete and continuous variables and the in-
put image data is often contaminated by noise with complex
statistics that is difficult to model. However, the informa-
tion extracted while solving one problem, such as object
recognition, can help reduce the ambiguities in another, such
as scene reconstruction. Class-specific treatment provides
a useful, sensible prior, e.g., 3D instances of the car class
share a similar topology and a learnable family of shapes
and appearances. Additionally, recent advances in machine
learning and optimization, allow the exploration of more
powerful mathematical models and data-driven approaches
for joint scene understanding.

As detailed in the abstract, we propose a novel approach
to learn a two-pronged class representation for jointly solv-
ing class-specific object detection, pose estimation and de-
formable 3D reconstruction from a single 2D image. At
test time, given an unseen image, the sparse model allows
us to detect parts efficiently, reason shape deformation and
model occlusion (self-occlusion), to estimate pose and re-
cover the underlying 3D shape of the object. The dense
model, subsequently, allows us to build on the recovered
sparse representation to render a detailed 3D reconstruction
of the object.

What’s more, this work has implications on many real
world applications such as VR/Motion capture games, self-
driving cars efc. Before delving further, we will now discuss
some related work and to better highlight how we adapt and
advance it.
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Figure 1: Pipeline: Given a set of class image sequences, a two-pronged (dense shape based + sparse part based ) model is
learned. The part based geometry and appearance model is learned as in (a, b). At test time, the part based model is used to
bootstrap the view and deformation parameters in an initial optimization (3), followed by a refinement of these parameters and
shape according to the dense shape model (4), to reconstruct a full 3D mesh (5).

2. Related Work

Object detection relies on powerful mathematical models
that can represent the object shape, camera viewpoint and in-
put noise effectively, and can be learned and deployed effec-
tively. Early approaches to object detection and recognition
employed sparse, 2D object representations (with consider-
able hand-crafted elements and some parameter learning)
typically in the form of templates, pictorial structures [9]
and constellations [11]). As the field progresses steadily
(see PASCAL VOC [7]), abstract, less supervised and more
data-driven representations [19] and joint object detection
and object reconstruction [2, 15, 26] are being increasingly
explored. In this work, we exploit the progress in deep learn-
ing [35] to discover 3D parts (spatial distribution and image
appearance), characteristic of the class from real data, regis-
tered with respect to their dense shape reconstructions, thus
providing a mapping between the semantics and shape. This
extends the models of [11, 2, 26] to a more comprehensive
3D part representation derived fully and automatically from
2D data.

Interpreting and handling camera viewpoint well is cru-
cial, even if it is only a means to an end (of recogni-
tion/reconstruction). Initial attempts at 3D object recog-
nition/reconstruction were limited to frontal views [21, 30];
each new viewpoint used a new model [10]. Multiple view-
points were often handled using discriminative, inverse
modeling-based approaches based on classification [26] or
regression [27]), wherein viewpoint was a 1D (sometimes

2D) variable. While these have performed well in limited
evaluations, we model the physics of projection more faith-
fully (also see [15, 36]) and show that a 6-DOF, continuous,
scaled orthographic projection, can be solved effectively in a
RANSAC-based perspective-n-point-like ([ 16]) framework,
rather than resorting to A* search or regression/classification.

Reconstruction (when combined with recognition) has
spanned many ideas, from warping a shape [2] to approxi-
mative, coarse, depth prediction-based models [33] to wire-
frame reconstructions [22, 36, 15] over the years. In recent
work [26, 36], reconstruction is approximated by retrieving
a reasonably similar CAD model. Modelling deformation in
a linear subspace from annotated data or 3D CAD datasets
has also been proposed [15, 36, 26]. The deformation is
estimated using a variety of cues, e.g. sparse part-based sam-
pling [15, 23, 36], voting-based approaches [ 4] efc. Contin-
uous optimization like [22, 23], which use image edges (or
other features) for fitting, are interesting to us, as they allow
for more fine-grained and effective optimization of shape
and pose.

In recent times, the rapid increase in the availability of
training data and the upsurge of sophisticated deep learn-
ing methods have led researchers to tackle this problem in
a more data-driven manner. While most approaches sim-
ply harness the power of regression, there has been a few
attempts to train deep neural networks end-to-end, using
geometry-aware loss functions [17, 8]. In that regard, Choy
et al., [5] proposed a novel Recurrent Neural Network (with
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Figure 2: A heatmap of the most salient regions in the image are computed (left) using Class-Activation-Mapping [35].
Backprojecting and aggregating the saliency maps from different views (center) results in a 3D estimate of saliency (right).

LSTM) based architecture for both single and multi-view
reconstruction tasks, that learns mapping from 2D images
to the underlying 3D shapes, using a large collection of syn-
thetic data. At test time, given one or more images, the
framework outputs the reconstruction in the form of 3D oc-
cupancy grid. Similarly, Gwak et. al, [17] proposed a Gener-
ative Adversarial Network (GAN) architecture, where a 3D
model generator that uses image masks and ray trace pooling
to generate 3D shapes, alongside a discriminator which is
trained using synthetic 3D shapes, to obtain smoother & re-
alistic 3D reconstructions at test time. Both aforementioned
approaches are able reconstruct object from single views,
but the quality of reconstruction is comparable only as the
number of views increases. On the other hand, Kurenkov et
al., [20] proposed DeformNET, an end-to-end single view
reconstruction system that extends Spatial Transformer Net-
works [ 18] to learn geometric transformations in 3D, coupled
with the use of Point Set Generation Network [8], where [8]
demonstrated the use of point cloud in contrast to voxel or
mesh representation, to be superior in terms of computation
with ability to capture natural invariance for a single view
object reconstruction problem. DeformNet architecture en-
tails a Free-Form Deformation (FFD) layer that deforms the
shape (represented as point clouds) using to achieve smooth
geometric deformations.

Finally, the linear subspace that models deformation in
most state of the art is still overwhelmingly learned from
3D CAD datasets, which are tedious to build and biased
by artists. This approach emphasizes learning from real,
arbitrary 2D image sequences, easy to collect, making gener-
alization across classes more plausible. Progress in Structure
from Motion and Multi-view Stereo based reconstruction
[12] makes this increasingly realizable. Kumar et al., [3]
used Structure From Motion reconstructions generated from
2D image sequences (instead of 3D CAD models), for learn-
ing deformable shape representation. We extend [3] to model
object shape using a more sophisticated two-pronged repre-
sentation instead of a coarse deformable part model, which
allows us to render a dense 3D reconstruction at test time, as

opposed to a coarse wireframe reconstruction of [3]. More-
over, we discover parts in 3D automatically, instead of re-
lying on manual annotations like [3]. In our approach, we
use a combination of Structure From Motion [ 1] and space
carving methods [12] to reconstruct arbitrary class-specific
image sequences and register the dense reconstructions to
learn a linear subspace. Additionally, we learn the sparser,
semantically meaningful part representation (appearances
and their spatial configurations). Our methods discovers
the parts are most essential in identifying a class (see [35]);
this is easier, scales to more classes and is more principled
than manually annotated CAD data. The above two-pronged
representation is very useful; the sparser part model allows
one to detect and reconstruct the object effectively and boot-
strap optimization, while the denser representation provides
a comprehensive reconstruction. Since the parts and meshes
deform together, one can reason about occlusion accurately,
rather than heuristics and statistics.

To summarize, the major contributions of this paper are,

e A two-pronged model for sparse (part-based) and dense
(comprehensive) representation of 3D meshes; for
jointly solving class-specific object detection, contin-
uous pose estimation and deformable dense 3D recon-
struction of the test object instance.

e We use sequences of images taken around objects to
learn the 3D shape representation (both dense and
sparse), using SfM reconstructions as opposed to using
tediously acquired CAD models.

e Instead of relying on data driven regression models for
binning poses, we reason the image based evidence in a
PnP-like scheme that is cognizant of surface occlusion,
to estimate pose that is physically faithful.

e We represent the sparse part model using a linear shape
subspace, where parts (3D) are discovered automati-
cally from images —based on a combination of image
saliency and appearances —and the SfM reconstruc-
tions (to project them to 3D); replacing the need for
human part annotations,

e The final reconstruction is optimized using least squares
minimization, in an incremental, stable manner.
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Figure 3: (a) Examples of 3D meshes obtained using space carving techniques on 2D image sequences. (b) Standard deviations
of the part positions in 3D plotted using ellipsoids (fop). The larger the ellipsoid, the higher the standard deviation is in the
corresponding direction. The mean car shape obtained by averaging full 3D meshes (bottom).

3. Proposed Approach

We will now detail our approach, our model, how it is
learnt and how to apply it to unseen test images.

3.1. A two-pronged shape model

The Dense Shape Model: A 3D shape instance of a
class is given as S , which can be modelled by a linear

combination of basis shapes so that each vertex is a weighted
sum of the corresponding basis vertices: s, = >, oq - by,
(v are the shape coefficients). Note, the same representation
applies to the dense shape mesh and the sparse set of parts.
When viewed through a camera C = K[Rt] at a particular
viewpoint, the projected shape vertices are given by:

4, =7(C-sp), (1)

where 7(.) represents the perspective projection in a pinhole

camera. Here we approximate this with a scaled orthographic
camera. K represents the intrinsic camera matrix, and R and
t stands for rotation matrix and translation vector.

Figure 3 shows examples of dense shape models learned
from real images. Using real image sequences for the car
class, each from around a unique 3D object class instance,
and space carving based SfM [12], we reconstruct rigid
shapes for each sequence, minimizing the image reprojection
error. These meshes are normalized to a uniform mesh reso-
lution, scale and registered in orientation using ICP. A linear
subspace is then learned using Principal Component Anal-
ysis from this data. Also, learning 3D shapes directly from
2D images allows us to go back and forth between 2D and
3D representations easily (projection and back-projection);
thus the appearance features (of parts) can be learned from
2D images, whereas their position and deformation can be
reasoned about in 3D.

The Sparse Part Model: The sparse part model follows
the conventional deformable representation of an object us-
ing a set of part positions in 3D. A part can be described as
a salient regions of an object, that are repeatably identifiable,
and invariant to deformation, viewpoint and illumination efc.
Thus the proposed automatic 3D part discovery technique
is based on finding the most distinctive and informative 2D
features needed for identifying the category correctly against
background. We use a Class Activation Mapping (CAM)
based approach (based on [35], detailed in § 4) leverag-
ing the Global activation pooling layer. A deep network is
trained to perform a binary classification task (in our case
cars vs. not-cars). Then, for every image fed into the net-
work, the CAM approach outputs a heat map which can be
understood as the relative importance of image features for
the classification task.

The heat maps for training sequence images are then
back-projected to its corresponding 3D instance reconstruc-
tion, which leaves us with a large number of 3D points (that
correspond to salient image regions in 2D), across multiple
3D shape instances. The goal of our part discovery is to
identify regions in 3D that are salient as well as repeatable
(occurs in multiple shapes). For that purpose, these 3D part
estimates are then clustered using K-means, where the dis-
tance between two parts is a sum of their 3D distance (in the
normalized frame of reference) and distance in the appear-
ance space (between feature descriptors extracted from their
corresponding 2D image regions). This extracts a sparse set
of parts (with consistent appearance and location), in the
registered and normalized frame of reference. For each part
a Gaussian 3D location distribution and a mixture model for
part image appearance is learned (see § 4).
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3.2. Pose Estimation

At test time, given a query image, we first convolve the
learned part appearance classifiers on the test image, to ob-
tain a set of candidate part detections. In the correct camera
pose, the correctly deformed shape instance should project to
the image, so that the visible parts match their projections in
appearance. This reasoning is performed using a RANSAC-
based perspective-n-point [16] like approach described in
Algorithm 1. We search randomly sampled part combina-
tions to jointly estimate the best view projection parameters
assuming a mean shape, that agrees best with the visual evi-
dence. To reason pose, the RANSAC scheme only uses part
subsets that are jointly visible, for accurate 3D-2D fitting
(joint visibility statistics can also be learned during training
for efficiency). Each fit is evaluated by maximizing the part
appearance score, and minimizing the distance between esti-
mated and actual part positions along with a root filter. The
root filter as used by [10], is a categorization the pose of the
object (as a whole) into fixed-sized viewpoint bins, that acts
much like a regularizer (more details in Section 4).

Algorithm 1 RANSAC-based Pose Estimation Algorithm

1: A set of candidate parts are obtained by performing part detec-
tion on the test image.

2: for N iterations do

3: A minimal set of parts candidates are chosen randomly. In
this case the minimal set needs to be of size 3 (to compute
Scaled Orthographic projection). The chosen part candidates
must be collectively visible in at least one of the views.

4: Estimate the pose and deformation parameters by estimat-
ing reprojection loss between the mean shape and the 2D part
positions chosen in step 1 (above).

5: Check for inliers (support), the remaining parts (or corre-
sponding part detections in 2D), that satisfies visibility criteria,
projects within a threshold 7.

6: Store the set and the estimated parameters if the number of
inliers are greater than threshold 2.

7: Re-estimate the parameters minimizing the projection loss
for all inliers (candidate parts), through least-squares fitting,
instead of just the minimal set, to obtain the best parameter
estimate.

3.3. Pose and Shape Refinement

The estimation is further refined by estimating the shape
deformation parameters in addition to refining the camera
parameters. We perform a least-squares optimization but
instead of using just the mean shape, we estimate the shape
deformation parameters ¢ in addition to the camera parame-
ters C (initialized from the previous estimation) allowing the
optimization to jointly reason about the test object’s shape
deformation and pose. For a query image I, the loss function
can be defined as the difference between the projected and

observed object parts:

P
1
Life,€) = 5 > vl ) -l — 7(C -5, F @)
p=1

ﬁP

where v(s), C) is boolean with a value of 1 if s,, is visible to
C and 0 for occluded parts. 0, € U is the 2D projection of
3D part s,, where u,, € U is corresponding part detection.
The shape and pose parameters are estimated by minimizing
L with respect to a and C. The loss function in equation 2
can be augmented with terms that score a part in terms of
how well the image appearance matches a learned model
p(l,|yp) and how likely its relative 3D position is with
respect to the learned related 3D part distribution p(§,|d,)
similar to [28]. Thus the loss for a part p projected using
camera C and shape («) parameters is given as:

La(,0) = = 3 ((p(iyhy)) + o(3,15,))) )

We additionally employ a regularizer in our optimization
based on off the shelf object detectors like [10]. Here,
we convolve the learned root filters with the image to get
possible image bounding boxes that the parts should lie
within. This is converted to a map with low values inside the
bounding box detections (and high outside). The loss term
minimizing the cost of projected part positions 1, on this
map can be evaluated as :

A
Li(a,C) = ~5 ZmapQ(ﬁp) 4)
P

Thus the total loss between estimated projection and actual
image evidence can be formulated as:

L(e,C) = Li(e,C) + La(ex,C) + Ly(ex,C)  (5)

In Algorithm 1, steps 4 to 5 minimizes L; loss (equation 2),
where the shape refinement (step 7) minimizes the total loss
L(a, C) (equation 5). Please refer to Section 4 for a detailed
explanation of the optimization.

Full Reconstruction: Estimating the deformation and
camera parameters allows us to recover the underlying the
skeleton of the shape instance in the test image along with
its viewpoint. To perform a complete 3D reconstruction, we
deform the full 3D meshes corresponding to the basis shapes
used for estimating the shape of the object instance, using
the deformation weights estimated above.

4. Implementation Details

The performance of our approach depends on the imple-
mentation of several units, described at a high level above.
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CAM based learning: We use the publicly available
pre-trained weights of VGGnet 16-layer architecture [32],
trained on ImageNet challenge [3 1]. We modify the network
architecture by replacing the fully connected layers (layers
after conv5-3 in VGGnet) with a global average pooling
layer, which simply computes the spatial average of the fea-
ture map (from conv5-3) at each unit x, whose weighted sum
outputs the final saliency map. The global average pooling
layer is then followed by a softmax layer that outputs the
likelihood of the image belonging to the category or not
(for two-way/binary classification). We learn weights corre-
sponding to each class for each unit x. The weighted sum
of the feature maps of the conv5-3 layer is used to compute
class activation maps.

Learning the sparse part model: After discovering parts
from the clustering process of 3.1, the location distribution
is learned by fitting a Gaussian distribution to the 3D clus-
ters. Part appearance models are learned as a mixture model
similar to [10, 15]; for each part we train individual SVM
classifiers for each discrete viewpoint bin in which the part
is visible. We discretize the viewing sphere into 12 bins and
on an average each part has 3-6 mixture components (clas-
sifiers). Part appearance classifiers operate on CNN-based
conv5 layer features (see [13]) extracted from the images.
To train part appearance classifiers, we fine-tune the top lay-
ers of the 16-layer VGGnet [32] (pretrained for ImageNet
Classification task [31]), to adapt the network to perform
a 12-way viewpoint classification task (suggested by [6]
for domain-specificity). We categorized the Epfl Multi-view
Cars dataset [25], into 12 bins (of 30° each). Since our goal
is to fine-tune the fully connected layer weights and the last
convolutional layer weights, we freeze the weights of the first
three sets of convolutional layers (convli - conv3) for faster
learning. We replace the last (1000-way softmax classifica-
tion) layer with a 12-way softmax layer. We then train the
modified network for viewpoint classification task, so that
the weights (conv layer) are fine-tuned to adapt to our dataset,
and also the network learns to discriminate appearances cues
(of parts/regions) with respect to viewpoint.

Supplementary model: In addition to the sparse part and
dense shape model, we learn a supplementary view-specific
root filter model that learns the holistic object appearance
conditioned on the viewpoint [10, 26]. The root filter based
view proposals are an additional cue in RANSAC based
estimation process and help filter out the incorrect poses
estimated due to object symmetry. The root filter is learned
by binning each image into a certain viewpoint interval and
then we extract fc7 (fully connected layer) features from the
images (using the fine-tuned CNN model to train sets of
SVM classifiers, one per viewpoint bin.

5. Evaluation

Most available 3D object datasets such as Pascal3D [34]
or ShapeNet [4], use synthetic CAD models for 3D repre-
sentation of objects along with manually annotated pose,
thus not feasible for demonstrating our work. In order
for us to learn 3D shape representation from images, we
need datasets of image sequences taken around the object.
We demonstrate the performance of our proposed frame-
work on EPFL-Multiview [25] Cars dataset, one of the most
commonly used datasets for viewpoint estimation problems.
EPFL-Multiview Cars dataset [25] contains 20 sequences of
images taken around car instances, We randomly split the
dataset into two and use 10 sequences for training and 10
for testing. Below are a few evaluation metrics on which we
evaluate the performance of our proposed framework.

5.1. Part Detection

Part detections are obtained by convolving learned part
appearance filters (SVM classifiers), on (conv5) features
extracted from the test image pyramid. We combine part
detections across all scales, and use non-maxima suppres-
sion to remove redundant bounding boxes. Then each part
detection score is approximated to a probability using Platt
scaling [29]. To evaluate our part detection performance, we
use the standard evaluation metric of [7]. A part detection
is considered valid if there is a 50% overlap between the
groundtruth and the detected bounding box. Also we use
Mean Average Precision (mAP) to evaluate the performance
of our part detection. The mAP of our part detection system
on Epfl-cars dataset [25] is 45.97%.

5.2. Estimation of Camera Parameters

In order to evaluate the viewpoint estimation performance
of our system, we compute Mean Precision in Pose Estima-
tion (MPPE) [24] and Median Angular Error (MAE) [14].
MPPE is a measure of viewpoint classification accuracy
where we discretize azimuths into £ number of bins and
compute the classification accuracy using precision for the
different number of bins. On the other hand, MAE is for
fine/continuous viewpoint estimation, where we compute
the median of the angular error between the estimated and
groundtruth viewpoints (camera parameters). Table 1 and
Table 2 shows the MPPE and MAE respectively, obtained
using our approach on Epfl-cars dataset [25] and compares
our approach with Pepik et. al [26], Ozuysal et. al. [25] and
Lopez-Sastre et. al. [24]. Table 1 shows that our approach
consistently outperforms the current state-of-the-art [26] in
this dataset, especially the Discrete version of 3D2PM, de-
spite [260] uses synthetic images in addition to real images,
to train appearance models.

In addition, we also report our 7op-N accuracy using
MPPE for the Epfl-cars dataset [25] in Table 3. A classi-
fication is considered correct if one of the top-N estimates
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EPFL-Multiview Cars [25]

o (Ours) \ 3D?PM-D [26]* \ 3D?PM-C Lin [26]* \ [24] \ [25]
w/4 | 99.4/88.74 99.4/78.5 97.8/78.3 91.0/73.7 -
w/6 | 99.4/83.07 9797755 98.3/76.2 - -
w/8 | 99.4/76.85 99.0/69.8 97.5/69.0 97.0/66.0 | 85.0/41.6
w/9 | 99.4/72.94 99.2/71.8 99.3/71.2 - -
w/18 | 99.4/46.21 99.3/45.8 99.2/521 - -

Table 1: Viewpoint Classification Accuracy using MPPE [

] on EPFL Multi-view Cars dataset [

1. (* - 3D?PM [26] uses

synthetic images generated from 3D CAD models for better appearance training in addition to real images. It is unfair to
directly compare the performance between the two, as we rely only on available real image data for training).

9 EPFL-Multiview Cars [25]
(Ours) \ 3D?PM-D [26] \ 3D?PM-C [26] \ 3D?PM-D [26]* \ [14]
w/4 12.84 13.1 13.7 12.9 24.8
/6 9.04 - - 9.0 -
/8 7.14 - - 7.2 -
/9 6.70 7.4 7.0 6.2 -
/18 4.68 6.4 5.6 5.2 -

Table 2: Continous/Fine-Grained Viewpoint Estimation error using MAE [
] uses synthetic images generated from 3D CAD models for better training).

3D?PM-D [

0 | top-2 ‘ top-3 ‘ top-5

w/4 | 91.14 | 92.07 | 92.71

w/6 | 87.22 | 88.32 | 89.46

w/8 | 78.35 | 79.61 | 81.58

w/9 | 7442 | 75.84 | 77.98

w/18 | 48.81 | 51.83 | 55.61
Table 3: Top-N accuracy for Viewpoint Estimation
(MPPE [24]) using our Ransac-based viewpoint estimation

technique, on EPFL Cars dataset [25].

0 | (ours) | [3]

w/4 | 04713 | 0.5492
w/6 | 0.3680 | 0.3931
w/8 | 0.2791 | 0.3011
w/9 | 0.2280 | 0.2628
/18 | 0.1272 | 0.1404

Table 4: Continous/Fine-Grained Viewpoint Estimation us-
ing MAE (Error/distance between quaternions, where a dis-
tance of 3.14 = 180°) on EPFL Cars dataset [25] using all 3
Euler angles.

are correctly classified. This metric accounts for how con-
sistent the system is in predicting, and when it fails how
badly it fails. The system is consistent if most of fop-N de-
tections are accurate. In addition, since the solution space

] on EPFL Multi-view Cars dataset [25].(* -

is highly noisy, even if the most confident detection is in-
accurate, computing top-N accuracy provides insight into
how close our other estimates are. Analyzing the results
further, we identify that one of the most important factors
that affects the viewpoint estimation accuracy is the misclas-
sification due to the appearance symmetry or the ill-posed
nature of the problem. Though most deformable part based
models are engineered to address the ill-posed nature of the
viewpoint estimation problem, estimating viewpoint with
high precision is quite challenging. We conducted an experi-
ment to see what percentage of mis-classifications fall in the
viewpoint range (of 30°) in the opposite side of the actual
viewpoint. We found that {41.61,25.91,16.92,13.87,8.71}
percent of the total misclassification (MPPE) for bin sizes
{m/4,7/6,7/8,7/9,and w/18} respectively, are due to the
appearance similarity. This experiment also shows that a con-
siderable amount of our error is due to the ill-posed nature
of the problem and not due to other noise.

5.3. Shape Estimation

We evaluate the full 3D reconstruction performance of our
framework quantitatively by computing pixel-level accuracy
of the projected 2D silhouette of the reconstruction (using
the estimated shape and camera parameters) with respect to
the groundtruth segmentation. The full 3D reconstruction us-
ing the estimated camera and shape parameters projects into
a 2D silhouette. Ideally, if we are able to accurately estimate
shape and camera parameters, the reconstructed shape/mesh
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Figure 4: Qualitative results. Left: Test images overlaid with the projection (2D convex hull) of the estimated shape and
viewpoint. Right: Full 3D reconstruction of the test object instance obtained by deforming basis shapes (meshes) using

estimated shape parameters rotated to the estimated pose.

Figure 5: Qualitative results. (a) Test images overlaid with the projection (2D convex hull) of the estimated shape and
viewpoint. (b) Wire-frame reconstruction (of estimated part positions) (¢) Full 3D reconstruction (mesh) of the test object
instance rotated wrt. estimated camera parameters(d) The full 3D reconstruction rotated by different angles to demonstrate the

details of the estimated shape better.

would project compactly into the object’s (groundtruth) sil-
houette, resulting in a high overlap (close to 100%). We use
220 manually segmented images from the test set of Epfl-
cars dataset [25] as the groundtruth to evaluate the full 3D
reconstruction performance. Our 3D reconstruction frame-
work has a precision (pixel-level) of 81.39% and a recall of
88.82%.

Figures 4 & 5 show qualitative results of the full 3D
reconstructions on Epfl-cars dataset. Our framework does a
pretty good job in reasoning the unknown shape of the test
object instance based on the visual evidence. As shown, it is
able to deform the shape estimates to render an accurate 3D
reconstruction of the test object instance.

6. Conclusion

As promised, we have demonstrated an end-to-end
pipeline that learns a two-pronged class model automati-
cally from arbitrary class image sequence data. The dense

shape representation allows for realistic deformable recon-
struction and occlusion modelling, while the sparse model
discovers a class part model based on class characteristics,
which help in efficient and reliable view estimation and ob-
ject detection and bootstrapping. We achieve qualitatively
and quantitatively pleasing results, thanks to modelling the
problem using continuous variables, realistic physics and an
incremental and (largely) continuous optimization that learns
completely from natural, 2D data (without tedious content
creation, annotation and minimizing human bias). Going
forward, we would like to test the power of this method for
unorganized data from more classes and possibly leverage
image sequences for improving reconstructions via temporal
reasoning. The proposed two-pronged representation lend
themselves readily to real world applications such as self-
driving cars, mixed reality or motion capture based gaming
etc., that rely on modelling objects in 3D, for more accurate
scene understanding, that in turn, aids decision making.
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