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Abstract

We propose a novel method for class-specific, single-view,

object detection, pose estimation and deformable 3D recon-

struction, where a two-pronged (sparse semantic and dense

shape) representation is learned from natural image data

automatically. Then, given a new image, it can estimate cam-

era pose and deformable reconstruction using an effective,

incremental optimization. Our method extracts a continuous,

scaled-orthographic pose (without resorting to regression

and/or discretized 1D azimuth-based representations). The

method reconstructs a full free-form shape (rather than re-

trieving the closest 3D CAD shape proxy, typical in state-

of-the-art). We learn our two-pronged model purely from

natural image data, as automatically and faithfully as pos-

sible, reducing the human effort and bias typical to this

problem. The pipeline combines data-driven deep learn-

ing based semantic part learning with principled modelling

and effective optimization of the problem’s physics, shape

deformation, pose and occlusion. The underlying sparse

(part-based) representation of the object is computationally

efficient for purposes like detection and discriminative tasks,

whereas the overlaid dense (skin like) representation, mod-

els and realistically renders comprehensive 3D structure

including natural deformation, occlusion. The results for the

car class are visually pleasing, and importantly, outperform

the state-of-the-art quantitatively too. Our contribution to

visual scene understanding through the two-pronged object

representation shows promise for more accurate 3D scene

understanding for real world applications on virtual/mixed

reality, autonomous navigation, to cite a few.

1. Introduction

The ability to jointly reason about the shapes, viewpoints

and locations of objects and their relative interactions from

input images, is fundamental to almost all strands of research

in computer vision, e.g., object recognition, scene reconstruc-

tion, content-based retrieval and problem parametrization.

Each individual research strand in computer vision, has been

pushed to its limits in terms of peak performance in the

past few years; hence the final lap of progress lies in being

able to perform joint reasoning and scene understanding.

This will enable applications at the intersection of vision

and robotics, e.g. robotic navigation, autonomous driving

etc., to become more "intelligent", robust and efficient. The

need for joint scene understanding has been long recognized

but progress has been made in only small and steady steps

owing largely to the fact that the underlying computer vision

problems are ill-posed (many combinations of 3D object

shapes and viewpoints can result in a given image), entail a

combination of discrete and continuous variables and the in-

put image data is often contaminated by noise with complex

statistics that is difficult to model. However, the informa-

tion extracted while solving one problem, such as object

recognition, can help reduce the ambiguities in another, such

as scene reconstruction. Class-specific treatment provides

a useful, sensible prior, e.g., 3D instances of the car class

share a similar topology and a learnable family of shapes

and appearances. Additionally, recent advances in machine

learning and optimization, allow the exploration of more

powerful mathematical models and data-driven approaches

for joint scene understanding.

As detailed in the abstract, we propose a novel approach

to learn a two-pronged class representation for jointly solv-

ing class-specific object detection, pose estimation and de-

formable 3D reconstruction from a single 2D image. At

test time, given an unseen image, the sparse model allows

us to detect parts efficiently, reason shape deformation and

model occlusion (self-occlusion), to estimate pose and re-

cover the underlying 3D shape of the object. The dense

model, subsequently, allows us to build on the recovered

sparse representation to render a detailed 3D reconstruction

of the object.

What’s more, this work has implications on many real

world applications such as VR/Motion capture games, self-

driving cars etc. Before delving further, we will now discuss

some related work and to better highlight how we adapt and

advance it.
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Figure 1: Pipeline: Given a set of class image sequences, a two-pronged (dense shape based + sparse part based ) model is

learned. The part based geometry and appearance model is learned as in (a, b). At test time, the part based model is used to

bootstrap the view and deformation parameters in an initial optimization (3), followed by a refinement of these parameters and

shape according to the dense shape model (4), to reconstruct a full 3D mesh (5).

2. Related Work

Object detection relies on powerful mathematical models

that can represent the object shape, camera viewpoint and in-

put noise effectively, and can be learned and deployed effec-

tively. Early approaches to object detection and recognition

employed sparse, 2D object representations (with consider-

able hand-crafted elements and some parameter learning)

typically in the form of templates, pictorial structures [9]

and constellations [11]). As the field progresses steadily

(see PASCAL VOC [7]), abstract, less supervised and more

data-driven representations [19] and joint object detection

and object reconstruction [2, 15, 26] are being increasingly

explored. In this work, we exploit the progress in deep learn-

ing [35] to discover 3D parts (spatial distribution and image

appearance), characteristic of the class from real data, regis-

tered with respect to their dense shape reconstructions, thus

providing a mapping between the semantics and shape. This

extends the models of [11, 2, 26] to a more comprehensive

3D part representation derived fully and automatically from

2D data.

Interpreting and handling camera viewpoint well is cru-

cial, even if it is only a means to an end (of recogni-

tion/reconstruction). Initial attempts at 3D object recog-

nition/reconstruction were limited to frontal views [21, 30];

each new viewpoint used a new model [10]. Multiple view-

points were often handled using discriminative, inverse

modeling-based approaches based on classification [26] or

regression [27]), wherein viewpoint was a 1D (sometimes

2D) variable. While these have performed well in limited

evaluations, we model the physics of projection more faith-

fully (also see [15, 36]) and show that a 6-DOF, continuous,

scaled orthographic projection, can be solved effectively in a

RANSAC-based perspective-n-point-like ([16]) framework,

rather than resorting to A∗ search or regression/classification.

Reconstruction (when combined with recognition) has

spanned many ideas, from warping a shape [2] to approxi-

mative, coarse, depth prediction-based models [33] to wire-

frame reconstructions [22, 36, 15] over the years. In recent

work [26, 36], reconstruction is approximated by retrieving

a reasonably similar CAD model. Modelling deformation in

a linear subspace from annotated data or 3D CAD datasets

has also been proposed [15, 36, 26]. The deformation is

estimated using a variety of cues, e.g. sparse part-based sam-

pling [15, 23, 36], voting-based approaches [14] etc. Contin-

uous optimization like [22, 23], which use image edges (or

other features) for fitting, are interesting to us, as they allow

for more fine-grained and effective optimization of shape

and pose.

In recent times, the rapid increase in the availability of

training data and the upsurge of sophisticated deep learn-

ing methods have led researchers to tackle this problem in

a more data-driven manner. While most approaches sim-

ply harness the power of regression, there has been a few

attempts to train deep neural networks end-to-end, using

geometry-aware loss functions [17, 8]. In that regard, Choy

et al., [5] proposed a novel Recurrent Neural Network (with
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Figure 2: A heatmap of the most salient regions in the image are computed (left) using Class-Activation-Mapping [35].

Backprojecting and aggregating the saliency maps from different views (center) results in a 3D estimate of saliency (right).

LSTM) based architecture for both single and multi-view

reconstruction tasks, that learns mapping from 2D images

to the underlying 3D shapes, using a large collection of syn-

thetic data. At test time, given one or more images, the

framework outputs the reconstruction in the form of 3D oc-

cupancy grid. Similarly, Gwak et. al., [17] proposed a Gener-

ative Adversarial Network (GAN) architecture, where a 3D

model generator that uses image masks and ray trace pooling

to generate 3D shapes, alongside a discriminator which is

trained using synthetic 3D shapes, to obtain smoother & re-

alistic 3D reconstructions at test time. Both aforementioned

approaches are able reconstruct object from single views,

but the quality of reconstruction is comparable only as the

number of views increases. On the other hand, Kurenkov et

al., [20] proposed DeformNET, an end-to-end single view

reconstruction system that extends Spatial Transformer Net-

works [18] to learn geometric transformations in 3D, coupled

with the use of Point Set Generation Network [8], where [8]

demonstrated the use of point cloud in contrast to voxel or

mesh representation, to be superior in terms of computation

with ability to capture natural invariance for a single view

object reconstruction problem. DeformNet architecture en-

tails a Free-Form Deformation (FFD) layer that deforms the

shape (represented as point clouds) using to achieve smooth

geometric deformations.

Finally, the linear subspace that models deformation in

most state of the art is still overwhelmingly learned from

3D CAD datasets, which are tedious to build and biased

by artists. This approach emphasizes learning from real,

arbitrary 2D image sequences, easy to collect, making gener-

alization across classes more plausible. Progress in Structure

from Motion and Multi-view Stereo based reconstruction

[12] makes this increasingly realizable. Kumar et al., [3]

used Structure From Motion reconstructions generated from

2D image sequences (instead of 3D CAD models), for learn-

ing deformable shape representation. We extend [3] to model

object shape using a more sophisticated two-pronged repre-

sentation instead of a coarse deformable part model, which

allows us to render a dense 3D reconstruction at test time, as

opposed to a coarse wireframe reconstruction of [3]. More-

over, we discover parts in 3D automatically, instead of re-

lying on manual annotations like [3]. In our approach, we

use a combination of Structure From Motion [1] and space

carving methods [12] to reconstruct arbitrary class-specific

image sequences and register the dense reconstructions to

learn a linear subspace. Additionally, we learn the sparser,

semantically meaningful part representation (appearances

and their spatial configurations). Our methods discovers

the parts are most essential in identifying a class (see [35]);

this is easier, scales to more classes and is more principled

than manually annotated CAD data. The above two-pronged

representation is very useful; the sparser part model allows

one to detect and reconstruct the object effectively and boot-

strap optimization, while the denser representation provides

a comprehensive reconstruction. Since the parts and meshes

deform together, one can reason about occlusion accurately,

rather than heuristics and statistics.

To summarize, the major contributions of this paper are,
• A two-pronged model for sparse (part-based) and dense

(comprehensive) representation of 3D meshes; for

jointly solving class-specific object detection, contin-

uous pose estimation and deformable dense 3D recon-

struction of the test object instance.

• We use sequences of images taken around objects to

learn the 3D shape representation (both dense and

sparse), using SfM reconstructions as opposed to using

tediously acquired CAD models.

• Instead of relying on data driven regression models for

binning poses, we reason the image based evidence in a

PnP-like scheme that is cognizant of surface occlusion,

to estimate pose that is physically faithful.

• We represent the sparse part model using a linear shape

subspace, where parts (3D) are discovered automati-

cally from images —based on a combination of image

saliency and appearances —and the SfM reconstruc-

tions (to project them to 3D); replacing the need for

human part annotations,

• The final reconstruction is optimized using least squares

minimization, in an incremental, stable manner.
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Figure 3: (a) Examples of 3D meshes obtained using space carving techniques on 2D image sequences. (b) Standard deviations

of the part positions in 3D plotted using ellipsoids (top). The larger the ellipsoid, the higher the standard deviation is in the

corresponding direction. The mean car shape obtained by averaging full 3D meshes (bottom).

3. Proposed Approach

We will now detail our approach, our model, how it is

learnt and how to apply it to unseen test images.

3.1. A two­pronged shape model

The Dense Shape Model: A 3D shape instance of a

class is given as S
3×P

, which can be modelled by a linear

combination of basis shapes so that each vertex is a weighted

sum of the corresponding basis vertices: sp =
∑

l αl · blp,

(α are the shape coefficients). Note, the same representation

applies to the dense shape mesh and the sparse set of parts.

When viewed through a camera C = K[R t] at a particular

viewpoint, the projected shape vertices are given by:

ûp = π (C · sp) , (1)

where π(.) represents the perspective projection in a pinhole

camera. Here we approximate this with a scaled orthographic

camera. K represents the intrinsic camera matrix, and R and

t stands for rotation matrix and translation vector.

Figure 3 shows examples of dense shape models learned

from real images. Using real image sequences for the car

class, each from around a unique 3D object class instance,

and space carving based SfM [12], we reconstruct rigid

shapes for each sequence, minimizing the image reprojection

error. These meshes are normalized to a uniform mesh reso-

lution, scale and registered in orientation using ICP. A linear

subspace is then learned using Principal Component Anal-

ysis from this data. Also, learning 3D shapes directly from

2D images allows us to go back and forth between 2D and

3D representations easily (projection and back-projection);

thus the appearance features (of parts) can be learned from

2D images, whereas their position and deformation can be

reasoned about in 3D.

The Sparse Part Model: The sparse part model follows

the conventional deformable representation of an object us-

ing a set of part positions in 3D. A part can be described as

a salient regions of an object, that are repeatably identifiable,

and invariant to deformation, viewpoint and illumination etc.

Thus the proposed automatic 3D part discovery technique

is based on finding the most distinctive and informative 2D

features needed for identifying the category correctly against

background. We use a Class Activation Mapping (CAM)

based approach (based on [35], detailed in § 4) leverag-

ing the Global activation pooling layer. A deep network is

trained to perform a binary classification task (in our case

cars vs. not-cars). Then, for every image fed into the net-

work, the CAM approach outputs a heat map which can be

understood as the relative importance of image features for

the classification task.

The heat maps for training sequence images are then

back-projected to its corresponding 3D instance reconstruc-

tion, which leaves us with a large number of 3D points (that

correspond to salient image regions in 2D), across multiple

3D shape instances. The goal of our part discovery is to

identify regions in 3D that are salient as well as repeatable

(occurs in multiple shapes). For that purpose, these 3D part

estimates are then clustered using K-means, where the dis-

tance between two parts is a sum of their 3D distance (in the

normalized frame of reference) and distance in the appear-

ance space (between feature descriptors extracted from their

corresponding 2D image regions). This extracts a sparse set

of parts (with consistent appearance and location), in the

registered and normalized frame of reference. For each part

a Gaussian 3D location distribution and a mixture model for

part image appearance is learned (see § 4).
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3.2. Pose Estimation

At test time, given a query image, we first convolve the

learned part appearance classifiers on the test image, to ob-

tain a set of candidate part detections. In the correct camera

pose, the correctly deformed shape instance should project to

the image, so that the visible parts match their projections in

appearance. This reasoning is performed using a RANSAC-

based perspective-n-point [16] like approach described in

Algorithm 1. We search randomly sampled part combina-

tions to jointly estimate the best view projection parameters

assuming a mean shape, that agrees best with the visual evi-

dence. To reason pose, the RANSAC scheme only uses part

subsets that are jointly visible, for accurate 3D-2D fitting

(joint visibility statistics can also be learned during training

for efficiency). Each fit is evaluated by maximizing the part

appearance score, and minimizing the distance between esti-

mated and actual part positions along with a root filter. The

root filter as used by [10], is a categorization the pose of the

object (as a whole) into fixed-sized viewpoint bins, that acts

much like a regularizer (more details in Section 4).

Algorithm 1 RANSAC-based Pose Estimation Algorithm

1: A set of candidate parts are obtained by performing part detec-

tion on the test image.

2: for N iterations do

3: A minimal set of parts candidates are chosen randomly. In

this case the minimal set needs to be of size 3 (to compute

Scaled Orthographic projection). The chosen part candidates

must be collectively visible in at least one of the views.

4: Estimate the pose and deformation parameters by estimat-

ing reprojection loss between the mean shape and the 2D part

positions chosen in step 1 (above).

5: Check for inliers (support), the remaining parts (or corre-

sponding part detections in 2D), that satisfies visibility criteria,

projects within a threshold τ1.

6: Store the set and the estimated parameters if the number of

inliers are greater than threshold τ2.

7: Re-estimate the parameters minimizing the projection loss

for all inliers (candidate parts), through least-squares fitting,

instead of just the minimal set, to obtain the best parameter

estimate.

3.3. Pose and Shape Refinement

The estimation is further refined by estimating the shape

deformation parameters in addition to refining the camera

parameters. We perform a least-squares optimization but

instead of using just the mean shape, we estimate the shape

deformation parameters α in addition to the camera parame-

ters C (initialized from the previous estimation) allowing the

optimization to jointly reason about the test object’s shape

deformation and pose. For a query image I , the loss function

can be defined as the difference between the projected and

observed object parts:

L1(α, C) =
1

P

P∑

p=1

v(sp, C) · ||up − π(C · sp)
︸ ︷︷ ︸

ûp

||2 (2)

where v(sp, C) is boolean with a value of 1 if sp is visible to

C and 0 for occluded parts. ûp ∈ Û is the 2D projection of

3D part sp where up ∈ U is corresponding part detection.

The shape and pose parameters are estimated by minimizing

L with respect to α and C. The loss function in equation 2

can be augmented with terms that score a part in terms of

how well the image appearance matches a learned model

p(ûp|γp) and how likely its relative 3D position is with

respect to the learned related 3D part distribution p(ŝp|δp)
similar to [28]. Thus the loss for a part p projected using

camera C and shape (α) parameters is given as:

L2(α, C) = −
1

P

∑

p

(ln(p(ûp|γp)) + ln(p(ŝp|δp))) (3)

We additionally employ a regularizer in our optimization

based on off the shelf object detectors like [10]. Here,

we convolve the learned root filters with the image to get

possible image bounding boxes that the parts should lie

within. This is converted to a map with low values inside the

bounding box detections (and high outside). The loss term

minimizing the cost of projected part positions ûp on this

map can be evaluated as :

L3(α, C) = −
λ

P

∑

p

map2(ûp) (4)

Thus the total loss between estimated projection and actual

image evidence can be formulated as:

L(α, C) = L1(α, C) + L2(α, C) + L3(α, C) (5)

In Algorithm 1, steps 4 to 5 minimizes L1 loss (equation 2),

where the shape refinement (step 7) minimizes the total loss

L(α, C) (equation 5). Please refer to Section 4 for a detailed

explanation of the optimization.

Full Reconstruction: Estimating the deformation and

camera parameters allows us to recover the underlying the

skeleton of the shape instance in the test image along with

its viewpoint. To perform a complete 3D reconstruction, we

deform the full 3D meshes corresponding to the basis shapes

used for estimating the shape of the object instance, using

the deformation weights estimated above.

4. Implementation Details

The performance of our approach depends on the imple-

mentation of several units, described at a high level above.
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CAM based learning: We use the publicly available

pre-trained weights of VGGnet 16-layer architecture [32],

trained on ImageNet challenge [31]. We modify the network

architecture by replacing the fully connected layers (layers

after conv5-3 in VGGnet) with a global average pooling

layer, which simply computes the spatial average of the fea-

ture map (from conv5-3) at each unit κ, whose weighted sum

outputs the final saliency map. The global average pooling

layer is then followed by a softmax layer that outputs the

likelihood of the image belonging to the category or not

(for two-way/binary classification). We learn weights corre-

sponding to each class for each unit κ. The weighted sum

of the feature maps of the conv5-3 layer is used to compute

class activation maps.

Learning the sparse part model: After discovering parts

from the clustering process of 3.1, the location distribution

is learned by fitting a Gaussian distribution to the 3D clus-

ters. Part appearance models are learned as a mixture model

similar to [10, 15]; for each part we train individual SVM

classifiers for each discrete viewpoint bin in which the part

is visible. We discretize the viewing sphere into 12 bins and

on an average each part has 3-6 mixture components (clas-

sifiers). Part appearance classifiers operate on CNN-based

conv5 layer features (see [13]) extracted from the images.

To train part appearance classifiers, we fine-tune the top lay-

ers of the 16-layer VGGnet [32] (pretrained for ImageNet

Classification task [31]), to adapt the network to perform

a 12-way viewpoint classification task (suggested by [6]

for domain-specificity). We categorized the Epfl Multi-view

Cars dataset [25], into 12 bins (of 30◦ each). Since our goal

is to fine-tune the fully connected layer weights and the last

convolutional layer weights, we freeze the weights of the first

three sets of convolutional layers (conv1 - conv3) for faster

learning. We replace the last (1000-way softmax classifica-

tion) layer with a 12-way softmax layer. We then train the

modified network for viewpoint classification task, so that

the weights (conv layer) are fine-tuned to adapt to our dataset,

and also the network learns to discriminate appearances cues

(of parts/regions) with respect to viewpoint.

Supplementary model: In addition to the sparse part and

dense shape model, we learn a supplementary view-specific

root filter model that learns the holistic object appearance

conditioned on the viewpoint [10, 26]. The root filter based

view proposals are an additional cue in RANSAC based

estimation process and help filter out the incorrect poses

estimated due to object symmetry. The root filter is learned

by binning each image into a certain viewpoint interval and

then we extract fc7 (fully connected layer) features from the

images (using the fine-tuned CNN model to train sets of

SVM classifiers, one per viewpoint bin.

5. Evaluation

Most available 3D object datasets such as Pascal3D [34]

or ShapeNet [4], use synthetic CAD models for 3D repre-

sentation of objects along with manually annotated pose,

thus not feasible for demonstrating our work. In order

for us to learn 3D shape representation from images, we

need datasets of image sequences taken around the object.

We demonstrate the performance of our proposed frame-

work on EPFL-Multiview [25] Cars dataset, one of the most

commonly used datasets for viewpoint estimation problems.

EPFL-Multiview Cars dataset [25] contains 20 sequences of

images taken around car instances, We randomly split the

dataset into two and use 10 sequences for training and 10

for testing. Below are a few evaluation metrics on which we

evaluate the performance of our proposed framework.

5.1. Part Detection

Part detections are obtained by convolving learned part

appearance filters (SVM classifiers), on (conv5) features

extracted from the test image pyramid. We combine part

detections across all scales, and use non-maxima suppres-

sion to remove redundant bounding boxes. Then each part

detection score is approximated to a probability using Platt

scaling [29]. To evaluate our part detection performance, we

use the standard evaluation metric of [7]. A part detection

is considered valid if there is a 50% overlap between the

groundtruth and the detected bounding box. Also we use

Mean Average Precision (mAP) to evaluate the performance

of our part detection. The mAP of our part detection system

on Epfl-cars dataset [25] is 45.97%.

5.2. Estimation of Camera Parameters

In order to evaluate the viewpoint estimation performance

of our system, we compute Mean Precision in Pose Estima-

tion (MPPE) [24] and Median Angular Error (MAE) [14].

MPPE is a measure of viewpoint classification accuracy

where we discretize azimuths into k number of bins and

compute the classification accuracy using precision for the

different number of bins. On the other hand, MAE is for

fine/continuous viewpoint estimation, where we compute

the median of the angular error between the estimated and

groundtruth viewpoints (camera parameters). Table 1 and

Table 2 shows the MPPE and MAE respectively, obtained

using our approach on Epfl-cars dataset [25] and compares

our approach with Pepik et. al [26], Ozuysal et. al. [25] and

Lopez-Sastre et. al. [24]. Table 1 shows that our approach

consistently outperforms the current state-of-the-art [26] in

this dataset, especially the Discrete version of 3D2PM, de-

spite [26] uses synthetic images in addition to real images,

to train appearance models.

In addition, we also report our Top-N accuracy using

MPPE for the Epfl-cars dataset [25] in Table 3. A classi-

fication is considered correct if one of the top-N estimates
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θ
EPFL-Multiview Cars [25]

(Ours) 3D2PM-D [26]∗ 3D2PM-C Lin [26]∗ [24] [25]

π/4 99.4 / 88.74 99.4 / 78.5 97.8 / 78.3 91.0 / 73.7 -

π/6 99.4 / 83.07 97.9 / 75.5 98.3 / 76.2 - -

π/8 99.4 / 76.85 99.0 / 69.8 97.5 / 69.0 97.0 / 66.0 85.0 / 41.6

π/9 99.4 / 72.94 99.2 / 71.8 99.3 / 71.2 - -

π/18 99.4 / 46.21 99.3 / 45.8 99.2 / 52.1 - -

Table 1: Viewpoint Classification Accuracy using MPPE [24] on EPFL Multi-view Cars dataset [25]. (∗ - 3D2PM [26] uses

synthetic images generated from 3D CAD models for better appearance training in addition to real images. It is unfair to

directly compare the performance between the two, as we rely only on available real image data for training).

θ
EPFL-Multiview Cars [25]

(Ours) 3D2PM-D [26] 3D2PM-C [26] 3D2PM-D [26]∗ [14]

π/4 12.84 13.1 13.7 12.9 24.8

π/6 9.04 - - 9.0 -

π/8 7.14 - - 7.2 -

π/9 6.70 7.4 7.0 6.2 -

π/18 4.68 6.4 5.6 5.2 -

Table 2: Continous/Fine-Grained Viewpoint Estimation error using MAE [14] on EPFL Multi-view Cars dataset [25].(∗ -

3D2PM-D [26] uses synthetic images generated from 3D CAD models for better training).

θ top-2 top-3 top-5

π/4 91.14 92.07 92.71

π/6 87.22 88.32 89.46

π/8 78.35 79.61 81.58

π/9 74.42 75.84 77.98

π/18 48.81 51.83 55.61

Table 3: Top-N accuracy for Viewpoint Estimation

(MPPE [24]) using our Ransac-based viewpoint estimation

technique, on EPFL Cars dataset [25].

θ (ours) [3]

π/4 0.4713 0.5492

π/6 0.3680 0.3931

π/8 0.2791 0.3011

π/9 0.2280 0.2628

π/18 0.1272 0.1404

Table 4: Continous/Fine-Grained Viewpoint Estimation us-

ing MAE (Error/distance between quaternions, where a dis-

tance of 3.14 = 180◦) on EPFL Cars dataset [25] using all 3

Euler angles.

are correctly classified. This metric accounts for how con-

sistent the system is in predicting, and when it fails how

badly it fails. The system is consistent if most of top-N de-

tections are accurate. In addition, since the solution space

is highly noisy, even if the most confident detection is in-

accurate, computing top-N accuracy provides insight into

how close our other estimates are. Analyzing the results

further, we identify that one of the most important factors

that affects the viewpoint estimation accuracy is the misclas-

sification due to the appearance symmetry or the ill-posed

nature of the problem. Though most deformable part based

models are engineered to address the ill-posed nature of the

viewpoint estimation problem, estimating viewpoint with

high precision is quite challenging. We conducted an experi-

ment to see what percentage of mis-classifications fall in the

viewpoint range (of 30◦) in the opposite side of the actual

viewpoint. We found that {41.61, 25.91, 16.92, 13.87, 8.71}
percent of the total misclassification (MPPE) for bin sizes

{π/4, π/6, π/8, π/9, and π/18} respectively, are due to the

appearance similarity. This experiment also shows that a con-

siderable amount of our error is due to the ill-posed nature

of the problem and not due to other noise.

5.3. Shape Estimation

We evaluate the full 3D reconstruction performance of our

framework quantitatively by computing pixel-level accuracy

of the projected 2D silhouette of the reconstruction (using

the estimated shape and camera parameters) with respect to

the groundtruth segmentation. The full 3D reconstruction us-

ing the estimated camera and shape parameters projects into

a 2D silhouette. Ideally, if we are able to accurately estimate

shape and camera parameters, the reconstructed shape/mesh
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Figure 4: Qualitative results. Left: Test images overlaid with the projection (2D convex hull) of the estimated shape and

viewpoint. Right: Full 3D reconstruction of the test object instance obtained by deforming basis shapes (meshes) using

estimated shape parameters rotated to the estimated pose.

Figure 5: Qualitative results. (a) Test images overlaid with the projection (2D convex hull) of the estimated shape and

viewpoint. (b) Wire-frame reconstruction (of estimated part positions) (c) Full 3D reconstruction (mesh) of the test object

instance rotated wrt. estimated camera parameters(d) The full 3D reconstruction rotated by different angles to demonstrate the

details of the estimated shape better.

would project compactly into the object’s (groundtruth) sil-

houette, resulting in a high overlap (close to 100%). We use

220 manually segmented images from the test set of Epfl-

cars dataset [25] as the groundtruth to evaluate the full 3D

reconstruction performance. Our 3D reconstruction frame-

work has a precision (pixel-level) of 81.39% and a recall of

88.82%.

Figures 4 & 5 show qualitative results of the full 3D

reconstructions on Epfl-cars dataset. Our framework does a

pretty good job in reasoning the unknown shape of the test

object instance based on the visual evidence. As shown, it is

able to deform the shape estimates to render an accurate 3D

reconstruction of the test object instance.

6. Conclusion

As promised, we have demonstrated an end-to-end

pipeline that learns a two-pronged class model automati-

cally from arbitrary class image sequence data. The dense

shape representation allows for realistic deformable recon-

struction and occlusion modelling, while the sparse model

discovers a class part model based on class characteristics,

which help in efficient and reliable view estimation and ob-

ject detection and bootstrapping. We achieve qualitatively

and quantitatively pleasing results, thanks to modelling the

problem using continuous variables, realistic physics and an

incremental and (largely) continuous optimization that learns

completely from natural, 2D data (without tedious content

creation, annotation and minimizing human bias). Going

forward, we would like to test the power of this method for

unorganized data from more classes and possibly leverage

image sequences for improving reconstructions via temporal

reasoning. The proposed two-pronged representation lend

themselves readily to real world applications such as self-

driving cars, mixed reality or motion capture based gaming

etc., that rely on modelling objects in 3D, for more accurate

scene understanding, that in turn, aids decision making.
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