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Abstract

One of the most critical topics in autonomous driving

or ride-sharing technology is to accurately localize vehi-

cles in the world frame. In addition to common multi-

view camera systems, it usually also relies on industrial

grade sensors, such as LiDAR, differential GPS, high preci-

sion IMU, and etc. In this paper, we develop an approach

to provide an effective solution to this problem. We pro-

pose a method to train a geo-spatial deep neural network

(CNN+LSTM) to predict accurate geo-locations (latitude

and longitude) using only ordinary ground imagery and low

accuracy phone-grade GPS. We evaluate our approach on

the open dataset released during ACM Multimedia 2017

Grand Challenge. Having ground truth locations for train-

ing, we are able to reach nearly lane-level accuracy. We

also evaluate the proposed method on our own collected

images in San Francisco downtown area often described as

”downtown canyon” where consumer GPS signals are ex-

tremely inaccurate. The results show the model can predict

quality locations that suffice in real business applications,

such as ride-sharing, only using phone-grade GPS. Unlike

classic visual localization or recent PoseNet-like methods

that may work well in indoor environments or small-scale

outdoor environments, we avoid using a map or an SFM

(structure-from-motion) model at all. More importantly, the

proposed method can be scaled up without concerns over

the potential failure of 3D reconstruction.

1. Introduction

Vision-based localization has been an active research

topic for over decades. Localizing a vehicle on the road

or tracking a device in an outdoor/indoor environment from

an image is a fundamental problem for numerous computer

vision applications. These applications include self-driving

cars, Augmented Reality (AR), Virtual Reality (VR), mo-

bile robots and etc.

Figure 1: This figure shows a car ride path near San Fran-

cisco downtown where GPS signals are extremely noisy.

The red polygonal line is based on the rawly recorded GPS

locations. The blue polygonal line is the filtered locations

by smoothing the raw data. The green polygonal line is the

corrected path (ground truth). Relying on raw GPS readings

could cause irreversible damage to either self-driving navi-

gation or for ride-sharing ETA (Estimated Time of Arrival).

1.1. Background

Structure-from-motion (SFM) [12] is a relatively well-

studied topic that has gain tremendous progress over the

years. It takes unordered images as inputs and extracts local

image features, such as SIFT, SURF, etc. and then recon-

structs 3D structures of those features. Hence, given a 3D

model from SFM, the problem of localizing any new image

becomes a 2D-to-3D pose estimation problem. The steps

are usually 1) extract 2D local features from the query im-

age, 2) establish matches between these 2D features and the

3D points in the SFM model by computing similarities be-

tween descriptors, 3) an optimization solver such as PnP

[17] can take the correspondences to compute the camera

pose by minimizing re-projection errors.

Visual SLAM (Simultaneous Localization and Mapping)

[9] is another popular field of research that is often adopted
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for most device tracking based applications. Unlike SFM

which is often an offline pipeline, Visual SLAM emphasizes

real-time capabilities.

Mapping and localization are often brought up for dis-

cussion at the same time. SFM model building process is es-

sentially a mapping process. Also, LiDAR is another great

source for building 3D maps [13].

1.2. What are the challenges?

Image-based localization based on SFM or Visual

SLAM always requires a decently reconstructed 3D model

to start with. It can become fairly challenging especially

when the scene is not favored by SFM or Visual SLAM.

Commonly known factors, such as inconsistent illumina-

tion, motion blur, texture-less surfaces, lack of overlaps be-

tween images, can easily cause failures by using these lo-

cal feature dependent localization approaches. Being able

to estimate 6DoF pose accurately is absolutely crucial in

a small environment especially when the application needs

to precisely place virtual objects on the real physical sur-

face. However, due to limitations mentioned above, a num-

ber of difficulties remain. Aside from everything else, get-

ting a complete and decent SFM model is never an easy

nor worry-free task. PoseNet [6] tries to solve this task by

formulating it as a machine learning problem and shows

promising results but with questionable quality. Without

exception, its training process requires good SFM models

ready for use. Above all, 6DoF localization only makes

sense when there is a so-call HD map in place. That be-

ing said, HD mapping still remains an open topic for both

academia and industries to research and discuss. An indus-

trial standard does not even exist yet.

In most ride-share or vehicle navigation businesses, GPS

is the only source for localization with the assistance of

some standard map service (eg. Google Maps, Apple

Maps). Getting accurate latitude and longitude values are

critical to the services provided by these businesses. For in-

stance, when a customer requests a ride through any ride-

share application (eg. Lyft, Uber), ETA (estimated time

of arrival) which is directly tied to the quality of user ex-

perience and the fairness of pricing is largely determined

by latitude and longitude measurements. As is commonly

known, phone-grade GPS receivers are easily affected by a

variety of factors, such as atmospheric uncertainty, building

blockage, multi-path bounced signals, satellite biases, etc.

In Fig.1, it shows a car ride recorded in some urban area

that fits the description as urban canyon where GPS signals

can be occasionally entirely out of touch. The green path

is the actual ride path. The red one is the path recorded

by GPS readings. The blue one is the filtered version af-

ter some unsophisticated smoothing. As we can see, nei-

ther raw readings nor smoothed ones can actually represent

the real ride path. Aside from low accuracy, low frequency

about phone-grade GPS also prevents on-road navigation

from being precise. How to overcome this has become in-

creasingly important to real-world applications.

To summarize, the main challenges are:

(1) Computing a map from SFM or SLAM is not easy. It

can fail surprisingly more often than expected due to mul-

tiple factors relative to image quality, scene content charac-

teristics, etc.

(2) Assuming a good map in place, image-based local-

ization by matching 2D-3D point correspondences can also

easily fail due to same limitations mentioned in (1).

(3) Low-priced phone-grade GPS is noisy. Unfortu-

nately, it is often the only source used for localization in

many real-world applications, eg. ride-sharing, car naviga-

tion.

(4) High-end GPS equipment is extremely expensive and

is not practical to be installed on a large fleet of vehicles.

1.3. Our contribution

In this work, we propose a framework to directly infer

a more accurate GPS location, [Lat, Lon], from input im-

agery. The overall idea is to learn to predict the distance

between the noisy GPS location and the true location. Us-

ing the trained knowledge, we can compensate the error

of raw GPS data under the reality that there is no knowl-

edge about where the true location is. To do so, we take

the image and the corresponding raw noisy GPS reading

and leverage a pre-trained Convolutional Neural Network

to learn suitable feature representations for our particular

localization purpose, and then we make use of Long-Short

Term Memory (LSTM) units [4] on the final FC layer out

of CNN. We train the model with real ground truth for each

recorded location. The evaluation of an open dataset shows

that we can achieve near lane-level accuracy using an image

and noisy GPS only. We also trained a model without any

ground truth but with sparsely hand-picked ground control

points. In problematic areas like urban canyons, the model

can predict the location of an input image with or without

raw GPS. Based on observation, the model also behaves as

a much more sophisticated smoothing filter that tries to cor-

rect wrong GPS readings.

To summarize, our major contributions are listed as be-

low:

(1) We demonstrated the power of CNN + LSTM archi-

tecture to regress near lane level accurate geo-locations for

vehicle navigations when raw GPS is available but noisy;

(2) We provide a solution that relies upon no HD maps or

SFM models. It applies to both training and inferring. We

only use images and raw GPS data to predict more accurate

geo-location.

(3) The proposed approach can predict an accurate loca-

tion without any raw GPS. It is very helpful when losing

GPS signal in downtown canyons. We also show that the
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trained model can function as a filter to smooth noisy GPS

data.

2. Related work

2.1. Visual inertial localization

The traditional ways to approach the localization prob-

lem are relying on structure-based techniques. It uses a

image-derived 3D model usually obtained from Structure-

From-Motion (SFM) as a map. 6DoF pose estimation of

a query image is done by matching point features found

in both the 2D image and the 3D point cloud. Recent ad-

vances in SFM [12] allow to reconstruct large scenes and

hence provide a better model for image-based localization.

The main challenge here is the search complexity that could

grow exponentially high as the model size get increasingly

larger. There are some works in prioritized matching [7]

[11]. They first consider features more likely to be matched

and terminate the search process as soon as enough matches

have been found.

Visual inertial camera tracking or re-localization has

gained significant attention, especially in the field of Aug-

mented Reality. In this case, the camera and the inertial

sensors (IMU) complement each other in a joint optimiza-

tion framework. Most of VI localization methods perform

well in indoor environments. For outdoor scenarios, [8]

addresses how they tackle the complexity of localization

against a large map. They demonstrate that large-scale, real-

time 6DoF localization can be performed on mobile plat-

forms with limited resources without the use of a server.

Overall, the run-time of traditional localization ap-

proaches is determined by the number of 2D and 3D fea-

tures that are engaged in optimization. Therefore, scalabil-

ity is put in question constantly. In addition, local feature

based methods do not perform in numerous situations due

to the common challenges in image processing. This further

encourages the exploration of using an alternative approach

based on deep learning.

2.2. Conventional machine learning based localiza-
tion

There is a good amount of work in location recognition

using conventional machine learning techniques. In [2], the

authors addressed the challenges when dealing with visual

place recognition. Changes in viewpoint, imaging condi-

tions and the large size of geotagged image database make

this task very challenging. Bag-of-words methods are fa-

vorable in this category. In [1], the authors choose to repre-

sent the database as a graph and show the rich information

embedded in a graph can improve a bag-of-words based lo-

cation recognition method.

However, this type of location recognition usually only

produces coarse location information. It is certainly use-

ful in automated image geotagging, while it is not accurate

enough for navigation purposes.

2.3. Deep learning based localization

Deep learning techniques, especially convolutional neu-

ral networks (CNN) have been successfully applied to most

tasks in computer vision. A great number of tasks are

already beyond image classification and object detection.

Deep learning has driven the machine learning the focus

from hard-core feature engineering to high volume data

manipulation. How to improve performance has shifted

from algorithm-driven to data-driven. However, the need

for large datasets for training is also a drawback for deep

learning. Hence, a common solution is called transfer learn-

ing. Fine-tuning modified pre-trained networks on a much

smaller dataset for a more specific domain-related task has

become quite essential in most computer vision research.

Long Short-Term Memory (LSTM) [4] is a type of Recur-

rent Neural Network (RNN) that is designed to accumulate

or abandon relevant contextual information in hidden states.

In recent years, CNN and LSTM have been placed in one

unified framework for tasks such as various video analysis

problems, human action analysis, etc. CNNs are good at

reducing variations in frequency, while LSTMs are good at

temporal modeling [10].

In [6], the authors present a robust and real-time

monocular 6DoF re-localization system which is known as

PoseNet. It introduces an end-to-end regression solution

with no need for additional engineering or graph-based op-

timization. In [5], an extension to PoseNet evaluates the

CNN with a fraction of its neurons randomly disabled. It

results in different pose estimations that can model the un-

certainty of the poses. The problem of PoseNet is it is rela-

tively inaccurate. [15] proposes a new CNN+LSTM archi-

tecture for pose regression and provides an extensive quan-

titative comparison of CNN-based and SIFT-based localiza-

tion methods.

In this paper, we show how CNN + LSTM architecture is

capable of predicting very accurate location for navigation

purposes.

3. Choice of architecture

The main goal of this work is to prove the state-of-art

deep learning technology can bring a scalable solution to

geo-localization that is needed in either ride-sharing or au-

tonomous driving industries. PoseNet [6] simply adopted

GoogleNet with a few necessary modifications due to the

regression purpose. In [14], an LSTM layer is introduced

in addition to the modified GoogleNet in [6] even though

the input is not a typical sequential data, and it improves the

overall performance. Therefore, we also adopted a CNN

+ LSTM architecture with modifications. In [14], reshap-

ing the input feature vector to LSTM and breaking it into
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Figure 2: Architecture of the proposed location regression CNN LSTM network

smaller parts are done to increase the regression accuracy.

In our experiments, reshaping the vector actually down-

grades the performance a little. Hence, we choose not to

reshape the input feature vector in order to provide the best

performance (prediction error on locations).

4. Deep direct localization

In this session, we develop our approach to learn to

regress accurate geo-locations, normally represented as [lat-

itude, longitude] in most navigation scenarios, directly from

ground imagery that could be taken from a in-vehicle dash

camera or phone camera mounted behind the windshield

and the raw geo-location recorded by a phone-grade GPS

receiver usually at a very low frequency (1 Hz). In practice,

it is extremely challenging to infer absolute locations from

images. Our main goal is to train a CNN + LSTM network

to learn a mapping function from an image to a difference

location relative to the ’true’ location or the hand-picked

ground control points, f(I) = ∆l, where f(·) is the neural

network, ∆l ∈ R
2 . Each ∆l comprises of ∆lat and ∆lon.

We adopt an architecture that is similar to the one in [15].

Our architecture is depicted in Figure.2. All hyperparame-

ters used for the experiments are detailed in Section 5. The

Smooth L1 loss function is chosen for the sake of stability.

Lloc(∆li −∆l̃i) = SmoothL1
(∆li −∆l̃i) (1)

which

SmoothL1
(∆li −∆l̃i) =

{

0.5x2, if |x| < 1

|x| − 0.5, otherwise
(2)

4.1. CNN feature extraction

It is a common practice not to train a convolutional neu-

ral network from scratch. Training from scratch usually

requires a really large dataset which brings a huge cost in

numerous ways. Unlike classification problems which de-

mand at least one sample for each label, the output space

for regression problems is continuous and infinite in theory.

Therefore, transfer learning is a highly effective approach.

We take advantage of the pre-trained state-of-art classifica-

tion network ResNet [3] and modify the last fully connected

layer to output a n-dimensional vector (Figure. 2). One can

directly reduce the dimension of the FC to be the dimen-

sion of the desired output. Intuitively, we can define n to

be 2, so this reduced 2-element vector is the final regressed

difference location that we target for. However, from our

empirical experience, it produces poor results. Hence, this

n-dimensional vector is the input to the following recurrent

neural network and can be practically perceived as a concise

representation of the original image to be localized.

4.2. Location regression with LSTMs

Long Short-Term Memory (LSTM) units are typically

applied to sequential data that are embedded with rich tem-

poral information, such as natural language processing,

video action unit analysis. But, the capability of LSTM is

not limited to only temporal sequences. In our case, the n-

dimensional vector from the ResNet CNN can be regarded

as a sequence. Two or more LTSM layers can be inserted

after the FC from the CNN. No special vector reshaping is

required. Most of the time, we choose 2 LSTM units which

can perform well enough, and no major benefit gain even if

using more LSTM unites.

5. Experiments

5.1. Experiment setup

We conduct all experiments using PyTorch on a single

GPU machine equipped with one Geforce GTX 1080 card.

We initialize part of parameters from pre-trained ResNet

model and randomly initialize the remaining weights. All

input images are resized to 224 x 224 pixel. Radom image

cropping is used during training. SGD is chosen to be the
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Figure 3: The red line shows the trajectory covered by

the dataset from ”Lane Level Localization on a 3D Map”.

Three segments are proportionally selected along the path

for training, validation and testing.

Figure 4: Five randomly picked points shown on the real

map. Raw points colored in red. Predicted points are col-

ored in green. True points are colored in blue.

optimizer with the learning rate at 0.045. Random shuffling

is performed for each batch. We use small batch size such

as 8.

5.2. Training with high precision GPS

We first choose to use the dataset released as part of the

ACMMM 2017 grand challenge ”Lane Level Localization

on a 3D Map” [16]. This is the only dataset we can find pub-

Figure 5: A better look on results of ACM dataset. Raw

points colored in red. Predicted points are colored in green.

True points are colored in blue. In this segment, raw GPS

are very off.

licly that satisfies our specific requirements that both true

phone-grade GPS and industrial-grade GPS are in place.

The dataset contains around 3000 images (sample images

can be seen in Figure.8) acquired with a commercial web-

cam at 10 Hz, a set of consumer phone grade GPS points

synchronized with the image timestamp, 3D map informa-

tion (eg. road and lane boundaries, traffic sign location, oc-

cupancy grid in voxels), and camera intrinsic parameters.

The data covers over 20km. Ground truth GPS points ac-

quired from a survey-grade GPS device are also given for

training and testing purpose. The whole trajectory is shown

in Figure. 3. We divide the whole trajectory into three seg-

ments for training, validation and testing purposes respec-

tively (also shown in Figure. 3). As we address in the be-

ginning, we do not rely on 3D HD map. Hence, we only

utilize a subset of the whole dataset which includes images,

phone-grade GPS points, and survey-grade GPS points. A

preprocessing step is first done to synchronize the frames

based timestamps. The measurement error range of phone-

grade GPS points is from 0.37419 to 61.7118 meters. The

mean error is 9.8772 meters, and the standard deviation is

11.7547 meters.

Each data sample contains the image, the raw phone

grade latitude and longitude values, and the distance be-

tween the raw GPS value and the ground truth. The train-

ing curve can be seen in Figure. 9. The evaluation metric

used in this experiment here is the L2 distance in meters

between the true location and the predicted location. Note,
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Figure 6: Results from San Francisco data shown on the real map. Raw points colored in red. Predicted points are colored in

green. True points are colored in blue.

it is not convenient to directly use latitude and longitude

to compute the small distance between two points. Hence,

UTM coordinates are actually used to compute the distance.

The conversion between UTM coordinates and Lat-Lons is

a necessary step here.

In Figure.4 and Figure.5, one can visually examine some

location points, and their predicted points and true points

respectively. Again, it demonstrates visually that accuracy

of the GPS measurements is improved. Please see Table.1

for actual values of our prediction error.

Our prediction error

mean: 2.47 std: 1.58

Table 1: Prediction errors on ACM dataset (unit: meter)

We also test on our internally collected dataset covering

a big portion of San Francisco using an in-house built appli-

cation on Android phones. In this dataset (Figure.10), chal-

lenging scenarios,such as urban canyons and tunnels, are

covered. Please see Figure.6 and Figure.7 for the results. A

demo video is provided as the supplemental material from

this dataset.

In the United States, the Interstate Highway standards for

the U.S. Interstate Highway System uses a 12-foot (3.7 m)

standard for lane width. With the level of accuracy shown

above (2 m), we can confidently claim it gets near lane-level

accuracy.

5.3. Training without high precision GPS

We collected another dataset using the same Android

App at some courtyard in between two moderately high

buildings somewhere around Downtown San Francisco

(Figure.10). The facades of the buildings negatively affect

the GPS signals. A phone-grade GPS will not be able to

provide accurate reading and can sometimes even be unex-

pectedly confused by WIFI signals from inside the build-

ings. Before starting the collection, we have to make sure

the WIFI receiver on the device is switched off. The image

collection can at 5 to 10 Hz, while the GPS is recorded at

1 Hz. We walk along the path back and forth many times

and also on different days. We roughly walk following a

straight line during all data collections. In this dataset, we

are not able to mark where the true locations are. Nonethe-

less, we can still use the proposed framework to train by

manually picking a known nearby location from the map as
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Figure 7: A closer look on the financial district in SF. Raw

points colored in red. Predicted points are colored in green.

True points are colored in blue.

Figure 8: Some sample images from the ACM dataset

Figure 9: Traning curve over the ACM dataset

the ground control point. The model then predicts the dis-

tance between the image location and this ground control

point. Each data sample in this experiment contains the im-

age, the raw GPS, and the distance between the GPS point

Figure 10: Some sample images from the SF dataset and the

Courtyard dataset

Figure 11: Training curve over the Courtyard dataset

and the ground control point. The evaluation metric is the

same as the previous experiment. The training curve can

be seen in Figure.11. As a reminder, we want to empha-

size that inferring is done with only images and the known

ground control point. No raw GPS was used for inference.

From Figure.12, we can tell all predicted points are closer to

a center line while the raw GPS behave in a more arbitrary

way due to the impact of the noise.

5.4. KITTI dataset

We further test our method on the KITTI dataset. Please

refer to Table2 for results on three sequences covering a rel-

atively large area. Note, the KITTI dataset does not provide

phone-grade GPS. So, we introduced simulated errors to the

original GPS data to get the noisy GPS needed. For refer-

ence, ORB-SLAM2 in stereo mode can only achieve up to

1.15 meters on KITTI dataset. MLM-SFM can only achieve

up to 2.54 meters.

6. Conclusion

In this paper, we address the challenge of accurate local-

ization from imagery for ride-share or car navigation busi-
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Figure 12: Courtyard dataset: red dots are raw GPSs; green

dots are predicted GPSs

Sequence name Raw error Our prediction error

2011 10 03 drive 0027 8.58 2.05

2011 09 29 drive 0071 8.94 1.56

2011 10 03 drive 0042 8.59 1.53

Table 2: Prediction results on KITTI dataset (unit: meter)

nesses. We use a hybrid deep learning architecture that

combines a CNN with LSTM units to regress geo-locations

directly. We don’t rely on any pre-computed HD map or

SFM model during either training or inferring. The trained

model is able to predict near lane-level locations from im-

agery and noisy raw GPS, and it can also infer accurate lo-

cations without GPS as prior. Furthermore, this is the first

work where deep learning is applied to the problem of di-

rectly localizing to GPS Lat-Lon applied to real-world ride-

sharing and navigation problems.

Future work will look at expanding to larger datasets.

However, the challenge is getting much larger data sets than

the ACM dataset. Therefore, making a larger public dataset

for direct geo-location learning from imagery is to be on

our agenda. In the meanwhile, we need to understand bet-

ter how a localization network actually behaves at different

stages so that we can impose more control and increase the

performance.
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