
HandyNet: A One-stop Solution to Detect, Segment, Localize & Analyze

Driver Hands

Akshay Rangesh Mohan M. Trivedi

Laboratory for Intelligent & Safe Automobiles, UC San Diego

{arangesh, mtrivedi}@ucsd.edu

Abstract

Tasks related to human hands have long been part of the

computer vision community. Hands being the primary ac-

tuators for humans, convey a lot about activities and in-

tents, in addition to being an alternative form of commu-

nication/interaction with other humans and machines. In

this study, we focus on training a single feedforward convo-

lutional neural network (CNN) capable of executing many

hand related tasks that may be of use in autonomous and

semi-autonomous vehicles of the future. The resulting net-

work, which we refer to as HandyNet, is capable of de-

tecting, segmenting and localizing (in 3D) driver hands in-

side a vehicle cabin. The network is additionally trained

to identify handheld objects that the driver may be inter-

acting with. To meet the data requirements to train such a

network, we propose a method for cheap annotation based

on chroma-keying, thereby bypassing weeks of human ef-

fort required to label such data. This process can generate

thousands of labeled training samples in an efficient man-

ner, and may be replicated in new environments with rela-

tive ease.

1. Introduction

The past decade has seen a rapid increase and improve-

ment in the automation offered on consumer automobiles.

This may be attributed to a corresponding growth in the

technology and engineering required to make such automa-

tion reliable enough for widespread deployment. Based on

the definitions provided by SAE International, vehicles with

partial and conditional automation are already used in no-

table numbers across the world. Such vehicles would only

become more ubiquitous with the improvement in technol-

ogy, increase in the number vehicles offered with some form

of autonomy, and the dwindling costs associated with such

†Video results
‡Dataset: cvrr.ucsd.edu/publications/index.html

Figure 1: Illustration of the intended goal our research. The

proposed method is capable of detecting and segmenting

driver hands, localizing them in 3D, and identifying the ob-

ject each hand may be holding.

vehicles. Moreover, vehicles with automation will see a

continued growth in the level of automation offered, with

the end goal being complete automation - a situation where

the driver is just another passenger. However, until a point

of complete automation is reached, the perils of partial au-

tomation need to be dealt with.

The dangers of partial automation primarily arise from

the need for the driver to be constantly monitoring the drive,

or in the case of conditional automation, for the driver to be

ready to take-over control at any given time. Yet decades

of human factors research has shown that humans are not

particularly good at tasks that require vigilance and sus-

tained attention over long periods of time [8]. It is also well

known that rising levels of automation will lead to declining

levels of awareness on the part of the human operator [3].

This seems to suggest that it is not a matter of if, but when

a driver will resort to non-ideal behavior, especially since

most automated systems are designed to free the driver to

do something else of interest. Thus, it is of extreme impor-

tance to monitor the driver and assess his/her readiness to

take control in case of an unexpected failure of the system.

1216

https://www.youtube.com/watch?v=4dxSdFbnTFM&list=PLUebh5NWCQUah_cBzcRlZvoSMa-7GC3FL
http://cvrr.ucsd.edu/publications/index.html


This is the irony of automation, whereby the more advanced

a system is, the more crucial may be the contribution of the

human operator.

In this study, we propose a system that goes a long way

towards monitoring a driver and assessing his/her readiness.

In particular, we monitor and analyze driver hands beyond

what is currently possible with just tactile sensors on the

steering wheel. The main contributions of this paper are

as follows: We propose a convolutional neural network ca-

pable of detecting and segmenting driver hands from depth

images. This makes localizing the hands (in 3D) inside a ve-

hicle cabin possible, which in turn enables the calculation of

the distance of each hand to critical control elements like the

steering wheel. In addition to this, the network is capable

of identifying objects held by the driver during a naturalistic

drive. All this is made feasible by a form of semi-automatic

data labeling inspired by chroma-keying which we describe

in detail.

2. Related Work

To the best of our knowledge, there is no existing work

that addresses the problem of segmenting instances of driver

hands in a naturalistic driving setting. We therefore provide

a brief overview of works that pertain to driver and/or pas-

senger hands inside a vehicle cabin.

The work in [4] outlines common challenges associated

with detecting driver hands in RGB images in addition to

proposing a dataset to train such detectors. The authors

train and evaluate a few such detectors based on Aggregate

Channel Features (ACF) as outlined in [6]. In addition to

just detecting driver hands, the authors in [15] also track

both hands of the driver using a tracking-by-detection ap-

proach. They also leverage common hand movement pat-

terns to stably track hands through self occlusions. Moving

over to the domain of human computer interaction, studies

like [5,11,14] identify driver hand gestures from a sequence

of depth images. These methods directly produce the iden-

tified gesture from raw depth images and do not localize

driver hands as an intermediate step. There have also been

numerous contributions in the field of hand pose estimation,

both inside a vehicle and otherwise. We refer the reader

to [17] for a detailed survey on this subject. Finally, there

has been noticeable work on analyzing driver hand activity.

In [12], the authors extract hand-designed features around

pre-defined regions of interest like the steering wheel, info-

tainment control etc. to identify regions with high hand ac-

tivity. The authors in [13] take a different approach to iden-

tifying regions of activity by detecting and tracking hands

for short periods of time and analyzing the temporal dy-

namics of hand locations. They also go on to detect abnor-

mal events and activities. More recently, the authors in [2]

have proposed a unique dataset for detecting and tracking

driver hands inside vehicles. This dataset is captured using

a Leap Motion device mounted behind the steering wheel.

Although this approach makes detecting hands on the wheel

much simpler, it also forgoes the capability to know where

the driver hands are, if not on the wheel.

In all studies listed above, the major limitation arises

from the inherent depth ambiguity. The input to most meth-

ods are RGB images, severely restricting the utility of the

outputs they produce. Simply localizing hands in 2D does

not inform us about crucial information like the 3D distance

to different control elements inside a vehicle cabin. More-

over, all these methods are heavily dependent on the camera

view used for training, and re-training for new views would

require devoting considerable efforts towards ground truth

annotation. Even for methods relying on depth data, the

end goal is achieved without actually localizing the hands.

This is primarily due to the lack of sufficiently labeled depth

data to train such algorithms. In this study, we overcome all

these stumbling blocks and produce thousands of labeled

depth images with relative ease. This method may also be

replicated with little effort in new environments, and for dif-

ferent camera views.

3. Semi-Automatic Labeling based on Chroma-

Keying

The key contribution of our work is a method for gen-

erating large amounts of labeled data in a relatively cheap

manner for the task of hand instance segmentation. As

is well known, deep learning methods although extremely

powerful and accurate, require large amounts of labeled

data to learn and generalize well. This requirement be-

comes even more unwieldy for tasks like semantic and in-

stance segmentation, where pixel level annotations are re-

quired. Such tasks entail several hundred hours of human

effort to generate enough samples for successfully train-

ing networks. These difficulties are usually overcome by

hiring large groups of human “annotators”, either directly

or through a marketplace such as the Amazon Mechanical

Turk. This approach has its own limitations. First, this

requires some form of monetary incentive which may be

beyond the resources that are available. More importantly,

networks trained on a particular dataset tend to perform best

on similar data. Therefore, to ensure similar performance

on the same task for a different set of data, more retrain-

ing on such data would be required; this leads to more ex-

pensive annotations. In this section, we describe a form

of semi-automatic labeling based on chroma-keying. This

method can be replicated in different environments and even

for different tasks with relative ease.

3.1. Acquiring Instance Masks

Chroma-keying is a technique popular in the visual ef-

fects community for layering images i.e. separating specific

foregrounds from a common background based on color

1217



Algorithm 1 Pseudocode for obtaining instance masks for

a given sequence by chroma-keying

Input: {rgbregi , depth
reg
i }

N
i=1

⊲ registered RGB and depth for each frame i

Output: {inst masksi}
N
i=1

⊲ binary mask for each hand instance in every frame

for i← 1 to N do

r
reg
i ← rgb

reg
i (:, :, 1) ⊲ red channel

g
reg
i ← rgb

reg
i (:, :, 2) ⊲ green channel

b
reg
i ← rgb

reg
i (:, :, 3) ⊲ blue channel

Y
reg
i ← 0.3 · rregi + 0.59 · gregi + 0.11 · bregi

⊲ relative luminance

masks← (gregi − Y
reg
i ) ≥ threshold

{maskj}j ← CCL(masks)
⊲ connected component labeling

/*The block below is for cases where two instances

might be merged in 2D, but are disjoint in 3D*/

for each maskk ∈ {maskj}j do

depth pixels← depth
reg
i (maskk)

⊲ depth pixels corresponding to each mask

opt thresh← otsu(depth pixels)
⊲ get optimal threshold using Otsu’s method

maskk1
← (depth pixels ≥ opt thresh)

maskk2
← (depth pixels < opt thresh)

{maskj}j ← {maskj}j\{maskk}
{maskj}j ← {maskj}j

⋃
{maskk1

,maskk2
}

end for

/*The block below is for cases where a hand might be

partially occluded resulting in disjoint regions*/

Require: For each element in {maskj}j , the area in

pixels is known.

inst masksi ← {}
while {maskj}j 6= φ do

maskj′ ← largest mask ∈ {maskj}j
if Area(maskj′) ≤ 20 then

{maskj}j ← {maskj}j\{maskj′}
continue

end if

for each maskk ∈ {maskj}j , k 6= j′ do

dist← Distance 3d(maskk,maskj′)
⊲ distance is calculated between centroids using eq. 1

if dist ≤ 7cm then

{maskj}j ← {maskj}j\{maskk}
{maskj}j ← {maskj}j\{maskj′}
maskj′ ← maskj′

⋃
maskk

⊲ combine maskk and maskj′

end if

end for

inst masksi ← inst masksi
⋃
{maskj′}

end while

end for

HandyNet Loss

Algorithm 2

Algorithm 1

In-painted 

Registered 

Depth

Registered 

RGB

Train only

Train and Test

instance mask

object

class

Figure 2: Block diagram depicting proposed training and

testing methodology.

hues. This usually involves the use of green screens and

body suits that visually contrast the object of interest from

the other elements of scene, and hence can be separated with

ease.

To leverage this technique for the task at hand, we make

use of a Kinect v2 sensor comprising of an RGB and in-

frared (depth) camera with a small baseline. Note that we

chose a Kinect for its ease of use, excellent community sup-

port and high-resolution depth images; however, any cali-

brated pair of RGB and depth cameras may be used. The

input to the proposed network is the in-painted, registered

version of the raw depth image, and the desired outputs are

the instance masks for each hand of the driver. The reg-

istered RGB and depth images are captured using Kinect

drivers provided by OpenKinect [1], and the depth images

are in-painted by applying cross-bilateral filters at three im-

age scales [16]. The instance masks for supervision during

training are obtained by chroma-keying the registered RGB

images using the procedure detailed in Algorithm 1. This

requires the driver (subject) to wear green gloves as shown

in Figure 3. We also make the subjects wear red wrist bands

to ensure a clear demarcation for where the wrist ends and

the hand begins. Additionally, we add soft lights inside the

vehicle cabin to ensure the green gloves are uniformly lit.

Note that good lighting is extremely important for accurate

chroma-keying. Registering the RGB and depth images re-

sults in a one-to-one correspondence between every pixel

in both images. This ensures that the masks obtained by

chroma-keying the registered RGB images are valid super-

vision for the registered depth images. This way, the regis-

tered RGB images are only used for labeling hand instances

during training, and are unused when the trained network is

deployed. This entire procedure is illustrated in Figure 2,

and example inputs and labels generated by this procedure

are shown in Figure 3.

At this point, we would like to point out two caveats

of this approach. First, two hand instances are considered

unique when their distance in 3D is sufficiently large. This

1218



0

500

1000

1500

2000

2500

3000

3500

4000

(a) Undistorted, registered

depth image

1000

1500

2000

2500

3000

3500

4000

(b) Undistorted, registered,

in-painted depth image

(c) Registered RGB

image

(d) Hand instance with

label no object

(e) Hand instance with

label smartphone

Figure 3: Input and desired outputs used to train the proposed network: The input to the network (shown in (b)) is

obtained after smoothing the raw undistorted depth (shown in (a)), while the desired outputs ((d) and (e)) are obtained from

the registered RGB image (shown in (c)) using Algorithms 1 and 2.

then implies that two instances very close to each other (for

example, when a driver clasps both hands) cannot be sepa-

rated. We do not try to separate such instances and force the

proposed network to detect such merged instances. Alter-

natively, one could make each subject wear two differently

colored gloves. Second, one may argue that any algorithm

trained on data with subjects wearing gloves and captured

under controlled lighting may not generalize well to real

world scenarios. We disprove such arguments by provid-

ing large amounts of qualitative results (images and videos)

on multiple hours of real world drives, with subjects not

present in the training split.

Although using depth images as input allows us to use

chroma-keying for cheap supervision, we are motivated by

other factors as well. First, using depth images as input

circumvents any privacy issues that may arise with having

cameras inside cars. Second, depth cameras are relatively

unaffected by harsh illumination or lack thereof (e.g. during

nighttime driving). Finally, once driver hands are located in

depth images, it is straightforward to calculate where the

hands are in 3D, and how far they are from critical control

elements like the steering wheel. Such information may

be extremely useful to gauge the readiness of a driver to

takeover control from a semi-autonomous/autonomous ve-

hicle.

For a pixel at (x, y)T in an undistorted depth image, the

corresponding 3D point location (X,Y, Z)T is obtained as

follows:

X =
(x− cx) · d

fx
, Y =

(y − cy) · d

fy
, Z = d, (1)

where d is the depth value at pixel (x, y)T , (cx, cy)
T is the

principal point, and {fx, fy} are the focal lengths of the

depth camera. For this study, we use the parameters pro-

vided by [16] without any re-calibration.

3.2. Acquiring Handheld Object Labels

In addition to locating hand instances in depth images,

we also aim to identify objects in driver hands. To facilitate

Table 1: List of handheld object classes and types of objects

included in each class.

Class ID Class Label Objects Included

0 no object -

1 smartphone cellphones, smartphones

2 tablet iPad, Kindle, tablets

3 drink cups, bottles, mugs, flasks

4 book newspapers, books, sheets of paper

training for the same, we label each hand instance (obtained

using Algorithm 1) in a semi-automatic manner with min-

imal human input. We do this by following the procedure

detailed in Algorithm 2, the only requirement being that the

driver (subject) holds the same object in the same hand for

the entirety of a captured sequence. Multiple sequences are

then captured with different subjects and different objects

in each hand, one hand at a time. The variety of handheld

objects considered for this study and the semantic classes

they fall under are listed in Table 1.

4. HandyNet

4.1. Network Architecture

HandyNet is largely based on the state-of-the-art Mask

R-CNN [7] architecture. This architecture consists of two

stages in sequence. First, the Region Proposal Network

(RPN) generates class agnostic regions of interest (RoIs).

We use the first 4 convolutional stages of ResNet-50 with

features pyramids [9] as the backbone for this purpose.

The input to this network is the undistorted, registered, in-

painted depth image as the sole channel.

The second stage of the Mask R-CNN architecture is

made of task specific heads. In our HandyNet architec-

ture, we retain the structure of the mask head, and split the

bounding box regression and classification head into two

separate heads. While the mask and bounding box regres-

sion heads receive the same RoI from the RPN, the clas-

1219



Algorithm 2 Pseudocode for labeling handheld objects for

a given sequence

Require: The driver holds the same object using the same

hand for the entire duration of the sequence

/*Note that only one instance per frame is assigned label;

other instances are assigned 0 corresponding to no handheld

object. This is valid by the requirement stated above.*/

Input: {inst masksi}
N
i=1, where

inst masksi = {mask1i , · · · ,maskMi

i },
⊲ binary mask for each hand instance in every frame

label ∈ {1, 2, 3, 4},
⊲ label for the object used in the sequence

m1 ∈ {1, · · · ,M1},
⊲ user provided instance associated with label for the first

frame

Output: {oi}
N
i=2

⊲ object label for each hand instance in every frame

1: o1 ← {0}
M1 ⊲ initialize all instances with zeros

2: o1(m1)← label

⊲ assign label to instance holding object

3: last← maskm1

i

⊲ store last instance holding object

/*Find instance in current frame closest to last known

instance holding object*/

4: for i← 2 to N do

5: min dist←∞
6: for j ← 1 to Mi do

7: cur dist← Distance 3d(mask
j
i , last)

⊲ distance is calculated between centroids using eq. 1

8: if cur dist ≤ min dist then

9: mi ← j

10: min dist← cur dist

11: end if

12: end for

13: oi ← {0}
Mi ⊲ initialize all instances with zeros

/*The following condition handles cases where the

hand holding the object is temporarily occluded*/

14: if min dist ≤ 15cm then

15: last← maskmi

i

16: oi(mi)← label

17: end if

18: end for

sification head receives a slightly larger region of interest

(RoI+). This follows from the reasoning that unlike con-

ventional object classification, we are attempting to classify

the handheld object for a given hand instance. This slightly

larger RoI+ might be favorable for identifying larger objects

like tablets and newspapers. For an RoI parametrized by

(x, y, w, h), we define RoI+ parametrized by (x′, y′, w′, h′)
as follows:

Figure 4: Head Architecture of HandyNet: We retain the

mask head from Mask R-CNN [7] but separate the classi-

fication and bounding box regression head. The classifica-

tion head receives a larger region of interest (RoI+) to better

identify larger handheld objects.

x′ = x− α · w, y′ = y − α · h,

w′ = (1 + 2α) · w, h′ = (1 + 2α) · h,
(2)

where α is the factor by which the region of interest is

expanded. We choose the value of α based on cross valida-

tion.

4.2. Implementation Details

As in Mask R-CNN, an RoI is considered positive if it

has IoU with a ground-truth box of at least 0.5 and negative

otherwise. We feed the input images at full-resolution i.e.

without resizing. The training and inference configurations

for HandyNet are listed in Table 2. We make changes to

the original configurations from Mask R-CNN to account

for the average number of hand instances in a typical depth

image, the scale of the hand instances encountered, and the

more structured nature of the task at hand. All variants of

the proposed network are trained for a total of 120 epochs

using the following schedule: First, the RPN (backbone) is

trained for 40 epochs with a learning rate of 0.001. Next,

the fourth stage of the ResNet-50 backbone (RPN) along

with all task specific heads are trained for an additional 40
epochs with the same learning rate. Finally, the entire net-

work is trained for 40 epochs with a reduced learning rate of

0.0001. We use a momentum of 0.9 and a weight decay of

0.0001 throughout. Note that HandyNet is initialized from

scratch with random weights. This is made possible by the

huge labeled dataset available for training (see Table 3).

1220



Table 2: Training and inference configurations used

for HandyNet.

Input image size 424× 512

Batch size 6

RPN1 anchor scales {16, 32, 64, 128}

RPN1 anchor aspect ratios {0.5, 1, 2}

Number of anchors per

image used for RPN1 training
64

Number of RoIs per image

retained for training the heads
20

Ratio of positive RoIs

per image
0.1

RoIs retained post NMS

during training
100

RoIs retained post NMS

during inference
50

1 Regional Proposal Network

5. Experimental Analysis

To test the viability of our semi-automatic labeling ap-

proach, we split the entire data as follows: the training

and validation sets were mostly captured indoors with suit-

able lighting for chroma-keying. All subjects were wearing

green gloves with red wrist bands as described in Section 3.

The subjects were asked to imitate naturalistic driving while

holding different objects. The testing set is mostly com-

prised of data from real world drives i.e. the subject is actu-

ally driving the car. The subjects may interact with different

objects as they would normally do in a drive. The remaining

data in the testing set is captured indoors in a manner similar

to the training/validation set. This is done to ensure that all

objects included in the training set are covered in the test set

as well. Moreover, all data is captured on a Tesla Model S

testbed, where the drivers can take their hands off the wheel

for extended periods of time. More details on each split are

provided in Table 3. In addition to this, we provide some

qualitative results in Figure 5 from completely naturalistic

drives i.e. real drives where subjects are not wearing gloves

or wrist bands. We also ensure that no drivers (subjects)

overlap between different splits.

5.1. Timing

Training: HandyNet with a ResNet-50-C4 RPN takes

about 52 hours to train from scratch on our system with a

6 core Intel 990X processor and a Titan X Maxwell GPU.

The training data is stored in a SATA III Solid State Drive

(SSD).

Inference: Inference for HandyNet using the same sys-

tem above runs at approximately 15Hz. This includes the

Table 3: Details of the train-val-test split used for the exper-

iments.

Split
Number of

Unique Drivers

Number of

Frames

Number of

Hand Instances

Fraction of

Naturalistic

Driving Data

Training 7 128, 317 219, 369 0.2

Validation 1 6, 897 13, 525 0.0

Testing 2 36, 497 69, 794 0.9

Table 4: Ablation results on validation split: Mask AP for

HandyNet with different values of expansion factor α.

α AP AP50 AP75 APS APM

0.0 28.8 48.7 26.0 24.7 43.3
0.1 28.9 49.1 26.5 25.1 43.4
0.2 29.2 49.3 27.1 25.4 43.8
0.3 29.9 49.8 27.3 26.2 43.9
0.4 30.0 49.7 27.7 28.6 44.0
0.5 30.6 51.8 28.0 29.4 44.9

0.6 30.5 51.7 27.8 29.6 44.5

time for fetching and pre-processing the data. The relatively

smaller RPN (with ResNet-50-C4 backbone), fewer number

of anchor scales, and the fewer number of RoIs after non-

maximal suppression all contribute to making the network

run faster during inference.

5.2. Ablation Experiments

We perform comprehensive ablations on HandyNet us-

ing the validation and testing splits. We report stan-

dard COCO metrics [10] including AP (averaged over IoU

thresholds), AP50, AP75, and APS , APM (AP at small and

medium scales). We do not provide APL (AP for large ob-

jects) due to the lack of large instances. Note that AP is

evaluated using mask IoU.

First, we determine the value of the hyperparameter α

through cross validation. Table 4 lists the various APs for

α ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} on the validation split.

We see that expanding the RoI improves the overall perfor-

mance consistently until α = 0.5, after which we observe

a saturation point. Increasing α beyond 0.5 only seems to

benefit object classification for very small hand instances,

which are quite seldom. Hence, it was sensible for us to ig-

nore such rare cases and optimize the performance for the

more commonly observed hand sizes. With this reasoning,

we chose HandyNet with α = 0.5 for reporting results on

the testing set.

Next, we provide both class agnostic and class sensitive

results for the best performing model on the testing split

(Table 5). Note that the class in our task is the associated

1221



Table 5: Class agnostic and class sensitive results on test-

ing split: Mask AP for best performing model (α = 0.5).

Type of

evaluation
AP AP50 AP75 APS APM

class agnostic 42.9 83.3 40.4 34.7 50.8

class sensitive 30.3 51.2 27.9 28.5 44.0

handheld object class and not the semantic class itself. We

see that the class agnostic performance is robust for all AP

metrics, indicating our networks capability to successfully

localize and segment driver hands. This also proves that our

network generalizes well to naturalistic driving data cap-

tured with drivers not part of the original training split. As

expected, the class sensitive APs are lower in comparison

to the class agnostic ones, but not by much. Based on the

qualitative and quantitative evaluation we have conducted,

we believe that our network successfully identifies objects

that are not too dissimilar to the objects it has been trained

on. However, for images with considerably different hand-

held objects, or in situations where the objects are not com-

pletely visible due to the manner in which they are grasped,

our network fails to produce the correct output. These is-

sues could probably be solved by either gathering more di-

verse data, changing the camera view, or by incorporating

temporal information. We leave these questions for future

work.

6. Concluding Remarks

In this study, we present HandyNet - a CNN that uses

depth images to execute hand related tasks that may be of

use in autonomous and semi-autonomous vehicles of the fu-

ture. This includes detecting and localizing driver hands

in 3D within a vehicle cabin, and additionally identifying

handheld objects. Training such a network is made possible

by our proposed method for semi-automatic labeling based

on chroma-keying. The entire data used to train HandyNet

from scratch (128, 317 images and 219, 369 hand instances)

was captured and labeled within a single day. This demon-

strates the ease with which similar networks can be trained

for new environments and different camera views. We hope

this work inspires more ways to produce cheaply labeled

data for related tasks, especially when the alternative is sev-

eral hundred hours of human effort.

7. Acknowledgments

We gratefully acknowledge all our sponsors, and espe-

cially Toyota CSRC for their continued support. We would

also like to thank our colleagues at the Laboratory for In-

telligent and Safe Automobiles (LISA), UC San Diego for

their assistance in capturing the proposed dataset.

References

[1] libfreenect2. doi: https://doi.org/10.5281/

zenodo.50641.

[2] G. Borghi, F. Elia, R. Vezzani, and R. Cucchiara. Hands on

the wheel: a dataset for driver hand detection and tracking.

In 8th International Workshop on Human Behavior Under-

standing (HBU), 2018.

[3] S. M. Casner, E. L. Hutchins, and D. Norman. The chal-

lenges of partially automated driving. Communications of

the ACM, 59(5):70–77, 2016.

[4] N. Das, E. Ohn-Bar, and M. M. Trivedi. On performance

evaluation of driver hand detection algorithms: Challenges,

dataset, and metrics. In Intelligent Transportation Systems

(ITSC), 2015 IEEE 18th International Conference on, pages

2953–2958. IEEE, 2015.

[5] N. Deo, A. Rangesh, and M. Trivedi. In-vehicle hand ges-

ture recognition using hidden markov models. In Intelli-

gent Transportation Systems (ITSC), 2016 IEEE 19th Inter-

national Conference on, pages 2179–2184. IEEE, 2016.

[6] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature

pyramids for object detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 36(8):1532–1545, 2014.

[7] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.

In Computer Vision (ICCV), 2017 IEEE International Con-

ference on, pages 2980–2988. IEEE, 2017.

[8] M. Kyriakidis, J. C. de Winter, N. Stanton, T. Bellet, B. van

Arem, K. Brookhuis, M. H. Martens, K. Bengler, J. Ander-

sson, N. Merat, et al. A human factors perspective on au-

tomated driving. Theoretical Issues in Ergonomics Science,

pages 1–27, 2017.

[9] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

[10] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014.

[11] P. Molchanov, S. Gupta, K. Kim, and J. Kautz. Hand ges-

ture recognition with 3d convolutional neural networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition workshops, pages 1–7, 2015.

[12] E. Ohn-Bar and M. Trivedi. In-vehicle hand activity recogni-

tion using integration of regions. In Intelligent Vehicles Sym-

posium (IV), 2013 IEEE, pages 1034–1039. IEEE, 2013.

[13] E. Ohn-Bar and M. M. Trivedi. Beyond just keeping

hands on the wheel: Towards visual interpretation of driver

hand motion patterns. In Intelligent Transportation Systems

(ITSC), 2014 IEEE 17th International Conference on, pages

1245–1250. IEEE, 2014.

[14] E. Ohn-Bar and M. M. Trivedi. Hand gesture recognition

in real time for automotive interfaces: A multimodal vision-

based approach and evaluations. IEEE transactions on intel-

ligent transportation systems, 15(6):2368–2377, 2014.

[15] A. Rangesh, E. Ohn-Bar, and M. M. Trivedi. Hidden hands:

Tracking hands with an occlusion aware tracker. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 19–26, 2016.

1222

https://doi.org/10.5281/zenodo.50641
https://doi.org/10.5281/zenodo.50641


Figure 5: HandyNet results on naturalistic driving data (best viewed in color): Results consist of drivers and objects not

part of the training, validation and test sets. Operating on depth data allows us to gauge accurate distances to control elements

like the steering wheel (see colorbar above) and the interactive display (see bottom left image). For our experiments, the

steering wheel and interactive display were labeled by a human as part of a one-time calibration setup.

[16] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

European Conference on Computer Vision, pages 746–760.

Springer, 2012.

[17] J. S. Supančič, G. Rogez, Y. Yang, J. Shotton, and D. Ra-

manan. Depth-based hand pose estimation: Methods, data,

and challenges. International Journal of Computer Vision,

pages 1–19.

1223


