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Abstract

Video prediction models based on convolutional networks,

recurrent networks, and their combinations often result in

blurry predictions. We identify an important contributing

factor for imprecise predictions that has not been studied

adequately in the literature: blind spots, i.e., lack of ac-

cess to all relevant past information for accurately predict-

ing the future. To address this issue, we introduce a fully

context-aware architecture that captures the entire available

past context for each pixel using Parallel Multi-Dimensional

LSTM units and aggregates it using blending units. Our

model outperforms a strong baseline network of 20 recurrent

convolutional layers and yields state-of-the-art performance

for next step prediction. Moreover, it does so with fewer

parameters than several recently proposed models, and does

not rely on deep convolutional networks, multi-scale archi-

tectures, separation of background and foreground modeling,

motion flow learning, or adversarial training. These results

highlight that full awareness of past context is of crucial

importance for video prediction.

1. Introduction

Blurry predictions are fundamentally a manifestation of

model uncertainty, which increases if the model fails to suffi-

ciently capture relevant past information. Unfortunately, this

source of uncertainty has not received sufficient attention in

the literature. Most current models are not designed to en-

sure that they can properly capture all possibly relevant past

context. This paper attempts to address this gap. Quantita-

tive improvements on metrics are accompanied by results of

high visual quality showing sharper future predictions with

reduced blur or other motion artifacts. Since the proposed

models do not require separation of content and motion or

novel loss functions to reach the state of the art, we find

that full context awareness is the crucial ingredient for high

quality video prediction.

2. Missing Contexts in Other Network Archi-

tectures

Blurry predictions can result from a video prediction

model if it does not adequately capture all relevant informa-

tion in the past video frames which can be used to reduce

uncertainty. Figure 1 shows the recurrent connections of a

pixel at time t with a 3× 3 convolution between two frames

(left) and the information flow of a ConvLSTM predicting

the pixel at time T + 1 (right). The covering context grows

progressively over time (depth), but there are also blind spots

which cannot be used for prediction. In fact, as can be seen

in Figure 1 (right, marked in gray color), frames in the recent

past have larger blind areas. Due to this structural issue,

the network is unable to capture the entire available context

and is likely to miss important spatio-temporal dependen-

cies leading to increased ambiguity in the predictions. The

prediction will eventually fail when the object appearance or

motion in videos changes dramatically within a few frames.

One possible way to address limited context, widely used

in CNNs for image analysis, is to expand context by stacking

multiple layers (sometimes with dilated convolutions [13]).

However, stacking layers still limits the available context to

a maximum as dictated by the network architecture, and the

number of additional parameters required to gain sufficient

context can be very large for high resolution videos. Another

technique that can help is using a multi-scale architecture,

but fixed scale factors may not generalize to all possible

objects, their positions and motions.

3. Method

We introduce the Fully Context-aware Video Prediction

model (ContextVP) — an architecture that avoids blind spots
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Figure 1: (left) The Convolutional LSTM (ConvLSTM) context dependency between two successive frames. (right) The

context dependency flow in ConvLSTM over time for frame t = T . Blind areas shown in gray cannot be used to predict the

pixel value at time T + 1. Closer time frames have larger blind areas.
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Figure 2: (top) Context dependency between two frames when using Parallel MD-LSTM (PMD) units for five directions: t−,

w−, w+, h−, and h+, where h, w, and t indicate the current position for height, width, and time dimensions. (bottom) The

combined context dependency flow for frame t = T in the proposed architecture. All available context from past frames is

covered in a single layer regardless of the input size.

by covering all the available context by design. Its advan-

tages are:

• Since each processing layer covers the entire context,

increasing depth is only used as necessary to add com-

putation power, not more context. A priori specification

of scale factors is also not required.

• Compared to models that utilize increased depth to

cover larger context such as our baseline 20-layer mod-

els, more computations can be parallelized.

• Compared to state-of-the-art models from recent liter-

ature, it results in improved performance without the

use of separation of motion and content, learning opti-

cal flow or adversarial training (although combinations

with these strategies may further improve results).

Let xT
1 = {x1, ..., xT } be a given input sequence of

length T . xt ∈ R
H×W×C is the t-th frame, where t ∈

{1, ..., T}, H is the height, W the width, and C the number

of channels. For simplicity, assume C = 1, xT
1 is then a

cuboid of pixels bounded by six planes. The task is to predict

p future frame(s) in the sequence, x
t+p
t+1 = {xt+1, ..., xt+p}

(next-frame prediction if p = 1). Therefore, our goal is

to integrate information from the entire cuboid xT
1 into a

representation at the plane where t = T , which can be

used for predicting x
t+p
t+1. This is achieved in the proposed

model by using fully context-aware layers, each consisting

of two blocks. The first block is composed of Parallel MD-

LSTM units (PMD) that sequentially aggregate information

from different directions. The second block is the Context

Blending Block that combines the output of PMD units for

all directions. The context covered using PMD units for each

direction (top) and the combined context from past frames

(down) are visualized in Figure 2.

3.1. Parallel MD­LSTM Unit

Parallel computing units were used in the PyraMiD-

LSTM [12] architecture and the idea of using LSTM to

aggregate information from all directions was only explored

in a limited setting (2D/3D image segmentation). They are

mathematically similar to ConvLSTM units but our terminol-

ogy highlights that it is not necessary to limit convolutional

operations to spatial dimensions and LSTM connectivity to

the temporal dimension as is conventional. PMD units can

be used to aggregate context along any of the six directions

available in a cuboid. Three directions are shown: t-, w+,

and h+. At each plane, the local computation for each pixel

is independent of other pixels in the same plane, so all pixels

are processed as parallel using the convolution operation.

The computational dependencies across planes are modeled

using the LSTM operation. Computations for each PMD

unit are explained mathematically below.
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For any sequence of K two dimensional planes xK
1 =

{x1, ..., xK}, the PMD unit computes the current cell and

hidden state ck, sk using input, forget, output gates ik, fk, ok,

and the transformed cell c̃k given the cell and hidden state

from the previous plane, ck−1, sk−1.

ik = σ(Wi ∗ xk +Hi ∗ sk-1 + bi),

fk = σ(Wf ∗ xk +Hf ∗ sk-1 + bf ),

ok = σ(Wo ∗ xk +Ho ∗ sk-1 + bo)

c̃k = tanh(Wc̃ ∗ xk +Hc̃ ∗ sk-1 + bc̃),

ck = fk ⊙ ck-1 + ik ⊙ c̃k,

sk = ok ⊙ tanh(ck).

(1)

Here (∗) is the convolution operation, and (⊙) the element-

wise multiplication. W and H are the weights for input and

the past state. The size of weight matrices are dependent

only on the kernel size and number of units. If the kernel

size is larger, more local context is taken into account.

As shown in Section 2, using a ConvLSTM would be

equivalent to running a PMD unit along the time dimension

from k = 1 to k = T , which would only integrate informa-

tion from a pyramid shaped region of the cuboid and ignore

several blind areas. For this reason, it is necessary to use four

additional PMD units, for which the conditioning directions

are aligned with the spatial dimensions, as shown in Figure 2

(top). We define the resulting set of five outputs at frame T

as sd where d ∈ D = {h-, h+, w-, w+, t-} denotes the recur-

rence direction. Together this set constitutes a representation

of the cuboid of interest xT
1 . Outputs at other frames in xT−1

1

are ignored.

3.2. Context Blending Block

This block captures the entire available context by com-

bining the output of PMD units from all directions at frame

T . This results in the critical difference from the traditional

ConvLSTM: the context directions are aligned not only with

the time dimension but also with the spatial dimensions. We

consider two ways to combine the information from different

directions.

Uniform blending (U-blending): this strategy was used

in the traditional MD-LSTM [2, 6] and PyraMiD LSTM [12].

It simply sums the output of all directions along the channel

dimension and then applies a non-linear transformation on

the result:

m = f((
∑

d∈D

sd) ·W + b), (2)

where W ∈ R
N1×N2 and b ∈ R

N2 are a weight matrix

and a bias. N1 is the number of PMD units, and N2 is the

number of (blending) blocks. f is an activation function.

Weighted blending (W-blending): the summation of

PMD unit outputs in U-blending assumes that the informa-

tion from each direction is equally important for each pixel.

We propose W-blending to remove this assumption and learn

the relative importance of each direction during training with

the addition of a small number of additional weights com-

pared to the overall model size. The block concatenates s

from all directions:

S =
[

st− sh− sh+ sw− sw+
]T

(3)

The vector S is then weighted as follows:

m = f(S ·W + b), (4)

where W ∈ R(5×N1)×N2 (5 is the number of directions).

Equations 2 and 4 are implemented using 1 × 1 convolu-

tions. We found that W-blending is crucial for achieving

high performance for the task of video prediction.

3.3. Directional Weight­Sharing (DWS)

Visual data tend to have structurally similar local patterns

along opposite directions. This is the reason why horizontal

flipping is a commonly used data augmentation technique in

computer vision. We propose the use of a similarly inspired

weight-sharing technique for regularizing the proposed net-

works. The weights and biases of the PMD units in opposite

directions are shared i.e. weights for h- and h+ are shared, as

are w- and w+. This strategy has several benefits in practice:

1) it lowers the number of parameters to be learned, 2) it

incorporates knowledge about structural similarity into the

model, and 3) it improves generalization.

4. Experiments

Network architecture: It consists of a stack of four

context-aware layers with skip connections that directly pre-

dicts the scaled RGB values of the next frame. All results

are reported for models using 3 × 3 convolutional kernels

for all PMD units, identity activation function in Equations 2

and 4 and training using L1 with Image Gradient Difference

Loss (GDL) [10].

Baseline: our baseline (ConvLSTM20) is a network con-

sisting of a stack of 20 ConvLSTM layers with kernels of

size 3 × 3. The number of layers was chosen to be 20 to

cover a large context and also since each layer in our 4-

layer model consists of 5 PMD units. Two skip connections

similar to our model were also used. The layer sizes are cho-

sen to keep the number parameters comparable to our best

model (ContextVP4-WD-big). Surprisingly, this baseline

outperforms the state of the art models.Note that it is less

amenable to parallelization compared to ContextVP mod-

els where PMD units for different directions can be applied

in parallel.

Car-mounted Camera Video Prediction (KITTI and

CalTech Pedestrian dataset): The model is trained on
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Figure 3: Qualitative comparisons from the test set among our best model (ContextVP4-WD-big), the baseline (ConvLSTM20),

and the state-of-the-art model (PredNet). All models are trained for next-frame prediction given 10 input frames on the KITTI

dataset, and tested on the CalTech Pedestrian dataset.

Table 1: Evaluation of Next frame prediction on the CalTech

Pedestrian dataset (trained on the KITTI dataset). All models

are trained on 10 frames and predicts the next frame. The

results are averaged over test videos. ConvLSTM20 is our

baseline containing 20 ConvLSTM layers. ContextVP4-WD-

small has half the hidden units at each layer compared to

ContextVP4-WD-big. Higher values of PSNR and SSIM,

lower values of MSE indicate better results. (+) This score

is provided by [7]. (*) The scores provided in Lotter et

al. [9] are averaged over nine frames (time steps 2–10 in their

study), but ours are computed only on the next predicted

frame. We therefore re-calculated the scores of PredNet

using their trained network. Our best models (ContextVP4-

WD: 4 layers with weighted blending and DWS) outperform

the baseline as well as current state-of-the-art methods with

fewer number of parameters.

Method
MSE

PSNR SSIM #param.
(×10

−3)

Copy-Last-Frame 7.95 23.3 0.779 -

+BeyondMSE [10] 3.26 - 0.881 -

*PredNet [9] 2.42 27.6 0.905 6.9M

Dual Motion GAN [7] 2.41 - 0.899 113M

ConvLSTM20 2.26 28.0 0.913 9.0M

ContextVP4-WD-small 2.11 28.2 0.912 2.0M

ContextVP4-WD-big 1.94 28.7 0.921 8.6M

the KITTI dataset [5] and tested on the CalTech Pedestrian

dataset [3]. Every ten input frames from “City”, “Residen-

tial”, and “Road” videos are sampled for training resulting in

≈41K frames. Frames from both datasets are center-cropped

and down-sampled to 128 × 160 pixels. We use the exact

data preparation as PredNet [9] for direct comparison.

The car-mounted camera videos are taken from moving

vehicles and consist of a wide range of motions. This dataset

has diverse and large motion of cars at different scales and

also has large camera movements. To make predictions for

such videos, a model is required to learn not only small

movement of pedestrians, but also relatively large motion of

surrounding vehicles and backgrounds.

We compare our approach with the Copy-Last-Frame

and ConvLSTM20 baselines as well as BeyondMSE, Pred-

Net, and Dual Motion GAN [7] which are the current best

models for this dataset. Note that the scores provided in

Lotter et al. [9] are averaged over nine frames (time steps

2–10 in their study), but ours are computed only on the next

predicted frame. Therefore, we re-calculated the scores of

PredNet for the next frame using their trained network. As

shown in Table 1, our four layer model with W-blending and

DWS outperforms the state-of-the-art on all metrics. Once

again, the smaller ContextVP network already matches the

baseline while being much smaller and more suitable for

parallelization. Some samples of the prediction results from

the test set are provided in Figure 3. Our model is able

to adapt predictions to the current scene and make sharper

predictions compared to the baseline and PredNet.
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