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Abstract

In this paper, we present an unsupervised learning ap-

proach for analyzing facial behavior based on a deep gen-

erative model combined with a convolutional neural net-

work (CNN). We jointly train a variational auto-encoder

(VAE) and a generative adversarial network (GAN) to learn

a powerful latent representation from footage of audiences

viewing feature-length movies. We show that the learned

latent representation successfully encodes meaningful sig-

natures of behaviors related to audience engagement (smil-

ing & laughing) and disengagement (yawning). Our results

provide a proof of concept for a more general methodol-

ogy for annotating hard-to-label multimedia data featuring

sparse examples of signals of interest.

1. Introduction

Automatically measuring human behavior is a long-

standing challenge in computer vision and machine learn-

ing, particularly in the case of detecting emotion or affect

in facial expressions [44, 4, 39, 42, 43, 24, 5, 45, 26, 40].

Traditionally, the approach to this problem relies on super-

vised techniques requiring large amounts of labeled data.

However, there is a relative paucity of labeled data in spon-

taneous, naturalistic settings [44]. As a result, most existing

work often centers around exaggeratedly posed behavioral

data, usually collected in controlled lighting conditions.

The application of existing techniques is infeasible when

applied to large-scale, noisy data featuring multiple faces in

poor and inconsistent lighting, such as in a movie-theater

setting. Nevertheless, machine learning algorithms capa-

ble of capturing audience behavior is of great importance to

filmmakers and studio executives during the test-screening

process, as it provides for rich, moment-to-moment insight

not possible with standard focus-group survey techniques

that would be impractical to collect via human annotation

for any but the smallest audiences [32].

Several recent attempts have been made to analyze

audience reactions within a movie theater [32, 6, 31].

Navarathna et al. [32] focused on the body-motion behav-

ior of audience members as measured by optical-flow fea-

tures, while Deng et al. [6] extracted patterns in the dy-

namics of facial landmarks over the course of a movie us-

ing a factorized variational autoencoder (FVAE). Our work

is distinguished from this earlier research by not operating

on predefined data features (namely optical flow and facial

landmarks) but rather on the raw image data of audience

members to identify salient facial behaviors such as smil-

ing, closed eyes (or sleeping) and yawning.

With recent advancements in deep feature representa-

tions [19], supervised deep-learning frameworks are be-

ing increasingly used for facial expression recognition and

landmark prediction [37, 14, 22, 23, 21, 13, 12, 43, 29, 30].

However, relatively few attempts have been made to inves-

tigate the representational capabilities of unsupervised deep

generative models (among the exceptions are [18, 9]). In

the present work, we exploit the use of variational autoen-

coders (VAEs) and generative adversarial networks (GANs)

to jointly train a model (VAE + GAN) that incorporates both

VAE’s reconstruction loss and GAN’s binary cross-entropy

loss terms to obtain a compact yet expressive latent repre-

sentation capable of capturing the signatures of various be-

haviors of interest.

1.1. Overview

A schematic providing an overview of our facial analy-

sis framework is shown in Fig. 1. Given video footage of an

audience observed during a feature-length film, we prede-

fine a video sub-volume occupied by each audience mem-

ber (Fig. 1 (a)). We then extract key gestures (Fig. 1 (b))

for each audience member using template matching (i.e.

normalized cross-correlations) as in [31]. Audience key-

gesture extraction is useful for identifying potentially “in-
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Figure 1. Overview. The pipeline consists of (a) predefining a volume for each audience member, (b) extracting the key gestures for each

audience member, (c) extracting audience face images using a max-margin object detector, (d) jointly training a VAE and GAN model and

(e) analyzing the latent representation.

teresting” frames, forming a subset many orders of mag-

nitude smaller than the total number of frames. Once

the person-specific key gestures have been extracted, we

apply a max-margin object detector [17] to extract faces

(Fig. 1 (c)). We then jointly train a VAE and a GAN

model as in [20] (Fig. 1 (d)) on these key-gesture images to

learn a nonlinear feature embedding from raw pixel space

to a latent-space embedding. Finally, we inspect whether

the learned representation carries meaningful information

about various facial expressions of interest (Fig. 1 (e)).

2. Related Work

Conventional methods of estimating the mental state of

an audience or viewer sentiment for long-term stimuli, such

as movies, stage plays, musical performances, and televi-

sion shows, are based on self-reports [2, 35]. In movies,

where audience responses can be quick and subtle (e.g., a

smile at a joke or a jump at a sudden scare), more fine-

grained annotation is desirable. However, due to the number

of subjects and the long-term nature of the signal, manually

annotating audience sentiment is impractically arduous.

Although wearable sensors that gather physiological

data (e.g., heart rate, galvanic skin response [3, 8, 33, 27])

or continuous dial ratings [34] could be used, vision-based

approaches are ideal, as they can be done unobtrusively and

allow viewers to watch the stimuli uninhibited. The first at-

tempt to automate viewer sentiment analysis was proposed

by Navarathna et al. [32], where a distribution of short-term

correlations of coarse motion features was shown to predict

the overall audience rating, although the small size of that

dataset limited the generality of the result.

When people watch video clips or listen to music, they

often experience an emotional response, which may mani-

fest through various bodily and physiological cues [15, 36].

These cues can often be detected by the trained—and even

untrained—eye. Training an algorithm to pick up on sig-

nals of sentiment, however, poses a considerable challenge.

Much of what is known about audience sentiment is vol-

unteered by the audience itself as a self-report. The use of

self-reporting for sentiment analysis is not only subjective

and labor intensive but also loses much of the fine-grained

detail of the sentiment’s “dynamics,” which can easily be

forgotten by a subject by the time the self-report is made.

Joho et al. [11] showed that observed facial behavior is

a useful measure of engagement, and Teixerira et al. [38]

demonstrated that smiling is a reliable feature of engage-

ment. McDuff et al. [28] further demonstrated the use of

smiles to gauge a test audience’s reaction to advertisements,

while Whitehill et al. [41] used facial expressions to inves-

tigate student engagement in a classroom setting. In par-

ticular, Whitehill et al. [41] showed that human observers

reliably conclude that another person is engaged based on

head pose, brows position as well as eye and lip motions.

A large body of work is dedicated to facial expression

detection [4, 39, 42, 25, 24, 5, 45]. Most approaches rely on

the extraction of facial action units or facial landmarks [7]

as input data, with annotations of the depicted expressions

provided by human raters operating on the original images.

Our approach differs in that it operates on the raw image

data rather than predefined features, allowing for potentially

richer and more useful features to be automatically learned

during training. 1

3. Methodology

The main aims of the work we describe here are twofold:

(1) Learn a latent representation of audience images suf-

ficiently rich to faithfully reconstruct them, and (2) iso-

late “signatures” within the latent representations that cor-

respond to behaviors of interest. In principle, a standard

autoencoder could achieve both of these aims. In practice,

however, standard autoencoders can become so sensitive to

1While other recent work employed facial analysis of raw images [1],

that work relied on a large, fully annotated dataset, while our method is

primarily driven by un- and semi-supervised methods.

21246



VAE decoder

Real

or

 fake

Input

image

GAN

Discriminator

Fake :      ,

Real : 

Convolutional layers

GAN generator

/

Figure 2. The VAE+GAN model: Raw input data, x, is encoded

into a latent representation, z, which is then decoded into a re-

construction, x̃. Separately, random noise, zp, is decoded into a

“fake” image, xp. The GAN loss tunes the network so that the

noise model generating zp structures the model so that randomly

generated images are indistinguishable from real images.

the training data that it can be difficult to determine whether

the learned representations correspond to genuinely inter-

esting features in the original data space. It is also often

the case that the latent space induced by such models are

difficult to explore and sample from.

With these concerns in mind, we deployed the machinery

of generative models, despite our being primarily interested

in latent encodings of existing data. We jointly trained a

VAE and a GAN as in [20], to which we refer the reader for

details about the architecture, to learn a latent representation

of behavior from audience faces. A schematic of the jointly

trained VAE and GAN model is depicted in Figure 2.

The VAE and GAN are jointly optimized by the com-

bined objective

L = Lprior + Llike + LGAN, (1)

where, Lprior is the Kullback-Leibler divergence between

the variational approximate posterior distribution q(z|x)
and the prior p(z). That is,

Lprior = DKL(q(z|x)||p(z)) (2)

The reconstruction error Llike is the VAE expected log

likelihood expressed in terms of the GAN discriminator,

namely

Llike = −Eq(z|x)[log p(Disl(x)|z)], (3)

where p(Disl(x)|z) is formulated as a Gaussian observa-

tion model, p(Disl(x)|z) = N (Disl(x)|Disl(x̃), I), with

Disl(x) being the lth hidden layer of the discriminator2

and x̃ being the output of the decoder Dec(z). The hidden

layer Disl(x) is itself a representation that corresponds to a

learned similarity metric; for details, the reader is referred

to [20]. The GAN objective is given by

(4)LGAN = − [log(Dis(x)) + log(1− Dis(Dec(zp)))

+ log(1− Dis(Dec(Enc(x))))] ,

where Dis(·) indicates the probability that an input is “real”

according to the discriminator.3

Two main qualities of the VAE+GAN approach inform

our analysis. First, by regularizing with a standard nor-

mal prior, the VAE objective encourages the model to learn

a representation with independent components with ex-

pected values near zero. Second, in addition to encourag-

ing sharper results from the decoder, the GAN objective

effectively reinforces the prior constraint by encouraging

standard normal noise to decode into plausible images with

the characteristics of the dataset. As recent work has ar-

gued that additional weight on the prior-matching part of the

VAE objective leads to learning disentangled representa-

tions [10], we suggest that this model formulation achieves

a similar aim, albeit through a different route. As we show

below, learning disentangled representations is particularly

useful when looking for behavioral signals of interest.

4. Experiments

We used footage of volunteer audiences watching

feature-length movies (roughly 90–120 minutes long). The

footage was captured at 15 frames per second with a reso-

lution of 1936 × 1456 pixels with infrared-sensitive cam-

eras and was filtered to eliminate flicker from the movie

screen [32]. A total of 237 participants were assigned to

moderately sized groups (15–25) and were shown one of 10

movies from the animation, comedy, and family genres.

Although not strictly necessary for the present analysis,

we winnowed the video data by discovering “key gestures”

within a predefined image region for each audience member

as in [31]. Intuitively, the method functions as a type of dic-

tionary learning for observed behaviors. We identified over

10,000 such key frames across our audience data. These

key frames include expressions such as looking away, smil-

ing, yawning, closed eyes, and neutral as labeled by human

raters.4 We used max-margin object detector [17] to isolate

the faces in these key frames and the Dlib C++ library [16]

to train the face detector. Any missed faces were manually

cropped for our experiments.

2There is some freedom of choice here, but see [20] for details.
3For more on the GAN objective, see [9].
4Note, that these labels were not used during model training.

31247



(a)

(b)

(c)

(d)

Figure 3. Attribute vectors and reconstructed images: Rows (a) and (c) are reconstructed neutral faces, while rows (b) and (d) are

reconstructed faces after adding smiling and yawning attribute vectors, respectively, to the neutral faces’ latent representations.

4.1. Facial Behavior from Latent Representations

There are two main ways for us to examine “interesting”

behaviors as captured by latent representations. The first is

to observe that all frames for a given subject, indexed by i,

will have similar encodings, µi = 1
Ti

∑Ti

t=1 zi(t); any de-

parture from this expected value, such that ‖zi(t)−µi‖> ε

for some ε at time t, flags the corresponding frame for fur-

ther inspection. The second way leverages the labels we

have available from human annotators, described below.

The interpretation of the results remains the same.

4.2. Vector Operations in Latent Space

Of particular interest is the observation that directions in

latent space are meaningful. That is, a signal corresponding

to a given behavior—say, smiling—takes the form of a vec-

tor that is shared across encodings [20]. Said another way,

the “smile vector” is essentially the same for everyone, and

such is the case for the other attributes of interest.

These attribute vectors are isolated by simply averaging

over all encodings of images containing the attribute and

subtracting off the average of encodings of images without

the attribute.5 Adding an attribute vector to an encoding of a

neutral face introduces that attribute to the decoded image.

See Figure 3 for an intuitive example of these attribute vec-

tors in action, demonstrated for the “smile vector” and the

“yawn vector.”6

In identifying these attribute vectors, we are defining a

signal-detection problem whose solution leads to the auto-

mated annotation of large video datasets. For frames such

that zi(t)−µi ≈ z
a, where za is a given attribute vector, the

suggestion is that subject i exhibits the attribute at time t.

We can also compute the dot product between an at-

tribute feature vector z
a and a latent feature vector zi(t),

with the attribute vector acting here as a matched filter to

increase the chance of detecting its presence in an encod-

5If the learned latent distribution is close to the standard-normal prior,

simple averaging over attribute-positive examples is often sufficient, since

the larger class of neutral-image encodings should be close to zero mean.
6Note in particular the whole-face effect of the introduction of the smil-

ing and yawning attributes, particularly around the eyes.
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ing. Figure 4 shows the result of this operation using the

“smile” and “yawn” vectors, showing a clear difference be-

tween samples with and without the given attribute.

In the case shown in Figure 4, attribute vectors were

isolated by differencing the with-attribute and without-

attribute encodings across the dataset, versus subtracting off

the individual without-attribute means. Although the alter-

native approach could have led to a better signal-to-noise

ratio, we sought to explore the approach in the more likely

scenario of having few data labels.7

5. Concluding Remarks

In this paper we presented a novel application of un-

supervised training of generative models to the problem

of identifying facial behaviors of interest in a large video

dataset. We suggest that this method is especially useful for

isolating latent representations of given behaviors that are

shared across individuals’ encoded data.

As this work was based on an exploratory analysis of

our data, future work will leverage our findings to pursue

representations with additional favorable properties, partic-

ularly with regard to maximizing behaviorally relevant sig-

nal against encodings of static features, such as identity.

7Yet another alternative would be to simply subtract off the individual

encoding means, µi, irrespective of label, although this would inevitably

dampen some useful signal if the attribute is present in the subject’s data.
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