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Abstract

Transformation of thermal infrared (TIR) images into vi-
sual, i.e. perceptually realistic color (RGB) images, is a
challenging problem. TIR cameras have the ability to see
in scenarios where vision is severely impaired, for exam-
ple in total darkness or fog, and they are commonly used,
e.g., for surveillance and automotive applications. How-
ever, interpretation of TIR images is difficult, especially for
untrained operators. Enhancing the TIR image display by
transforming it into a plausible, visual, perceptually realis-
tic RGB image presumably facilitates interpretation. Exist-
ing grayscale to RGB, so called, colorization methods can-
not be applied to TIR images directly since those methods
only estimate the chrominance and not the luminance.

In the absence of conventional colorization methods, we
propose two fully automatic TIR to visual color image trans-
Sformation methods, a two-step and an integrated approach,
based on Convolutional Neural Networks. The methods re-
quire neither pre- nor postprocessing, do not require any
user input, and are robust to image pair misalignments. We
show that the methods do indeed produce perceptually re-
alistic results on publicly available data, which is assessed
both qualitatively and quantitatively.

1. Introduction

This paper addresses the problem of transforming ther-
mal infrared (TIR) images to visual, i.e. perceptually real-
istic RGB images. The process of adding color to black-
and-white photography or visual grayscale images is com-
monly known as colorization. Colorization of grayscale vi-
sual images is an ambiguous, yet well-researched problem
[3,7,14,15,18,25,27,32,39]. It is ambiguous in the sense
that a grayscale intensity value can correspond to multiple
color values. Despite this ambiguity, recent methods show
impressive results, see e.g. the Colorful Image Colorization'

lhttp://richzhanq.qithub.io/colorization/

[39] and Let there be color!? [18] demos.

When colorizing visual grayscale images, the luminance
is taken from the input image and only the chrominance has
to be estimated. In contrast, colorizing TIR images requires
estimation of both luminance and chrominance. Further,
there is no direct relation between object appearance in TIR
(the thermal signature) to its visual appearance (the per-
ceived color). Hence, the problem at hand is more difficult
than that of grayscale colorization and requires a process
that generates RGB images from a semantic representation
of the TIR.

Recent grayscale and NIR colorization methods base
their success on Convolutional Neural Networks (CNNs)
[3, 4,7, 14, 18, 28, 32, 33, 34, 39] since they are able to
model the semantic representation of an image. These tech-
niques are dependent on large sets of training data. Finding
training data for visual grayscale colorization is simple. In
contrast, publicly available large datasets with correspond-
ing TIR and visual RGB image pairs are rare, only one suit-
able instance could be found; the KAIST-MS traffic scene
dataset [17]. For this dataset, a method for colorization of
TIR images must be able to handle image pair misalign-
ments. Since glass is opaque in TIR wavelengths, optics for
thermal cameras are typically made of materials like ger-
manium. Thus, it is difficult (but not impossible) to acquire
thermal and visual images with the same optical axis. As a
consequence, there are to our knowledge no available TIR
and visual image pair datasets with perfect pixel to pixel
correspondence.

Thermal infrared cameras, long-wave infrared (LWIR)
cameras in particular, have seen an increase in popularity
in recent years due to increased resolution and decreased
cost. While previously being mostly of interest for military
purposes, thermal cameras are entering new application ar-
eas [10]. Thermal cameras are now commonly used, e.g.,
in cars and in surveillance systems. The main advantages
of thermal cameras are their ability to see in total darkness,
their robustness to illumination changes and shadow effects,
and less intrusion on privacy [2]. Due to the variety of inter-

2http://hi.cs.waseda.ac.jp:8082/
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esting applications, but at the same time for humans difficult
interpretation, transformation of TIR is highly relevant. Ac-
curate transformation of TIR images significantly improves
observer performance and reaction times in, e.g., tasks that
involve scene segmentation and classification [35].

Contributions This paper proposes two methods, a two-
step and an integrated approach, that transform TIR images
into visual RGB images, a problem that is previously un-
addressed (except for [29]). The proposed methods convert
TIR images to plausible visual luminance and chrominance
and are robust to image pair misalignments. The meth-
ods are evaluated, both qualitatively and quantitatively, on a
publicly available dataset with convincing results.

2. Background
2.1. Infrared light and cameras

The infrared band of the electromagnetic spectrum is
large and is usually divided into smaller parts depending on
their properties. The near infrared (NIR) band is dominated
by reflected radiation and is dependent on illumination. Es-
sentially, it behaves just as visual light, except that we can-
not see it. In contrast, the thermal infrared (TIR) band is
dominated by emitted radiation. That is, the “light” received
by the camera is mostly emitted from the observed objects
and is related to the temperature of the object, not reflected
from a light source (such as the sun). TIR is commonly sub-
divided into mid-wave (MWIR, 3-5 um), long-wave (LWIR,
8-12 pm), and sometimes also far infrared (FIR). Objects
at normal everyday temperatures emit mostly in the LWIR
band (while a hot object like the sun emits most in the visual
band), thus making the LWIR band the most suitable for
night vision. In addition, cameras for LWIR based on mi-
crobolometer sensors have become more common and less
expensive in recent years.

2.2. Related work

Early visual grayscale colorization methods have been
heavily dependent on user input and interaction in the form
of e.g. scribbles [27], texture classification [31], extracted
features [16], as well as reference images for color trans-
fer [15, 19, 37]. In recent years, deep Artificial Neural
Networks, or more specifically, Convolutional Neural Net-
works (CNNs) [9, 26] have been successfully applied to
a wide range of topics, e.g. image classification [23], im-
age style transfer [21], and super resolution [6]. The suc-
cess of deep learning inspired automatic CNN based visual
grayscale image colorization methods [3, 4, 7, 14, 18, 32,

] as well as NIR colorization methods [28, 33, 34].

Automatic colorization methods have a few common
problems. First, colorization is, as previously mentioned,
an ambiguous problem that is heavily dependent on seman-
tics. Global priors, e.g. time of day, weather or location,

can affect the color scheme in an image. Current coloriza-
tion methods mitigate this problem either by using millions
of training images [18, 25, 39], by limiting the method to
a specific type of images (such as bedroom images [3], or
faces & churches [7]), or by including global priors from
the dataset itself (day/night, indoor/outdoor, etc.) [18]. The
latter approach requires a dataset with such annotations.

Second, colors, when automatically learnt, often tend to
be desaturated. Further, certain objects, e.g. cars, can have
various colors while other, related objects, e.g. police cars,
should have a specific color. The problem of diverse col-
orization is addressed in several works [3, 7, 14, 25, 32, 39].
Zhang et al. [39] and Larsson et al. [25] address the color
diversity problem by treating it as a classification rather than
a regression task. Larsson et al. [25] predict per-pixel his-
tograms and Zhang et al. [39] quantize the chrominance
space and use class-rebalancing at training time. The loss
is, however, per-pixel based and does not enforce spatial
coherence which occasionally results in speckle noise. Fur-
ther, Cao et al. [3] employ a conditional GAN architecture
and, unlike most other methods, do not use an autoencoder
structure. Deshpande et al. [7] use a Variational Autoen-
coder, and Guadarrama ef al. and Royer ef al. [14, 32] pro-
pose methods based on probabilistic PixelCNNss.

Third, a question arises: What is accurate colorization?
How does one provide a measure of the accuracy of a col-
orization? Some papers use image distance error measures
like Root Mean Square Error (RMSE), Peak Signal to Noise
Ratio (PSNR), or Structural Similarity (SSIM) [7, 25, 33]
while others provide user studies [3, 18] or Visual Turing
tests [14, 39].

The above-mentioned colorization methods estimate the
chrominance from the luminance, and are thus not directly
applicable to colorization of infrared images, where also the
luminance has to be estimated. A few recent publications
treat colorization of NIR images [28, 33, 34]. NIR images
are dominated by reflected radiation (such as sunlight) re-
flected on the objects in the scene. The difference between
NIR and visual red light is just a small shift in wavelength;
NIR is thus quite similar to visual light, especially to the red
channel of an RGB image. TIR images, on the other hand,
are dominated by emitted radiation, which is correlated to
the temperature, not the color, of the observed objects. The
color of objects can thus be retrieved from a TIR image only
by some higher level semantic information. Limmer et al.
[28] propose a method for transferring the RGB color spec-
trum to NIR images using deep multi-scale CNNs. In order
to preserve details, the high frequency features are trans-
ferred in a post-processing step. Sudrez et al. [34] utilize
a DCGAN architecture to colorize 64 x 64 patches of archi-
tectural NIR images. They improve the method in [33] by
separating estimation of each channel into a three channel
DCGAN architecture. No merging of patches is done and
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TIR input

Figure 1:

Overview of the architecture used in the two proposed methods.
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Visual output

Each gray block represents a

Convolution, BatchNormalization, and LeakyReLU layer and each green block consists of one Convolution,
BatchNormalization, Dropout, Concatenation, and ReLU layer. The second and third green block also con-
tains an Upsampling layer. The blue block contains a Convolution, BatchNormalization, and Dropout layer.

Arrows show skip connections between layers.

the method is evaluated per patch only.

Infrared color fusion or mapping, which are well stud-
ied research areas [ 1, 13, 35, 41, 40], combine multispectral
images by mixing pixel intensities or require a manually
selected reference image or object segmentations [12], in
contrast to the proposed methods.

Cross-domain image to image translation methods have
made much progress recently [8, 20, 29, 38, 42]. The un-
supervised method proposed by Liu ef al. [29] is evalu-
ated on thermal images in an early version of the paper.
The translated TIR to RGB images have cartooning effects,
probably due to regularization or a piecewise constant prior.
The main difference to our approach is that we achieve
smooth RGB results just by adjusting the objective func-
tion in a suitable way. We intended to directly compare to
the method by Liu et al., but we did not have access to their
TIR to RGB network model, neither on request.

In the following, we describe two novel methods that
transform full TIR images into visual, i.e. perceptually re-
alistic, RGB images, without requiring post-processing or
user input.

3. Method

The two proposed methods are based on one proposed
architecture. The architecture is inspired by the generator
architecture in [20], an overview can be seen in Fig. 1. It
has an autoencoder structure with an encoder and a decoder
part. Details and key features are further discussed below.

3.1. Network architecture

Since there is no direct relation between the object ap-
pearance in TIR to its visual appearance, the proposed ar-

chitecture is required to generate RGB images from a se-
mantic representation of the TIR images. Motivated by the
success of previous CNN based colorization methods, we
assume that these underlying representations common to
TIR and RGB images can be modelled using deep learning,
and more specificly, CNNs with autoencoder structure. This
approach has been verified in [29] where a Coupled GAN
with a Variational Autoencoder (VAE) is used as generator.

An overview of the proposed architecture is presented in
Fig. 1. The network has an encoder-decoder structure based
on the generator architecture in [20]. The encoder contains
four blocks, each block consists of a Convolution, a
BatchNormalization, and a LeakyReLU layer. The
Convolution layers in the first two blocks have stride
equal to two and, thus, downsample the image to one quar-
ter of its height and width. As the size is decreased, the
number of channels are increased from 1 to 128.

The decoder has three blocks.  Each block con-
sists of a Convolution, BatchNorm, Dropout,
Concatenation, and ReLU layer. In addition, the sec-
ond and third green block also contain an Upsampling
layer. The Concatenation layers are called skip con-
nections. Skip connections are used in [20] in order to pre-
serve structure. A skip connection simply concatenates all
channels at layer ¢ with those at layer n — ¢ (where n is the
total number of layers).

Both proposed methods are based on the described ar-
chitecture. The first method is a two-step approach where
the proposed architecture estimates the luminance and an
existing grayscale to RGB method is used to estimate the
chrominance from the luminance. The second method is an
integrated approach that estimates both the luminance and
the chrominance using the proposed architecture.
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(a) TIR input

(b) True RGB (©) L1

(d) DSSIM (e) DSSIM + L1 (f) Proposed

Figure 2: Example of the effect of using f) the proposed separation of the objective function for the luminance and chromatic
channels as opposed to using c) L, d) DSSIM, or e) DSSIM regularized with L1, on all three channels.

3.2. Representation

As input, the proposed architecture accepts one channel
8-bit TIR images (due to the 8-bit limitation of the dataset)
of any width and height. The output is either a one or a three
channel visual image of the same width and height as the
input image. Regarding internal color representation, any
representation could be used. CIELAB® was chosen since
it is designed to mimic human perception of colors. Hence,
distances between colors in the CIELAB space corresponds
to perceptual differences. The CIELAB color space is also
used in [4, 18, 39]. Tizuka et al. [18] performed an evalu-
ation of three color spaces (RGB, YUV, and CIELAB) and
concluded that CIELAB gave the most perceptionally rea-
sonable results.

Regardless of the color space used, the pixel values are
normalized to the range [0, 1] since the Sigmoid function is
used in the output layer.

3.3. Objective function

The imperfect pixel to pixel correspondence of the TIR
and RGB image pairs in the dataset (see Section 4.1) dis-
courages the use of simple pixel to pixel loss functions, like
e.g. Ly (and Ls). In addition, it is well known that the L,
(and Lo) loss produces blurry results on image generation
tasks [24]. To mitigate this problem, the loss is separated
into a luminance and a chrominance loss.

The human visual system has lower acuity for color dif-
ferences than for luminance [30]. This is, e.g., exploited by
perception-based compression methods like JPEG (which
uses fewer bits for chrominance than luminance), and also
by the grayscale colorization method designed by Guadar-
rama et al. [14]. Therefore, we propose to separate the loss
for the luminance (L) and the chromatic (L,;) channels
and to use the L; loss between the ground truth image 2

3CIE L*a*b* D65 to be precise.

and the estimated image 32° on the chromatic channels only,
as
Lav(y®,ye") = lyi® — ye*| )
For the luminance channel (L), where humans have
higher acuity, we employ an image quality measurement,
Structural Similarity (SSIM) [36], between the ground truth
image y7 and the estimated image y.:

2/'thuje + cl)(20jte + 02)

SSIM(yt 7ye - Z

j:]. :ujt + /“‘L]e + Cl)(a + U?e + C2)

where the local statistics, the mean p;; and pj., the vari-
ance ajz»t and 026, and the covariance o, are calculated
within M pixel neighbourhoods using a sliding window”.
The size of the sliding window is chosen to incorporate the
imperfect pixel to pixel correspondence (see Section 4.3).
The constants, ¢; = (k1 Lmaz)? and ca = (ko Lpaz)? sta-
bilizes the division with a weak denominator. L, is the
dynamic range (L4, = 1 in this case) and k; = 0.01 and
ke = 0.03. Color (3-channel) SSIM applied to CIELAB
leads to strong clouding effects, as colors shift continuously
in uniform regions. From SSIM the Structural Dissimilarity
(DSSIM) is derived, which is suitable as a loss function:

1 — SSIM(y/, y2)

= pssiM(yf ) = L5

£L (ytLa yf)
The total loss £ is the sum of the two:

L=Lp+ Ly (2)

and the objective is to minimize the loss. In Fig. 2, exam-
ples of using the L; and DSSIM loss functions on all chan-
nels can be seen together with examples of using DSSIM
regularized with L; as well as the proposed division of the
loss function.

4“We use the implementation by https://github.com/
farizrahmand4u/keras—contrib/blob/master/keras_
contrib/losses/dssim.py
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Figure 3: Example of the misalignment of image pairs in
the KAIST-MS dataset. The edges from the RGB image has
been extracted using a Canny edge detector and overlayed
on the LWIR image. Note the large error on the cars at the
left image border.

4. Experimental results and evaluation
4.1. Dataset

We use the dataset from the KAIST Multispectral Pedes-
trian Detection Benchmark [17]. The dataset contains
around 95000 color-thermal (RGB-TIR), 8-bit, day and
night image pairs (640x512) captured from a vehicle. The
day training set consists of 33395 RGB-TIR image pairs.
Since the images are captured from a vehicle, a number of
subsequent images are assumed to be similar depending on
the vehicles speed. Therefore, only one quarter, 8 336 pairs
(randomly chosen), were included in the training phase.
The day validation set consists of 29 168 RGB-TIR image
pairs. The complete validation set was used for evaluation.

The dataset has been recorded using a FLIR A35 mi-
crobolometer LWIR camera with a resolution of 320x256
pixels. During image alignment, the TIR images were
upsampled to 640x512 [17] (using an unknown method).
Therefore, the RGB-TIR pairs were downsampled back (us-
ing nearest neighbour) to 320x256 prior to training.

While studying the RGB-TIR image pairs, it became
clear that they do not have perfect pixel to pixel correspon-
dence. The pixel error in the vertical direction is estimated
to be up to 4 pixels, and up to 16 pixels in the horizontal di-
rection, increasing towards the lower left corner, see Fig. 3.
Further, inspecting e.g. example 5 in Fig. 4, there seems to
be a radial distortion not accounted for in the TIR images.
Further, the error appears to increase when the car is mov-
ing, indicating a slight offset in camera synchronization.

4.2. Methods

Three different TIR to visual image transformation ap-
proaches have been evaluated. The latter two, TIR2L and
TIR2Lab are the proposed methods:

Naive Estimating the chrominance using the TIR im-
age as luminance using an existing grayscale colorization
method.

TIR2L Estimating the luminance using the proposed
network and then the chrominance using an existing
grayscale colorization method.

TIR2Lab Estimating both the luminance and the
chrominance using the proposed network.

The method proposed by Zhang et al. [39] was chosen as
the reference colorization method. The reasons were that it
does not require global priors (as e.g. the method by lizuka
et al. [18]) and neither does it produce multiple versions of
the same grayscale image (like e.g. Guadarrama et al. [14]
and Royer et al. [32]). The reference colorization method
was trained from scratch on the given dataset.

4.3. Training

The proposed architecture is implemented in Keras [5]
with Tensorflow back end. For network training, we use the
ADAM optimizer [22]. Weigths are initialized with Xavier
normal initialization [11]. The proposed architecture was
trained for 100 epochs using 8 336 samples with a batch size
of 8 samples. The parameters of the ADAM optimizer were
setto 81 = 0.9, By = 0.999, ¢ = 1078, and learning rate
0.001. The LeakyReLU layers in the encoder had av = 0.2
and the Dropout layer had a dropout rate of 0.5.

The size of the sliding window in the DSSIM loss func-
tion was set to 4 x 16 pixels in order to incorporate the
misalignment of the dataset described in Section 4.1.

Training of the proposed architecture was done on a
NVIDIA GTX1080 GPU. A single training epoch with
batch size 8, 1 042 iterations, and 8 336 samples took about
10 minutes. In total, the network was trained for 100 epochs
(about 18 hours) at image resolution 320x256 pixels.

As implementation of the method by Zhang et al. [39]
the Keras implementation by de Boissiere’ has been cho-
sen. The experiments have been performed on a NVIDIA
K40 GPU. A single training epoch with batch size 8, 1042
iterations, and 8336 samples took around 1 hour and 36
minutes. In total, the network was trained for 38 epochs
(about 2 days and 18 hours) at image resolution 320x256
pixels. At 38 epochs, the loss had converged and the train-
ing was considered to be finished.

4.4. Quantitative evaluation

Four image distance error measurements for quantitative
evaluation have been used: L;, Root Mean Squared Error
(RMSE), Peak Signal To Noise Ratio (PSNR), and Struc-
tural Similarity (SSIM). Error measurements are calculated
in the RGB color space in range [0, 1], because this is the ex-
pected format for SSIM. Results for the Naive, TIR2L, and

Shttps://github.com/tdeboissiere/
DeepLearningImplementations/tree/master/Colorful

1260


https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/Colorful
https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/Colorful

Method L1 | RMSE [ PSNR | SSIM |
Baseli 024 | 084 | 934 | 043
aselNe 10,04 | +0.10 | +1.23 | +0.08
Nai 024 | 08 | 955 | 045
atve 4+0.04 | £0.09 | £1.21 | +0.08
0.14 | 046 | 147 | 0.64

TIR2L 1 004 | £0.09 | +218 | +£0.08
013 | 046 | 147 | 0.64

TIRZLab | 604 | 1009 | £2.20 | £0.08

Table 1: Image distance validation results, mean and stan-
dard deviation for 29 168 image pairs.

TIR2Lab methods can be seen in Table 1. In addition, error
measurements are calculated between the input TIR image
and the true RGB image in order to provide a baseline. All
evaluations were performed using the day validation set.

The Naive method gives a slight, but not significant, im-
provement compared to the baseline for all image distance
measurements in the evaluation. Comparing TIR2Lab to the
baseline, it is clear that it gives a significant improvement in
terms of image distance.

TIR2L and TIR2Lab have similar results, indicating that
the chrominance can be estimated by the proposed network
equally well as with [39] for this dataset. However, estimat-
ing both luminance and chrominance simultaneously using
TIR2Lab is less computationally demanding than first esti-
mating the luminance and then the chrominance from the
luminance in a two-step approach as in TIR2L. A forward-
pass through TIR2Lab with batch size 8 takes around 1.33
seconds while a forward-pass through TIR2L takes around
2.83 seconds on a NVIDIA GTX1080 GPU.

4.5. Qualitative evaluation

In Fig. 4, six transformation examples for the Naive,
TIR2L, and TIR2Lab methods are provided.

The Naive method gave a slight improvement compared
to the baseline. Since the luminance is taken directly from
the TIR image, there is no degradation in terms of structure
compared to the original TIR image. The method proposed
by Zhang et al. [39] does, however, fail to correctly estimate
the chrominance which is clearly visible in Fig. 4b.

The colorized images by TIR2L, Fig. 4c, and TIR2Lab,
Fig. 4d, have similar appearance. TIR2L appears to have a
stronger tendency to colorize the sky in a more pink color
which is more similar to ground truth in some cases (ex. 1)
and less in others (ex. 5, 6). The dataset was recorded during
sunset and the images in the training set have skies with a
varying degree of pink. TIR2L also colorizes some road

markings in a more vivid orange than TIR2Lab (ex. 3) but
sometimes it is the other way around (ex. 1).

Based on our observations, we conclude that the results
are similar in terms of subjective assessment. TIR2L trans-
forms the TIR image to a more plausible RGB image in
some cases, and vice versa.

Fig. 5 provides a few transformation examples of partic-
ular interest. Note that objects that have adopted the back-
ground temperature and objects for which different colors
is not equivalent to different thermal properties will not be
plausible colorized unless they are hallucinated or there is
some semantic information related to the different colors. In
ex. 5a there is a faint line visible to the left of the blue line
in the true RGB image. This line is barely visible in the TIR
image and the proposed methods colorizes it only partially.
TIR2L colorize the blue line white while TIR2Lab chooses
an orange color. The same goes for the case in ex. 5d.

In ex. 5b, both TIR2L and TIR2Lab fail to colorize the
road markings since they have the same apparent temper-
ature as the road paving. A similar scenario is the one
in ex. 5c where TIR2Lab fails to colorize the crossing as
both white and orange (there are both kinds in the dataset).
TIR2L on the other hand adds orange markings between the
white markings.

Further, in ex. 5d, the brake lights of the vehicles are
not colorized correctly. Turning on the brake light does not
change the apparent temperature of the lamp cover. How-
ever, for the specific application of night vision in traffic
scenes, it is possible to fuse colorized images with the true
RGB image, where the brake lights (when it is dark) will be
clearly visible.

There are two scenarios for which both TIR2L and
TIR2Lab fail in most cases. Both are shown in ex. 5e. We
believe that this is because urban environments and cars
close to the camera are not as frequently occurring in the
dataset as more rural environments and cars at longer dis-
tances.

4.6. Night to day

In addition to the above mentioned experiments, LWIR
night images from the KAIST-MS dataset have been col-
orized using TIR2Lab (trained on day images). Two exam-
ples of colorized day RGB images together with true RGB
night images can be seen in Fig. 6. At night, the surround-
ings will adopt a more homogeneous temperature, thus the
contrast in the LWIR images will be lower than during the
day. This can potentially be (partly) compensated for by ad-
justing the dynamic range of the 16-to-8 bit conversion, but
was unfortunately not done in the dataset. The low contrast
makes it difficult for the network to correctly recognize the
different objects in the scene and the output RGB image,
colorized with a day color scheme, looks blurred.
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(a) TIR input

(b) Naive

(c) TIR2L

(d) TIR2Lab (e) True RGB

Figure 4: Transformation examples for three different methods.

5. Conclusion

We have addressed the problem of transforming TIR im-
ages into visual, perceptually realistic color images, an un-
addressed problem despite its relevance for practical appli-
cations. In our work, we have proposed a general, deep
learning based approach to generate luminance and chromi-
nance information from TIR images. We further suggest
two methods based on different variants of the proposed
approach to determine chromatic information. The meth-
ods are robust to image pair misalignments and have been

evaluated both qualitatively and quantitatively on a publicly
available dataset. The evaluation was, however, limited to
traffic scene images due to the lack of large, publicly avail-
able TIR-RGB image pair datasets.

In comparison to grayscale to RGB colorization, which
only estimates the chrominance, a TIR to RGB transforma-
tion method has to estimate both luminance and chromi-
nance. There is no direct relation between object appear-
ance in TIR to its visual appearance. The proposed ap-
proach was, therefore, based on Convolutional Neural Net-
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TIR2Lab TIR2L TIR input

True RGB

(a)

(d)

Figure 5: Failure cases for the proposed methods, first row shows input TIR image, second row the output from TIR2L, third
row the output from TIR2Lab, and fourth row the true RGB images.

(c) True RGB

(a) TIR input

(b) TIR2Lab

Figure 6: Examples of a) two night TIR images, colorized
using b) TIR2Lab trained on day images and their corre-
sponding c) true RGB images.

works, due to their ability to model semantic representa-
tions. The first proposed method estimates both plausible
luminance and chrominance using the proposed approach.
The second proposed method estimates luminance using
the proposed approach and chrominance using an existing

grayscale to color transformation method, the method pro-
posed by Zhang et al. [39] in this case®.

Further work is twofolded. First, in order to provide a
more extensive evaluation of future TIR to RGB transfor-
mation methods, new large TIR-RGB image pair datasets
that target other application areas are needed. Second, fu-
ture work for the method includes tuning of weights for the
losses L, and L,y Failure cases for the proposed methods
include a slight loss of structure compared to the input TIR
image and cloudy colorization of uniformly colored areas,
e.g. pavements. We do, however, conclude that separating
the objective function into luminance and chrominance loss
is favourable.
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