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Abstract

We introduce an extension that may be used to augment

algorithms used for the sparse decomposition of signals into

a linear combination of atoms drawn from a dictionary such

as those used in support of, for example, compressive sens-

ing, k-sparse representation, and denoising. Our augmen-

tation may be applied to any reconstruction algorithm that

relies on the selection and sorting of high-correlation atoms

during an analysis or identification phase by generating a

“path” between the two highest-correlation atoms. Here

we investigate two types of path: a linear combination (Eu-

clidean geodesic) and a construction relying on an optimal

transport map (2-Wasserstein geodesic). We test our ex-

tension by performing image denoising and k-sparse repre-

sentation using atoms from a learned overcomplete kSVD

dictionary. We study the application of our techniques on

SWIR imagery of maritime vessels and show that our meth-

ods outperform orthogonal matching pursuit. We conclude

that these methods, having shown success in our two tested

problem domains, will also be useful for reducing “basis

mismatch” error that arises in the recovery of compres-

sively sampled images.

1. Introduction

Shortwave infrared (SWIR) imaging is the preferred

imaging modality for daylight and low-light adverse imag-

ing as found, for example, in the presence of haze, rain

and fog. Adequate SWIR imaging performance remains

hampered, however, by certain challenges. In particular,

SWIR-sensing technology does not have a strong consumer

demand (as opposed to military) and therefore focal plane

array (FPA) design is still evolving–resulting in high costs

for the densely packed arrays required for adequate long-

distance imaging performance. In addition, FPA designs

for SWIR sensors are more likely to yield images with low

signal-to-noise ratios (SNRs). A potential solution to these

problems is the use of k-sparse denoising algorithms and

compressive sensing (CS) to bridge the gap in performance

between SWIR and visible FPA performance.

Compressive sensing (CS) is a methodology that enables

higher-resolution digital sampling of natural phenomena by

leveraging good signal models to reconstruct signals that

are undersampled according to classical Nyquist sampling

theory [2, 10, 16, 36]. In this case, “good” models are those

that can sparsely represent signals as linear combinations of

relatively few atoms drawn from a dictionary. Signals that

can be represented to within some acceptable error toler-

ance using at most k atoms are defined as k-sparse relative

to that dictionary. CS theory predicts, to a level of proba-

bilistic certainty, successful reconstruction of an undersam-

pled signal when the underlying true signal satisfies upper

limits on sparsity relative to a given dictionary [3, 8, 9, 23].

As a result, significant effort has been spent on designing

dictionaries or developing algorithms that are capable of

learning dictionaries that are highly representative of the ex-

pected signal class [1, 13, 21].

A persistent problem exists, however, because even if the

underlying signal model could perfectly represent the signal

with a single atom, the atoms must be discretely sampled

from the underlying model and therefore, with high proba-

bility, will fail to represent any given signal component ex-

actly. For example, a 1-D sinusoidal signal composed of a

single tone is well-represented by a sinusoidal signal model,

but if the frequency of the signal falls between the discrete
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Fourier frequencies of a given Fourier basis then the number

of non-zero Fourier coefficients can actually be quite large

[30]. Guarantees on successful reconstruction of undersam-

pled signals begin to fail when the assumption of sparsity

is violated which can lead to the introduction of artifacts at

best or complete failure to reconstruct at worst.

This “basis mismatch” problem has been considered in

the literature [6, 12, 18, 35, 37] with some success in the

case of 1-D sinusoidal signals where a search over the fre-

quencies residing between the two Fourier atoms with the

largest correlation can find the exact representative atom

[33]. But the task is more difficult when reconstruct-

ing undersampled images because relatively few local im-

age regions can be exactly represented by an atom from a

single structured (parameterized) dictionary (e.g., Fourier,

wavelet, ridgelet, etc.). Unstructured, learned dictionaries

constructed from ensembles of expected images produce

higher-sparsity representations but still suffer from basis

mismatch. In such unstructured cases there is no parameter

over which one can search to find some better atom residing

between the two atoms with which the image has the largest

correlation.

We seek to improve sparse reconstructions by propos-

ing two methods for constructing better image exemplars

from an underlying learned dictionary: a linear combina-

tion of the two most-correlated atoms (Euclidean geodesic)

and a construction relying on the optimal transport map

between said atoms (2-Wasserstein geodesic) [24]. This

“path-based” augmentation can be applied to any recon-

struction algorithm that relies on the selection and sorting

of high-correlation atoms during an analysis or identifica-

tion phase. In particular, we consider the matching pursuit

(MP) family of algorithms [5, 29] which contains a number

of algorithm variations predicated on the selection of high-

correlation atoms.

MP algorithms are used extensively for CS recovery and

k-sparse denoising so we illustrate here that augmenting

MP with our path-based modification leads to sparser repre-

sentations [11, 14, 15, 19]. We demonstrate these improve-

ments by constructing sparse image representations and per-

forming image denoising from a learned kSVD dictionary.

We compare our method to a traditional MP algorithm vari-

ation and show improved results at the expense of a modest

increase in computational complexity.

We begin with a summary and discussion of related algo-

rithms to better understand the landscape of the problem in

Section 2. Additionally, we define necessary terms and met-

rics critical to the design of the proposed algorithm. In Sec-

tion 3 we present the proposed algorithm Path Orthogonal

Matching Pursuit (POMP). Next, in Section 4 we describe

our set of SWIR maritime imagery and construction of our

learned kSVD dictionary. A description and results of the

experiments (sparse representation and denoising) are pre-

sented in Section 5. Finally, we conclude with a discussion

of the results as well as directions of future work in Section

6.

2. Background and Related Work

Given an image, or generic signal, questions often sur-

round the ability of the user to reconstruct or compress the

information contained in the signal. A common assumption

is that the signal may be written as a linear combination of a

set of reference images/signals. The reference set is called

the dictionary and the elements of the dictionary are called

atoms. There is extensive literature considering when lin-

earity holds and development of tools for intelligently build-

ing overcomplete dictionaries through augmentation when

the base dictionary is insufficient for sparse linear recon-

structions. Dictionary design and dictionary augmentation

are, however, outside the scope of this paper.

2.1. Matching Pursuit and Existing Variations

Reconstruction algorithms can terminate based on an er-

ror threshold or aim to find the best k−sparse representa-

tion. For a fixed degree of sparsity, consideration of all

possible atom combinations of that order is computation-

ally intractable other than for a limited set of uninteresting

problems. A popular and successful work-around of this

combinatorial optimization problem is a greedy algorithm

called Matching Pursuit (MP) [5, 29]. Standard MP begins

by greedily searching for the best reconstruction produced

from a single atom. “Best” is determined by the magnitude

of the inner product between the signal and the dictionary

atoms. In other words, optimality is determined by the atom

with the smallest angle between the 1-dimensional signal

space and the 1-dimensional space spanned by the atom.

The optimal atom is scaled by the length of the projection

of the signal onto the space spanned by the optimal atom

and is then subtracted from the original signal. The residual

image is then fit in the same greedy way, updated, and the

process repeats. k iterations of MP yields a k-sparse repre-

sentation with some associated final error/residual Rk.

Several variations of MP exist: Orthogonal MP (OMP)

[7, 34, 38], Generalized OMP (GOMP) [40], Regularized

OMP (ROMP) [32], Stagewise OMP (StOMP) [17], Sub-

space Pursuit (SP) [14], Multipath MP (MMP) [28], and

Compressive Sampling MP (CoSaMP) [31]. The identifica-

tion step in an iteration of an MP-based algorithm refers

to determining which atom(s) is(are) closest to the cur-

rent residual. Augmentation is used to describe the step of

adding the atom(s) identified to the support of the recon-

struction. Finally, each pursuit-type algorithm is concluded

by a residual update. The fundamental difference between

MP and OMP (as well as OMP derivatives) is that in OMP

the residual is updated by projecting the image onto the or-

thogonal complement of the span of the current support.
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Figure 1. Tree highlighting key differences between well-known variations of the MP algorithm. Each algorithm is a leaf in the tree and

the branching criterion is summarized in a color-coded box for each branch.

Note that when the dictionary consists of pairwise orthog-

onal atoms, MP and OMP are equivalent. For the readers’

benefit, a tree describing the relationships between the MP-

based algorithms listed above can be found in Figure 1.

ROMP and StOMP involve nomination of multiple can-

didates in the first stage of a two-stage identification step.

The second stage then prunes the number of candidates

based on an additional criterion (regularization or thresh-

olding, respectively) in the identification stage. Residuals

are updated in the same manner as in OMP. A key distinc-

tion between OMP and StOMP and ROMP is that multi-

ple atoms, not just a single atom, are added to support in

the augmentation steps of the latter. Based on regulariza-

tion/thresholding a different number of atoms may be iden-

tified and added to the support at each iteration. Alter-

natively, GOMP identifies and augments the support with

a fixed number of atoms at each iteration. The standard

OMP algorithm is a special case of GOMP when the num-

ber of atoms identified and augmented is one at each step.

In StOMP, ROMP, and GOMP the cardinality of the sup-

port grows at each iteration. CoSaMP augments the sup-

port with (potentially) multiple atoms in a given iteration

but then prunes the support to the desired sparsity and up-

dates the residual by solving a reduced-rank, least-squares

problem.

Taking a more combinatorial approach, MMP searches

paths through trees resulting from a fixed number of iden-

tified candidates and their children. The most senior rela-

tive of the path producing the smallest residual is then aug-

mented to the support. GOMP and MMP aim to minimize

the effect of a poor choice near the middle of the search,

which has been shown to have large ramifications on re-

construction accuracy. Finally, SP views the reconstruction

challenge from a more geometric perspective. An initial set

of candidates, whose cardinality equals the desired level of

sparsity, are identified and form the initial support. New

candidates are identified based on distances between the

residual and the subspace spanned by the support and traded

out for existing support atoms until a stopping criterion is

met.

The number of variants of the standard algorithm lends

credence to the usefulness of the fundamental greedy ap-

proach. Guarantees of monotonic convergence when the

signal is contained in the span of the dictionary also con-

tribute to the popularity of the tool. Algorithms on the right

branch of the tree in Figure 1 are characterized by the se-

lection of multiple atoms during the identification and aug-

mentation stages of the algorithm. Algorithms on the left

branch only update a single atom during each step of the

process.

We propose another modification to MP based on lever-

aging additional information contained in each greedy

search by identifying the two most-representative atoms and

searching along a path between the two atoms to reveal a

novel single atom that better matches the current residual.

From this perspective the proposed algorithm is most simi-

lar to GOMP when the number of atoms identified in each

iteration is two. Given two promising atoms we consider

here two different means of constructing a path between

them as detailed next.

2.2. Paths Between Atoms

A path is a smooth map from the closest dictionary atom

to the second-closest dictionary atom that is parameterized
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by a variable t ∈ [0, 1]. Explicitly, a path p is defined as

p(D1,D2, t) : D1 → D2, (1)

s.t. p(D1,D2, 0) = D1 and (2)

p(D1,D2, 1) = D2. (3)

One possible path is the line segment with endpoints D1

and D2 given by

D = (1− t)D1 + (t)D2, (4)

for t ∈ [0, 1]. This path is called the Euclidean geodesic

between D1 and D2, that is, the shortest path between the

two points in Euclidean space.

Another possible path is that constructed from the Opti-

mal Transport (OT) map between two images wherein one

image is mapped into the other while minimizing the en-

ergy associated with the map [39]. As discussed below,

a geodesic can be constructed from this map and in re-

cent years such OT geodesics between images have yielded

impressive results and insights in image registration and

warping [22], super-resolution of low-resolution face im-

ages [27], and cell morphology [4]. Two main versions of

OT exist: (1) the Monge OT problem in which all the inten-

sity located at a pixel in D1 must be mapped to a single pixel

in D2, and (2) the Kantorovich OT problem which allows

for intensities at starting pixels to be split among multiple

destination pixels [39].

Within both Monge and Kantorovich OT formulations

there are additional sub-versions for different combinations

of objective function and constraints. Specifically, differ-

ent formulations of the OT problem produce constant-speed

geodesics with respect to different distance measures. As

such, a solution to the OT problem between images yields a

vector field of direction vectors that implicitly indicate the

terminal location (in D2) of intensity from a given pixel in

D1. Let

V =











~v1,1 ~v1,2 · · · ~v1,m
~v2,1 ~v2,2 · · · ~v2,m

...
...

. . .
...

~vn,1 ~vn,2 · · · ~vn,m











(5)

where ~vj,k is the velocity vector for the intensity of the pixel

indexed by (j, k) in D1. Let pV (D1,D2, t) be the path

induced by V. We define

pV (D1,D2, t) : D1 → D2 s.t. (6)

pV (D1,D2, t) = tV(D1,D2) (7)

where tV(D1) indicates movement of the intensity in D1

a partial step (of size t) in the directions given by OT.

This OT path can be thought of as a set of linear path ap-

proximations to a globally nonlinear path between images

(the 2-Wasserstein geodesic). Recently, a computationally-

efficient approximation to the solution of Monge OT based

on the Radon Cumulative Distribution Transform (RCDT)

has been developed and has shown reduced computational

time and increased performance on multiple tasks in ma-

chine learning, signal processing, and image classification

[25, 26]. Due to the success of this method, we use it to

estimate the path induced by the approximate solution to

Monge OT.

Other viable paths between the atoms exist and will be

considered in later work. At present we narrow the focus to

a globally linear path (standard line segment or Euclidean

geodesic) and a globally nonlinear path (2-Wasserstein

geodesic) approximated by pixel-wise linear trajectories.

Given a path between two dictionary atoms we search along

the path for a novel atom which is closer to the test signal

than either of the path end-points. If such a novel atom ex-

ists it takes the place of the single best atom in OMP. Details

of the proposed algorithm are presented in the subsequent

section. An example of samples along linear and OT paths

between two images, as well as the angle formed between

the path samples and the test image, are shown in Figure 2.

3. The Algorithm: POMP

Path Orthogonal Matching Pursuit (POMP) is our modi-

fication to the well-known OMP algorithm for signal recon-

struction described in Section 2. Instead of finding a single

nearest dictionary element and removing its contribution,

two closest dictionary elements are chosen at each iteration

and a path is formed which moves between the two atoms.

We may then search for an optimal atom along this path,

where optimal is defined as having the largest-magnitude,

positive inner product with the test image, that is, the small-

est angle between the pair of images when considered as

vectors. A positive inner product can be interpreted as two

images sharing more in-phase (same sign) intensities than

out-of-phase intensities. When considered from the phase

perspective, it is reasonable to pick the two nearest neigh-

bors whose inner products share the same sign.

Let D1 be the dictionary atom having the largest-

magnitude inner product with the test image. Define D2

to be the second-closest dictionary atom to our test image

T whose inner product shares the same sign with the in-

ner product of D1 with T. The simplest, and perhaps most

natural, form of a path is linear. In Section 2 we describe

a globally linear path (Equation 4) and a pixel-wise linear

path. When the globally linear path is used to choose an

optimal atom within an iteration of POMP we refer to it as

L-POMP. The pixel-wise linear path resulting from solving

the OT problem between D1 and D2 selected within an iter-

ation of POMP is denoted by OT-POMP. For samples along

the paths between D1 and D2, the angle between T may be

computed by

θt =
〈Dt,T〉

||Dt||F ||T||F
, (8)
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Figure 2. Examples of samples along the paths between two im-

age atoms and the angle between the labeled test image and the

path samples. Note that the images along the linear path (Eu-

clidean geodesic) are characterized by the presence of intensity

that matches the combined support from D1 and D2 and simply

shifts intensity magnitude from the support represented by D1 to

the support represented by D2 as t increases. As such, all samples

along the Euclidean geodesic are equidistant from the test image.

Conversely, the intensity support shifts between images along the

OT path (2-Wasserstein geodesic) as t increases which yields an

atom on the geodesic that is clearly closest to the test image.

where t ∈ [0, 1] parameterizes the distance along the path

from D1 to D2 and ‖A‖F =
√

∑

i

∑

j |ai,j |
2 is the Frobe-

nius norm. Let p(D1,D2, t) be the path from D1 to D2. At

each iteration the optimal atom is

Dt∗ = p(D1,D2, t
∗) where t∗ = arg min

t∈[0,1]
θt. (9)

Lines 2-4 initialize variables. In line 6 we find the opti-

mal atom and in line 7 we add its index to the list of support

atoms. The same procedure is performed for the D2 in lines

8-9. The signs of the inner products of the first and sec-

ond closest (identified in line 8) atoms are identified and

matched, in lines 10. The optimal atom along the path be-

tween the two nearest neighbors is selected in lines 11-12

and is then appended to the support in line 13. Residual up-

dates and updating of indexing variables are performed in

Algorithm 1: Path Orthogonal Matching Pursuit

Input: T, the test image and D, the dictionary, and

k the number of iterations/sparsity level.

Output: X, the image estimate, S, the support of

the reconstruction, {d1k}
K
k=1, {d

2
k}

K
k=1 the

vectors of first and second closest atom

indices, and {tk}
K
k=1, the vector

containing the path parameter values.

1 begin

2 R1 ← T;

3 S = [];
4 k ← 1;

5 while k ≤ K do

6 D1 ← argmax
D∈D

|〈D,T〉|;

7 d1k ← index(D1);
8 D2 ← arg max

D∈D\D1

|〈D,T〉|;

9 d2k ← index(D2);
10 D2 ← sgn(〈D1, T 〉)sgn(〈D2, T 〉)D2;

11 tk ← arg min
t∈[0,1]

θt;

12 D
∗ ← path(D1,D2, tn);

13 S← augment(S,D∗);

14 PS ← S(S⊤
S)−1

S
⊤;

15 X← PST;

16 Rk+1 ← (I−PS)T;

17 k ← k + 1 ;

18 end

19 end

lines 14-17. It should be noted that standard OMP is simply

lines 1-6 and 13-19 where D∗ = D1.

It is important to note that without further constraints,

there is currently no guarantee of a novel/nontrivial mini-

mum angle being found along the path, i.e. D
∗ = Dt for

t ∈ (0, 1). As long as the path is continuous for t ∈ [0, 1]
a minimum will exist since the composition of continuous

functions is also continuous (inner product composed with

the path). Uniqueness, however, is also not guaranteed.

Consider |〈T,Dt〉| for some t ∈ [0, 1]. The desired inner

product can be written as

〈T,Dt〉 =
1

2

[

T

Dt

]⊤ [

0 I

I 0

] [

T

Dt

]

. (10)

This is an indefinite quadratic form, i.e. the characteristic

matrix has eigenvalues {−1, 1} with each one having the

same multiplicity [20]. Resultantly, the inner product is not

generally convex. However, with added constraints on the

equations governing Dt it may be possible to prove convex-

ity. With convexity comes uniqueness. A rigorous study of

these necessary and sufficient conditions is a focus of on-

going and future work. The existence of explicit formulas
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Figure 3. A subsample of the training data set used to create the

learned dictionary.

Figure 4. The kSVD dictionary.

for determining the optimal path parameter could also re-

duce the computational complexity of POMP. An empirical

study of the computational costs of the proposed algorithm

and a comparison to two existing MP-based algorithms are

included in Section 5.

The proposed algorithm can be seamlessly combined

with OMP as well as many of its derivatives. When the

dictionary consists of pairwise orthogonal atoms, MP and

OMP are equivalent. If the dictionary atoms are orthogonal

then the linear combination of two of the atoms will also

be orthogonal to all other atoms. For this reason when an

orthogonal dictionary is used, a linear path-based MP algo-

rithm will be equivalent to an OMP algorithm. When guar-

antees about orthogonality along a path cannot be made, the

reconstruction resulting from an MP implementation can

differ from an OMP implementation.

4. Data and Dictionary Construction

To construct a learned dictionary one must identify a col-

lection of a training images that roughly represent the ex-

pected statistical qualities of the imagery under test. We

choose a set of 85 broadband SWIR images of marine ves-

sels including Naval (military), fishing, cargo, and sailing.

Each 16-bit image is of size 1024x1280–a subset of which

can be seen in Figure 3. This corpus of images was divided

randomly such that 80 images were designated to train the

Figure 5. Relative reconstruction error as a function of iterations

for the three algorithms considered. Results over 5 iterations are

shown. Background of each plot is the test image under consider-

ation (note that the alpha value has been lowered for graph read-

ability). Images are numbered 1-5 left-to-right top-to-bottom to

match with the numbering in Table 1.

dictionary and 5 images were withheld for testing. We ran-

domly selected 5,000 patches of size 8× 8 from each train-

ing image to generate the kSVD dictionary. Over 100 iter-

ations of the kSVD algorithm 256 atoms were selected to

minimize the representation error using OMP and a target

sparsity of 6 atoms to yield the learned dictionary shown in

Figure 4.

5. Experiments and Results

Computational results are shown for both k-sparse sig-

nal reconstruction (see Section 5.1) and image denoising

(see Section 5.2 using a fixed number of OMP iterations).

Both applications are tested on the five test images shown

as backgrounds in Figure 5. For both algorithms we com-

pare the current residual to five discrete samples along the

path to check for a closer atom. This implementation is sub-

optimal but provides sufficient proof of concept.
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Image Original OMP L-POMP OT-POMP

1 28.378 33.831 34.239 34.786

2 28.352 31.996 32.205 33.232

3 28.369 30.541 30.767 31.525

4 28.374 33.246 33.397 34.645

5 28.364 32.314 32.506 33.629
Table 1. Starting PSNR values for five images and denoised PSNR

values for three methods. See Figure 5 for a representation of the

imagery.

5.1. k−Sparse Reconstructions

We begin by considering the reconstruction error be-

tween a pristine original image and a patch-based k-sparse

reconstruction using the dictionary. The dictionary is used

to reconstruct 8x8 patches overlapped with a stride of one

where the error between the original and the reconstructed

image is given by ||Rk||F /||T||F , where k is the number of

atoms included in the reconstruction. Reconstruction errors

as a function of k for all algorithms and images are shown

in Figure 5; the background of each plot is the image being

sparsely reconstructed.

Figure 5 shows that the path-augmented approach yields

lower reconstruction error for all tested sparsity levels and

images. In each case the reconstructions obtained using the

proposed heuristic show L-POMP and OT-POMP perform-

ing better than OMP. It is also clear that OT-POMP outper-

forms L-POMP over the first few iterations (sparsity level)

but after approximately 5 the two versions converge in per-

formance. We have noticed–though the results are omitted

here–that both L-POMP and OT-OMP continue to outper-

form OMP for decreasing sparsity levels but L-POMP be-

gins to overtake OT-POMP in performance. This is believed

to occur due to additional possibility of errors introduced

during the OT geodesic construction which are not a prob-

lem in the linear case.

5.2. Denoising

Denoising experiments were also performed where ad-

ditive white Gaussian noise (AWGN) with σ = 2, 500 (im-

ages are 16-bit) was added to each pristine image. Patches

of the noisy image, of size 8 × 8, are then estimated using

several iterations of the indicated algorithm. A denoised

image is then constructed by stitching together the OMP

estimated patches. Performance is measured using output

PSNR as is standard practice. Results of denoising are

shown in Table 1 for a sparsity of 1. Path augmentation of

OMP improves PSNR for each image after patch fitting for

a fixed number of OMP iterations. Average improvement in

PSNR using L-POMP is ∼ 0.2dB and using OT-POMP is

∼ 1.1dB.

6. Discussion

In this paper we have shown for sparse image represen-

tation and image denoising using a patch-based learned dic-

tionary that the proposed POMP algorithm outperforms the

baseline OMP algorithm. In this preliminary step we have

shown that this algorithm is capable of addressing the basis

mismatch problem seen in compressive sensing which is of

particular concern when dealing with SWIR imagers.

Application of POMP to data sets expressing different

signal-to-noise ratios will allow for a more comprehensive

comparison to existing MP-based algorithms in the settings

where they have been shown to excel. Furthermore, we in-

tend to perform a detailed computational complexity anal-

ysis of POMP so that the gains of implementation may be

appropriately qualified.

In the future we aim to develop a characterization of the

tasks for which novel minimums along the path exist. If

guarantees of such minimums exist it would further reduce

computational expense and alleviate the need to compare

test images to a discrete sampling of the paths between near-

est atoms. Additional consideration of the necessary and/or

sufficient conditions under which there exist closed-form

solutions for determination of both the optimal path param-

eter value and its corresponding atom are underway. If such

a characterization proves too difficult we proposed using a

search-based methodology (e.g., binary search or golden-

section search) to find a better approximation of the optimal

atom contained along the path in the POMP algorithm.

Results presented in this work inspire confidence that

there are further improvements to be discovered through

the integration of POMP with dictionary augmentation ap-

proaches.
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hde. Transport-based analysis, modeling, and learning from

signal and data distributions. preprint, arXiv:1609.04767,

2017. 2

[25] S. Kolouri, S. R. Park, and G. K. Rohde. The Radon Cu-

mulative Distribution Transform and its application to image

classification. IEEE Trans. Image Process., 25(2):920–934,

2016. 4

[26] S. Kolouri, S. R. Park, M. Thorpe, D. Slepčev, and G. K.
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