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Abstract

Existing fine-grained object recognition methods often

require high-resolution images to better discriminate the

subordinate classes. However, this assumption does not al-

ways hold in current surveillance systems, where the dis-

tinguished parts may not be clearly presented. Besides,

data insufficiency and class imbalance make the problem

even more challenging. In this paper, we leverage high-

resolution images collected from Internet to improve the

vehicle recognition in the surveillance environments. A

cross-domain hallucination network is proposed to mini-

mize the domain discrepancy and enhance the quality of

low-resolution surveillance images. To better align the

cross-domain features and boost the recognition perfor-

mance, we extend the original framework to part-based hal-

lucination networks, where the parts are automatically ex-

tracted based on the maximum responses from the convolu-

tion filters. We evaluate our method on a public surveillance

vehicle dataset (BoxCars21k). Experimental results demon-

strate that our approach outperforms the state-of-the-art

methods.

Keywords: cross-domain, hallucination, fine-grained

classification

1. Introduction

High-level understanding and analysis of surveillance

images enable numerous applications, for example, [5] pre-

dict the demographic attributes (e.g., income, per capita car-

bon emission, crime rates) by using the detected vehicles.

However, unlike web images, surveillance images are of-

ten low resolution, which causes the important information

loss (i.e., distinguished parts are not always visible). More-

over, it is time consuming to collect a large number of ve-

hicle models and makes from the surveillance videos. Se-

vere class imbalance also causes the additional difficulties
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Figure 1. We propose a cross-domain hallucination network to

transfer the knowledge from web to surveillance domain and im-

prove the fine-grained object recognition in the low-resolution

surveillance environments.

to machine learning algorithms. There are abundant vehicle

images on the Internet, which are often high resolution and

the class distribution is relatively balanced. Web images

possess richer domain knowledge and are thus beneficial to

the recognition tasks. It would be interesting to see how

to leverage the domain knowledge from additional high-

resolution web data to improve the object recognition in the

low-resolution surveillance domain, which significantly re-

duces the annotation efforts.

In this paper, we aim at improving fine-grained object

recognition under the surveillance environments. To our

best knowledge, there is only little research [20] that work

on this novel problem. We observe that the recognition per-

formance for fine-grained object recognition in surveillance

images is highly affected by the quality of the input images.

Even using all the label information from the surveillance

domain, we still can not achieve satisfactory performance.

Moreover, information loss of low resolution input images

causes the features less representative, which makes it dif-

ficult to align the cross-domain feature distributions. The

goal of this work is to improve the quality of input images

by transferring the domain knowledge from other high res-

olution vehicle datasets.

The core idea of our method is illustrated in Figure
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Figure 2. Left image: low resolution input image. Right image:

image generated by our hallucination network.

1. We propose a cross-domain hallucination network that

leverages high-resolution web images to improve the fine-

grained vehicle classification of the low resolution surveil-

lance images. The hallucination network minimizes the dis-

crepancy between the two different domains and enhance

the quality of the low-resolution images (see the right im-

age in Figure 2). This transformation makes the surveil-

lance images become more discriminative and facilitate the

classification network to obtain more accurate results.

Motivated by [7], some parts of vehicles are informative

and could be helpful for recognition. Thus, we further ex-

tend the framework to part-based hallucination networks.

We automatically obtain the part regions of vehicle images

for both domains by using the maximum responses of the

feature maps in the convolution layers, which corresponds

to the parts of a vehicle image (e.g., front, rear and roof).

A part-based hallucination network is trained to minimize

the domain differences on those part regions, where all part

regions share one hallucination network. Finally, we en-

semble two hallucination and classification networks (one

for whole image and another for part regions) to obtain the

final classification results.

The main contributions of this work are summarized as

following:

• We propose a cross-domain hallucination network that

enhances the discriminative details of the low resolu-

tion surveillance images by leveraging the additional

high-resolution web images.

• We investigate a two-step classification network that

experimentally outperforms several state-of-the-art

methods in a public surveillance vehicle dataset.

• We explore part-based hallucination networks, and en-

semble the whole and part-based hallucination net-

works to further boost the performance.

2. Related work

Vehicle plate recognition: previous work [15, 3, 1, 9]

build license plate detectors based on the region of interest

(ROI) extraction. However, these methods are limited to

the frontal or rear views, and not applicable to images with

large viewpoint variations and low resolutions.

Low-resolution face recognition: low-resolution face

recognition methods attempt to recognize the face identity

from the low-resolution images. Compared to high reso-

lution images, low resolution images lose the detailed in-

formation and cause the large performance drop. To im-

prove the recognition accuracy, [25, 11] learn the mappings

from low-resolution and high-resolution image pairs in the

high-level feature space. [22] restore the high-resolution

images from the low-resolution images to improve the clas-

sification network. [10] transfer the near-infrared spectrum

(NIR) images to visible spectrum (VIS) images to tackle the

poor quality of NIR images. Different from the above meth-

ods that reconstruct the images from the same domain, our

method aims at improving the fine-grained object recogni-

tion from different domains.

Fine-grained vehicle classification and verification:

existing fine-grained object recognition methods often fo-

cus on high resolution web images. [8] and [12] fit 3D

models of vehicles into 2D images for better extracting the

part-based features and rectifying the vehicle pose. [7] learn

the discriminative parts of vehicles for fine-grained classi-

fication. [23] released the first large-scale fine-grained ve-

hicle dataset, which contains 163 car makes and 1716 car

models and with their fine-grained attributes. Similar to

our work, [20] address the problem of fine-grained vehicle

recognition in the surveillance environments. They released

a large-scale vehicle dataset collected by surveillance cam-

eras, which contains 2D and 3D bounding box labels. By

unpacking the 3D bounding boxes into a 2D plane, vehicle

parts are better aligned. They use the rasterized 3D bound-

ing boxes and vehicle viewpoints as the additional inputs to

further improve the recognition accuracy. Since 3D bound-

ing boxes or 3D models cost extra computation resource

and and may not be always available, we focus on how to

utilize relatively accessible 2D resources. Our experiments

demonstrate that our approach shows better performance

compared to their methods while does not requiring any 3D

information.

Unsupervised domain adaptation: [21] and [2] learn

a discriminative mapping of target images to the source

feature space in an unsupervised domain adaption setting.

Source classifiers can be directly applied in the target do-

main. [18] propose a refiner neural network that improves

the realism of the synthetic images by using the unlabeled

image data. Note that different from the conventional do-

main adaptation settings, where the performance is often

bounded by using all the supervised information in the tar-

get domain. Here, we focus on how to leverage the domain

knowledge to improve the performance in target domain in

a supervised manner. Our experiments show that the pro-

posed hallucination network achieves even better perfor-
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Figure 3. An overview of our hallucination network architecture. We first resize the input surveillance images by a bicubic interpolation

to unify the input image size, and apply a set of non-linear transformations to generate high-resolution reconstructed images, which are

two times larger than the input images. The hallucination network is trained with surveillance and web image pairs from the same class.

We optimize the loss LH to minimize the high-level CNN feature distances of the input pairs, and adopt LR loss to preserve the color and

texture information from the original image.
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Figure 4. For training the classification network, we fix the parameters of hallucination network and optimize the softmax loss Lcls of the

classification network.

mance compared to using all the supervised label informa-

tion in target or in both source and target domains.

3. Web vehicle dataset

It is not straightforward to collect a large scale fine-

grained vehicle dataset from surveillance videos, as images

are low resolution and often bias to the certain classes. In

contrast, it is easier to retrieve images with different models

and types from Internet, e.g., crawling the images by search-

ing the keywords. The vehicle images from Internet are of-

ten high-resolution and thus beneficial to the fine-grained

object classification. For each vehicle class in the surveil-

lance dataset, we collect the corresponding vehicle images

from Internet as the auxiliary data. We use images from two

different domains of the same vehicle class for training the

hallucination network (see the left side of Figure 3). The

hallucination network minimizes the discrepancy between

web and surveillance domains and improves the quality of

low resolution surveillance images.

4. Proposed method

4.1. Hallucination network

Vehicle images captured by the surveillance cameras are

often low resolution and blurry. We propose a cross-domain

hallucination network to better recover the detailed parts of

the surveillance vehicle images. Figure 3 shows the archi-

tecture of the proposed hallucination network. It takes a

surveillance image as input and generates a two-times larger

reconstructed image. Different from the previous methods

for face recognition [22][24], where the hallucination net-

works are trained on the low and high resolution image

pairs from the same domain. In the surveillance environ-

ments, we do not have such corresponding high resolution

images (i.e., we do not have paired low and high resolution

images). To tackle this problem, we collect an additional

fine-grained vehicle dataset from Internet and use them as

the pseudo high resolution images for training the hallucina-

tion network. The web vehicle images often have different

poses, colors and textures than the original low-resolution

images, which makes our problem even more challenging.
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Figure 6. We pre-train the hallucination network by using the low

and high resolution web image pairs, where the low resolution im-

ages are obtained by down-sampling the high-resolution web im-

ages.

The core idea of our hallucination network is to mini-

mize the domain discrepancy between the web and surveil-

lance image pairs, where each pair belongs to the same ve-

hicle class. Since the web and surveillance image in each

pair are visually different, it is impossible to compare them

in pixel level. We adopt the idea from [6] and use the con-

cept loss network to compare each pair in feature level. Loss

network is a network proposed to extract the image features

and these output features will be the inputs for the final loss

function. In our paper, loss network is pre-trained on Ima-

geNet and always fixed. We use CaffeNet (from conv1 to

fc6) as the backbone model of loss network to extract the

CNN features for comparison. We extract the high-level

CNN features from the loss network for both the recon-

structed and web images and minimize the feature differ-

ences by a hallucination loss (see the right side of Figure

3):

LH = ‖Iw − Is‖
2

2
, (1)

Let φ(x) be the features extracted from the loss network

when processing the image x, Iw be the input web im-

age and Is be the input surveillance image. For halluci-

nation network, we adopt the similar architecture as FCN

[14] for keeping the spatial resolution. Hallucination net-

work mainly consists of two stages. First, the input images

are first convolved with a set of convolution layers to obtain

the high-level features. Second, the extracted features are

then used to reconstruct the output images by a deconvolu-

tion layer. We use the down-sampled and the original high-

resolution web images as the input pairs for pre-training the

hallucination network (see Figure 6).

We observe that only using the hallucination loss LH for

training does not yield good reconstruction results. We con-

jecture that it is because the loss network is pre-trained by

ImageNet, which only retains the edge and shape but dis-

cards the texture and color information of the input image.

Therefore, the output images of the hallucination network

tend to be grayscale and blurry. To better preserve the tex-

ture and color information of the original images, we add

an additional restoration loss LR to regularize the output

image. The restoration loss is defined as:

LR = ‖Is − P (Hs)‖
2

2
, (2)
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where Is is the input image, Hs is the output image from the

hallucination network and the function P is a max-pooling

operation with stride size 2 and padding size 0. The restora-

tion loss can be seen as a constrain to prevent the network

over-fit to the hallucination loss. Two losses are equally

weighted in our experiments.

4.2. Classification network

We propose a two-stage training strategy to ensemble the

hallucination network and classification network. In the first

stage, the hallucination network is trained by minimizing

the loss LH and LR while fixing the parameters of loss net-

work. For the second stage, we fix the parameters of hallu-

cination network and optimize the softmax loss of the clas-

sification network for fine-grained recognition (see Figure

4).

4.3. Partbased hallucination networks

Part extraction. In fine-grained classification, part-

based representation is often used to better associate the

objects across different viewpoints. We are interested in

whether the part-based representation benefits to the cross-

domain hallucination network. Moreover, precise part re-

gions should better align the vehicle images from different

domains, e.g., reducing the background noise. For extract-

ing the part regions, we manually select the some of the

channels with maximum responses from certain convolu-

tion layer (we use conv5 in our experiments). The selected

channels correspond to the concepts of an vehicle 1 and

help us to localize important parts from vehicles. Figure

7 shows an example of part extraction from the convolution

responses. From this example, we can see that certain fea-

ture maps capture the locations and patterns of parts. The

locations of the cells with the max responses in the feature

map are mapped back to the input image proportionally. We

crop a bounding box around each part to get the part regions.

Training the network. For training the part-based hal-

lucination networks, we use the same architecture and train-

ing strategy as the hallucination network in Figure 3 to en-

hance the quality of parts. All parts share one hallucination

network during the training and testing (See Figure 5). In

the first stage, the part-based hallucination network is op-

timized by hallucination loss LH and restoration loss LR

with different part image pairs. In the second stage, we fix

the model parameters of part-based hallucination network

and train the classification network by optimizing the soft-

max loss for fine-grained classification.

4.4. Fusing image parts and content

To further improve the recognition accuracy, we fuse

the results from the whole and part-based hallucination net-

1More accurate parts can be selected by using the existing unsupervised

method [19], but we leave it to future work.

Channel: 13 Channel: 134 Channel: 137 

Figure 7. An example to demonstrate the part extraction from the

convolution responses. Top row: the feature responses from the

selected channels in conv5. Bottom row: we show part extrac-

tion results by using the channel 137 for different vehicle images,

where we extract the part regions by mapping back the locations

in the feature map to the original input image and draw a bounding

box around each point.

Model Accuracy

Train on target 72.0%

Train on source and target 70.2%

Siamese 75.1%

Two-stream (ours) 75.5%

3D Box [20] 76.4%

Hallucination network (ours) 77.1%

Late fusion (ours) 77.9%
Table 1. Classification comparison on BoxcCar21k in medium

level. The source and target are web and surveillance domain

respectively. Our method outperforms the baseline method [20]

while does not requiring any 3D information, and significantly im-

prove the results that fine-tune the network by using all the target

labels or using both source and target labels.

works in a late fusion scheme. For each network, the nor-

malized class probability is computed by a softmax layer

after the fc8. Then, the final class probability prob can be

easily computed by a weighted late fusion:

prob = λprobwhole + (1− λ)probpart, (3)

where probwhole is class probability of whole image

framework, probpart is the class probability of part-based

framework and we linearly search the λ from 0 to 1 to ob-

tain the fusion weights.

5. Experiments

5.1. Dataset

BoxCars21k dataset [20] contains the vehicle images

from the surveillance videos annotated with fine-grained la-

bels. The dataset is divided into the classification and ver-

ification sets. We evaluate our method on the classification

set in all of our experiments. Classification set is further
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Model Accuracy

Train on target 66.9%

Train on source and target 68.7%

Siamese 72.3%

Two-stream (ours) 71.8%

3D Box [20] 73.1%

Hallucination network (ours) 72.8%

Late fusion (ours) 73.6%
Table 2. Classification comparison on BoxcCar21k in hard level.

split into medium level (40152 training images, 19590 test-

ing images and 77 classes) and hard level (37689 training

images, 18939 testing images and 87 classes). Hard level

contains more similar classes (same car make but different

car model) than medium level.

5.2. Experimental settings

We collect the corresponding images from Internet as the

additional data. We search the relevant web images by using

the vehicle class names as keywords. Then, we apply Faster

R-CNN [17] to automatically extract those images contain-

ing cars. After the preprocessing, the total number of the

web images is 43,245. We use the CaffeNet pre-trained by

ImageNet [4] as our backbone model, following the same

settings as [20] for fair comparison. We train our method

with 16 image pairs per batch, learning rate of 0.0001, iter-

ations of 15000, momentum of 0.9, weight decay of 0.0005

and adopt Adam solver. For hallucination network, we nor-

malize the pixel values to [-1,1] by p̂ = (p − 127)/255,

where the normalized pixel value and input pixel value are

denoted as p̂ and p respectively. No other data argumenta-

tion tricks are applied in our method.

5.3. Baseline methods

We compare our approach with a set of baseline meth-

ods to verify the feasibility of the cross-domain hallucina-

tion network. In the following, we use the source and target

for web and surveillance domain respectively. (1) Train on

target: we fine-tune the CaffeNet by using the image labels

from the target domain. (2) Train on source and target:

we fine-tune the CaffeNet by using both source and target

labels. We are interested to see whether using source do-

main labels can further improve the classification accuracy

in target domain. (3) Siamese network: Our implemen-

tation is based on the siamese model from Caffe, which

uses weight sharing and a contrastive loss function at fc6

layer. We extend the original siamese model and incor-

porate a softmax layer on the top of each stream for fine-

grained classification. (4) Two-stream network (ours):

we observe that there exists large domain differences be-

tween the web and surveillance domains, which implies

that two domains may not share the common visual fea-

ture representations. Instead, we use two CaffeNets with-

out the weight sharing to learn the individual visual concept

for each stream. Though without the weight sharing, the

high level layers are still regularized by the contrastive loss

and thus the model is still able to transfer the knowledge

across domains. (5) 3D box [20]: the method extracts the

3D bounding boxes of each vehicle by using three vanishing

points. Vehicle images can be better aligned by unpacking

the 3D bounding boxes into 2D planes. Using the rasterized

3D bounding boxes images (2D array) and veiwpoints (1D

vector) as the additional inputs to improve the performance

in hard level.

5.4. Experimental results

The experimental results are shown in Table 1 and Ta-

ble 2 for medium and hard level respectively. Our method

shows the better results compared to fine-tuning the Caf-

feNet on the target domain (train on target) and even on

both source and target domains (train on source and target).

The reason that using all labels from both domains even gets

worse results compared to fine-tuning the model on the tar-

get only is there may exist a large difference between the

source and target domain (e.g., resolution, lighting, pose,

background), and an unified network can not fit both do-

mains well.

Two-stream model shows slightly better results com-

pared to siamese (75.5% vs 75.1%), which demonstrates the

utility of using two different networks for better handling

the large domain differences. Compared to [20] that esti-

mates three vanishing points for obtaining the 3D bounding

box of a vehicle, our method only requires 2D bounding

boxes, which is much easier to obtain (e.g., by using current

object detection methods [16, 13]). The results show that

our method achieves better performance, and more impor-

tantly it is generalizable to different scene structures without

the need to estimate 3D geometry.

We combine the whole image-based hallucination net-

work and part-based hallucination network by a late fusion

scheme, which shows the best performance compared to

other approaches. We first combine the class probabilities

of three vehicle parts by simply averaging, as three parts

achieve the similar performance. Then, we combine the

class probabilities of the whole image and parts by using

the weighted softmax fusion. The late-fusion result shows

that part-based hallucination network provide the comple-

mentary information, and further boost the final classifica-

tion performance. Since using parts as inputs lose some

global information (eg, shape, pose), we found that part-

based framework does not yield the same or better result

than the whole image framework. Thus, part-based frame-

work works as a auxiliary role in our entire model. The im-

provement by late fusion scheme confirms that part-based

hallucination network is helpful to the whole problem. In
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addition, the two testing set in our experiments has nearly

20000 vehicle images. Even 0.8% improvement (from Hal-

lucination network to Late fusion) indicates about 160 test-

ing examples been corrected. This shows that the improve-

ment is robust and convincing.

In Table 3, we show an example to demonstrate that bet-

ter image quality obtained by our hallucination network is

crucial for fine-grained object classification. When using

the baseline model CaffeNet, the vehicle class Volkswagen

Polo is often wrongly classified as Skoda Citigo or Skoda

Octavia Combi. Our hallucination network enhances the

image details and significantly improves the accuracy by

16.5% with only slight performance drop for another class.

VW Polo Skoda Citigo Skoda Octavia Combi

CaffeNet 0.598 0.892 0.930

Hallucination network 0.763 0.928 0.910

Table 3. An example to demonstrate that our hallucination network

enhances the image quality and significantly reduces the misclas-

sification for confusing fine-grained categories.

6. Conclusions

We propose a cross-domain hallucination network for

fine-grained vehicle recognition in the surveillance environ-

ments. Our method better recovers the details and enhances

the quality of the low resolution images. We also investigate

the part-based hallucination network to better associate the

cross-domain regions and improve the performance. In fu-

ture work, we will focus on integrating the classification and

hallucination networks into a joint model and train it in an

end-to-end manner.
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