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Abstract

Context enhancement is critical for night vision (NV) ap-

plications, especially for the dark night situation without

any artificial lights. In this paper, we present the infrared-

to-visual (IR2VI) algorithm, a novel unsupervised thermal-

to-visible image translation framework based on generative

adversarial networks (GANs). IR2VI is able to learn the

intrinsic characteristics from VI images and integrate them

into IR images. Since the existing unsupervised GAN-based

image translation approaches face several challenges, such

as incorrect mapping and lack of fine details, we propose a

structure connection module and a region-of-interest (ROI)

focal loss method to address the current limitations. Exper-

imental results show the superiority of the IR2VI algorithm

over baseline methods.

Humans have poor night vision compared to many ani-

mals, partly because the human eye lacks a tapetum lucidum

[4]. This biological deficiency may lead to several unde-

sirable fatalities. For example, vehicle collisions are much

more likely to happen at night than during daytime. [26].

Hence, context enhancement plays a critical role in many

night vision applications.

A straightforward way to enhance the context in night

vision is by employing thermal or infrared (IR) and vis-

ible (VI) image fusion approaches [2, 27, 30], where an

IR sensor can enhance thermal objects in a night environ-

ment from a visual spectrum background [19]. However,

an IR/VI image fusion method only works at dawn or dusk
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when the visible camera is still able to capture the visual

scene. When there is a dark night without any sort of moon

or artificial lights, only the IR sensor works. Technically,

the emitted energy of an object reaches the IR sensor which

can be converted into a temperature value, and thus the IR

sensor can see in the night. However, IR image lacks fine

semantic information as textures seldom influence the heat

emitted by an object. When the image is presented to a final

user, a visible image is preferred because it is more suitable

to the sensitivity of human visual perception system ranging

from 400nm to 700nm.

In a nighttime scenario, translating an IR images to a VI

image would be a possible solution to enhance environmen-

tal perception at night. In recent years, numerous research

has been proposed to solve this challenging task by col-

orizing the IR images using different models [16, 25, 22].

Recent progress in machine learning might advance night-

time imagery. Generally, machine learning models are of-

ten employed to predict the color values directly. However,

those models need large-scale datasets with corresponding

ground truth data for training. For the IR image captured at

night, it is almost impossible to find a pixel-to-pixel aligned

day-time to the VI image. In addition, the semantic infor-

mation from the visible spectrum comes with texture and

structure, as well as color.

We can formulate the task of translating the night-

time IR images to the day-time VI images as an unsuper-

vised image-to-image translation problem, where we aim to

model the mapping between the two different data distribu-

tions without fully paired training datasets. This is a signif-

icant challenge until the Generative Adversarial Networks

(GANs) based methods were proposed [5, 7, 17, 14] in the

most recent years. The basic idea behind these methods

is that a generative Convolutional Neural Network (CNN)

can translate an image from the source data domain to the
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target data domain, while a discriminative CNN can distin-

guish the translated image from the real image. The gener-

ator attempts to fool the discriminator and the discriminator

attempts to identify the image from the generator as fake.

In this way, the GANs will end up in local Nash Equilib-

rium. However, when applying this unsupervised image-to-

image translation framework to the IR-to-VI task directly,

two major problems arise. Firstly, the trained models face

an incorrect mapping problem, when most of areas from the

input image are overly bright. Secondly, the generated im-

age lacks fine details, especially for the small objects.

To address above mentioned problems, we proposed

an unsupervised IR-to-VI image translation framework,

namely IR2VI. Basically, IR2VI is a GAN-based method,

and the basic architecture is comprised of one generator

and two discriminators, i.e., a global discriminator and a

Region-of-Interest (ROI) discriminator. To deal with the in-

correct mapping problem, we added a structure connection

in the generator enabling the generated image to keep orig-

inal structure information. Moreover, we also proposed the

ROI focal loss which consists of an ROI cycle-consistency

loss and an ROI adversarial loss to resolve more fine details

in the concerned areas. To summarize, the contributions of

this paper include:

• A novel unsupervised thermal image translation

framework, IR2VI, is proposed to enhance the envi-

ronmental perception at night by translating night-time

IR images to day-time VI images.

• A structure connection and an ROI focal loss are im-

plemented to deal with the existing problems with

GAN-based methods, e.g., incorrect mapping.

Both subjective and quantitative results are given in the ex-

periments, which demonstrate the superiority of IR2VI over

the baseline models.

1. Related Work

1.1. Infrared and Visible Image Fusion

IR and VI image fusion is an active research in the last

two decades, where the objective is to fuse the IR and the VI

image into a composite image to boost imaging quality for

improved visual capability of human and robot machines

[12]. The image fusion methods can be roughly catego-

rized into methods in spatial domain and transform domain.

The implementation in the spatial domain is straightfor-

ward, such as weighted average and gradient transfer fusion

[20]. The transform-domain based algorithms include non-

subsampled contourlet transform (NSCT) [2], wavelet [24],

guided filter [30], etc. These transform image fusion meth-

ods are developed with the assumption that the IR and VI

images are fully registered. Nevertheless, the visible cam-

era does not function in most night environments, which

means only the IR image can be acquired and the image

fusion operation cannot be further performed.

1.2. Infrared Image Colorization

IR image colorization is a type of color transferring tech-

nique which aims at transforming a gray-scale IR image into

a multi-channel RGB image. Basically, this technique can

be divided into non-parametric and parametric based meth-

ods. The non-parametric based methods [8, 9, 29] gener-

ally require colorful reference images whose structure is

also similar to the source IR image, and then the meth-

ods utilize the image analogies framework [10] to trans-

fer the color onto the IR image. While the parametric

based methods [16, 25, 22] can directly estimate chromi-

nance values by training one or multiple prediction models,

such as deep convolutional neural networks (DCNNs) [16]

or GANs [25, 22]. However, these colorization approaches

either require paired pixel-wise aligned training dataset or

rely on a colorful reference image, which is hardly acquired

in a night vision application. Contrasted with IR image col-

orization methods, our IR2VI can mapping the intrinsic fea-

tures from VI image to the IR image and does not need a

fully registered dataset.

1.3. Image­to­Image Translation

Image-to-Image translation is to learn a mapping func-

tion from a source data distribution to one or multiple data

distributions. Recent progresses in this field were achieved

with GANs [7]. These GAN approaches can be categorized

into supervised and unsupervised ones. For the supervised

models [23, 28], the L1 loss function is commonly adopted

and thus the paired images are required. While the unsuper-

vised models [5, 17, 14] alleviate the difficulty for obtain-

ing data pairs with different techniques, such as variational

auto-encoders (VAEs) [17] or cycle consistency [14]. How-

ever, the unsupervised methods can also lead to several un-

desirable problems, such as incorrect mappings, when ap-

plied to the IR-to-VI image translation task. In our IR2VI

framework, we designed a structure connection module and

ROI focal loss to successfully address these problems.

2. The IR2VI Framework

2.1. Overall Architecture

As we can see in the Fig. 1, the basic architecture of

IR2VI includes a generator, a global discriminator, and an

ROI discriminator. The generator translates an IR image to

a synthetic VI image that looks similar to the real VI im-

age, while the global discriminator distinguishes translated

VI images from real ones. The ROI discriminator aims to

distinguish the ROIs between translated VI image and real

ones. In this way, the synthetic VI images are designed to

be indistinguishable from the real VI images.
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Figure 1. An overall architecture of the proposed IR2VI framework. Note that this is a brief illustration of the architecture, which actually

needs to be duplicated for training in the CycleGAN way.

Similar to CycleGAN [14] and StarGAN [5], we adopted

the residual auto-encoder architecture from Johnson et al.

[13] with 9 residual blocks [15] for the generative network.

We follow the naming convention used in image translation

community [17, 28, 14], with the network configuration ex-

pressed as follows:

c7s1−32, d64, d128, R128, R128, R128,

R128, R128, R128, R128, R128, R128,

u64, u32, c7s1−1, c7s1−1structure, F

where the c7s1−k represents a 7 × 7 Convolution-

BatchNorm-ReLU layer with k filters and stride 1. And the

right top structure means that is for structure connection

module which will be introduced in the following subsec-

tion. dk denotes a 3 × 3 Convolution-BatchNorm-ReLU

(CBR) layer with k filters, and stride 2. We also employed

reflection padding to reduce boundary artifacts. Rk denotes

a residual block which consists of two 3 × 3 convolutional

layers with the same number of filters on both layer. uk

represents a 3 × 3 fractional strided CBR layer with k fil-

ters, and stride 1
2 . F denotes fusion layer where we uti-

lize sum and tanh functions to fuse the output information

from both structure connection and residual auto-encoder.

We adopted the PatchGAN [23] with 4 hidden layers for all

the discriminative networks, with the network configuration

is as follows:

C64, C128, C256, C512, C512

where Ck denotes a 4 × 4 Convolution-BatchNorm-

LeakyReLU layer with k filters and stride 2 (except for the

last layer with stride 1). After the last layer, we applied a

convolution to produce a 1 dimensional output. BatchNorm

is not applied to the first C64 layer. We set the slope 0.2 for

leakyReLU.

For training the IR2VI, four loss functions were utilized

(cycle consistency loss, global adversarial loss, ROI cycle-

consistency loss, and ROI adversarial loss). Details about

each loss function are provided in the following sections.

Basically, the IR2VI framework evolves from the Cycle-

GAN [14]. In contrast to CycleGAN, we made two impor-

tant improvements: (1) A structure connection module has

been added into the generator to constrain the structure de-

formation; and (2) a ROI focal loss is calculated in the train-

ing stage, which enables the critical regions to be focused

in translation procedure.

2.2. Implementation Details

2.2.1 Structure Connection

Incorrect mapping is a common issue for the unsupervised

image translation models which directly lack supervised

signals. When objects in the source image are overly bright,

which is an extremely common situation for the IR image at

night, the translation models will be confused and map the

objects to any random permutation of objects in the target

domain. As the example in Fig. 2, where the CycleGAN

wrongly mapped the ground to the forest and the vehicle to

a different object. To solve the incorrect mapping problem,

we added a shortcut to the generator to connect input im-

age with generated image, which is called “structure con-

nection.” A 7 × 7 convolution layer is adopted to extract

the detailed structure information from the IR image and

then fuse it with the semantic information generated by the

residual auto-encoder model. In this way, the deep CNN is
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able to focus on the semantic level task while the structure

connection enables the synthetic VI image to keep original

structure information.

Figure 2. An example of the results from the CycleGAN to illus-

trate the incorrect mapping problem.

2.2.2 Cycle Consistency Loss

The cycle consistency loss was proposed by Zhu et al. in

[14]. The basic idea is to learn two mappings G : IR → VI,
and F : VI → IR, which can translate the image between

two domains. For the x ∈ IR, it forces F (G(x)) ≈ x,

while for y ∈ VI, it forces G(F (y)) ≈ y. Thus, it be-

comes possible to constrain the cycle-consistency and elim-

inate undesirable mappings. The cycle consistency loss can

be formulated as follows:

Lcyc(G,F ) =Ex∼IRdata
[‖F (G(x)) − x‖

1
]

+ Ey∼VIdata
[‖G(F (y)) − y‖

1
].

(1)

2.2.3 Global Adversarial Loss

The global adversarial loss is derived from the global dis-

criminator, which aims to distinguish the full-size image

from the real domain with the full-size image from the

synthetic domain. Because the image fed to the discrim-

inator network is full-sized, the adversarial loss is desig-

nated as the global adversarial loss. As aforementioned,

two mapping functions are created to manipulate the cy-

cle consistency loss. The global adversarial loss is applied

to both mapping functions. Taking the mapping function

G : IR → VI as example, its discriminator is DG
VI. Thus,

the global adversarial loss is formulated as:

Ladv(G,D
g

VI, IR,VI) = Ey∼VIdata

[

log(D
g

VI
(y))

]

+Ex∼IRdata

[

log(1 − D
g

VI
(G(x)))

]

(2)

2.2.4 ROI Focal Loss

Generally, the generated images via adversarial training are

often lack of fine details and realistic textures [3, 28]. This

is manifested when the concerned object is extremely small.

To end this, we propose a region of interest (ROI) focal

loss which consists of ROI adversarial loss and ROI cycle-

consistency loss. The ROI approach is suitable for those

training dataset with bounding boxes. In contrast to the cy-

cle consistency loss and global adversarial loss which take

the full-size image as input, the ROI focal loss operates in

the ROI. To obtain the ROIs from the full-size image, the

ROI pooling layer [6] is adopted, which was proposed to

solve the object detection challenge. Based on provided

bounding boxes, the ROI pooling layer is able to crop and

reshape the arbitrary area to the fixed size image. In our

work, we set 64 × 64 as the fixed size of ROI image and

name the ROI pooling function as R(·). Same as the cycle

consistency loss and global adversarial loss, the ROI focal

loss is applied to both mapping functions. Here, the map-

ping function G : IR → VI is used as an example.

The ROI cycle-consistency loss can be formulated as fol-

lows:

L
roi
cyc(G,F ) = Ex∼IRdata

[‖R(F (G(x))) − R(x)‖
1
]

+Ey∼VIdata
[‖R(G(F (y))) − R(y)‖

1
].

(3)

The network configuration of ROI discriminator is same

as that of the global discriminator. The ROI adversarial loss

can be expressed as follows:

L
roi
adv(G,D

roi
VI

, IR,VI) = Ey∼VIdata
[log(D

roi
VI

(R(y)))]

+Ex∼IRdata
[log(1 − D

roi
VI

(R(G(x))))],
(4)

where Droi
VI represents the ROI discriminator for VI images.

2.3. Full Objective

Finally, the complete objective function can be written

as:

Lfull =Ladv(G,D
g

VI
, IR,VI) + Ladv(G,D

g

IR
, IR,VI)

+ λcycLcyc(G,F ) + λroi(λcycL
roi
cyc(G,F )

+ L
roi
adv(G,D

roi
VI

, IR,VI) + L
roi
adv(G,D

roi
IR

, IR,VI)),

(5)

where λcyc and λroi are the hyper-parameters that con-

trol the relative importance of cycle consistency loss and

the ROI focal loss. For simplicity, Lfull represents

L(G,F,Droi
VI , D

roi
IR , D

g
VI, D

g
IR). Finally, the method re-

solves:

G
∗

, F
∗

= argmin
F,G

max
Droi

VI
,Droi

IR
,D

g
VI

,D
g
IR

Lfull (6)

2.4. Evaluation Protocol

As there is no ground truth associated with the translated

image, it is hard to evaluate the performance of the differ-

ent image translation methods. In this study, we focused

on the dataset with bounding boxes. Thus, it is possible to

assess different methods by performing object detection on

the synthesized images. Specifically, We adopted the ob-

ject detector of Faster R-CNN with ResNet 101 network

presented in [11], and trained it on the day-time VI image

dataset (target domain). Then, different image translation
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methods were empoyed to generate the synthetic VI image

from the IR image at night. Finally, the trained object de-

tector model was performed on the synthetic VI image col-

lections. One choice is to use the de-facto standard average

precision (AP) to evaluate the performance of object detec-

tor, which is calculated as the ratio between the area under

Precision-Recall curve (less than 1) to the entire area (which

is 1).

3. Experimental Results

This section introduces the Military Sensing Information

Analysis Center (SENSIAC) dataset that is used in all the

experiments. Then the settings of the hardware and train-

ing detail of IR2VI are listed. Lastly, the IR2VI is com-

pared against state-of-the-art methods for subjective quali-

tative and objective quantitative analysis.

3.1. Dataset

SENSIAC [1] recently released a large-scale military IR-

VI image dataset for automatic target recognition (ATR).

In this study, the proposed IR2VI framework is evaluated

with the SENSIAC dataset along with the state-of-the-art

methods. Basically, the SENSIAC dataset contains 207GB

of middle-wave infrared (MWIR) videos and 106GB of VI

(grayscale) videos along with manually labeled bounding

boxes. Various types of objects are included in this dataset,

for instance, soldiers, military vehicles, and civilian vehi-

cles. It worth noting that the dataset was collected during

both day-time and night-time with multiple observation dis-

tances from 500 to 5000 meters. However, it has paired IR-

VI videos in day-time but only has IR videos in the night-

time.

The objective of this study is to translate the night-time

thermal images to the day-time VI images, where only the

night-time IR videos and the day-time VI videos are used

in the experiments. We selected 3 different observation dis-

tances, e.g., 1000, 1500, and 2000 meters, and split into

training/testing datasets [18]. For training the image trans-

lation models, we sampled the keyframe at 3Hz (every 10

frames). Thus, there are 2700 night-time IR training im-

ages and 2691 day-time VI training images. Note that all

the night-time IR images are preprocessed by histogram

equalization operation prior to being fed into the models.

For training the object detector, the keyframe is sampled

at 6Hz (every 5 frames). So, there are 4573 day-time VI

images and 5400 night-time IR images in training dataset.

Meanwhile, there are 2812 day-time VI images and 3240

night-time IR images in testing dataset.

3.2. Experimental Setup

The IR2VI was developed based on CycleGAN [14] by

using Pytorch deep learning toolbox [21]. We used a work-

station with an NVIDIA GeForce GTX 1080 GPU, an Intel

Core i7 CPU and 32 GB Memory.

For the hyper-parameters, the parameters are λcyc = 5
and λroi = 0.1 in Equation 5. All the networks were trained

from scratch, and the weights were initialized from a Gaus-

sian distribution with zero mean and 0.02 standard devia-

tion. The Adam solver was employed with a batch size of

2 and set the learning rate at 0.0002 for the first 20 epochs

and a linearly decaying rate to zero over the next 20 epochs.

For the fair comparison, we did not modify the default

setting of the baseline methods except the image channel,

image size, batch size, and training epochs. To be specific,

the images in SENSIAC dataset are grayscale, so the input

channel was set to 1 for the input channel of all the net-

works and the output channel of the generation network.

Because the limited capacity of the GPU memory, the train-

ing epochs were set to 40 with batch size 2 for CycleGAN

[14] and UNIT [17], training epochs 40 with batch size 12
for StarGAN [5]. And the images were center-cropped to

256× 256 pixels before feeding into the baseline networks.

Our IR2VI is a kind of object-based framework, so the im-

ages were cropped to 256 × 256 with at least one object.

Because the generator network of every method is a fully

CNN which is able to take an image of arbitrary size as in-

put, the full-size image is fed to the network in the testing

stage.

3.3. Results

In this section, we compared with the state-of-the-art

unsupervised image translation methods: CycleGAN [14],

UNIT [17] and StarGAN [5].

3.3.1 Subjective Comparisons

All the methods were trained on the same training set and

tested on the unseen images. Figure 3 shows the translated

images from unseen images by different methods. It is ap-

parent that the CycleGAN and the UNIT have the serious

incorrect mapping problems. The CycleGAN could not tell

where are the trees and ground, so it mapped the ground

to a forest. In the second testing image, the CycleGAN in-

correctly generated two vehicles. The translated images by

UNIT are almost similar without too much semantic infor-

mation. For the StarGAN method, it has few incorrect map-

ping problems but lacks sharp texture information. Signifi-

cantly, we qualitatively observed that our IR2VI provided

the highest visual quality of translation results compared

to the baseline methods. It can not only bring the spatial

semantic information but also makes the target clear. We

believe that our IR2VI framework benefits from the advan-

tages of the structure connection module and the ROI focal

loss.
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Figure 3. Comparison of different results on the SENSIAC dataset.

3.3.2 Quantitative Comparisons

For the quantitative objective evaluation, we applied the

evaluation protocol introduced in Section 2.4. Figure 4 and

Table 1 show the Precision-Recall (PR) curves and Average

Precision (AP) scores of the object detector on translated

images by different translation methods.

Figure 4. Precision-Recall curve of the object detector on different

synthesis images.

Table 1. Average precision scores of the object detector on the

generated testing images by different translation methods.

CycleGAN UNIT StarGAN IR2VI

AP (%) 7.62× 10−3 0.37 28.48 91.70

The results clearly show that there is a large margin be-

tween different methods, and our IR2VI achieved the best

AP score at 91.70% which has a 63.22% margin to the sec-

ond rank method, StarGAN. These results demonstrate that

the IR2VI is capable of adding semantic visible informa-

tion and also add object shape information to the original

thermal images. Even though the translated images by the

StarGAN lack texture information, the blur shape informa-

tion can also help the VI object detector to accomplish de-

tection. However, the incorrect mapping problems in Cy-

cleGAN and UNIT made the VI detector completely fail as

indicated with a nearly zero AP score.

4. Conclusion

In this paper, we proposed an unsupervised thermal im-

age translation framework for context enhancement at night,

called IR2VI. Thanks to the proposed structure connec-

tion module in the generative network, IR2VI is able to

overcome the incorrect mapping problem which is com-

monly faced by the state-of-the-art image translation meth-

ods. Moreover, the proposed ROI focal loss enables IR2VI

to generate a synthetic VI image with more fine details as

compared with baseline models. The results demonstrate

the IR2VI contributions which not only broaden the area of

context enhancement for night vision but also can be ap-

plied to many other related research fields within image fu-

sion.
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