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Abstract

The curse of dimensionality is a well-known phe-

nomenon that arises when applying machine learning algo-

rithms to highly-dimensional data; it degrades performance

as a function of increasing dimension. Due to the high data

dimensionality of multispectral and hyperspectral imagery,

classifiers trained on limited samples with many spectral

bands tend to overfit, leading to weak generalization capa-

bility. In this work, we propose an end-to-end framework

to effectively integrate input feature selection into the train-

ing procedure of a deep neural network for dimensional-

ity reduction. We show that Integrated Learning and Fea-

ture Selection (ILFS) significantly improves performance on

neural networks for multispectral imagery applications. We

also evaluate the proposed methodology as a potential de-

fense against adversarial examples, which are malicious in-

puts carefully designed to fool a machine learning system.

Our experimental results show that methods for generating

adversarial examples designed for RGB space are also ef-

fective for multispectral imagery and that ILFS significantly

mitigates their effect.

1. Introduction

The remote sensing community has started to adopt deep

learning and apply it to multispectral and hyperspectral im-

agery [13, 32]. However, the very high dimensionality of

these images and the limited size of available data sets for

training limit the exploitation of this methodology. Deep

neural networks trained with many spectral bands tend to

overfit, which leads to weak generalization capability even

when sufficient training data is available [27]. In addition,

this high dimensionality can make the models highly sus-

ceptible to adversarially constructed inputs.

A common approach to reduce high dimensionality is

to transform the data into a lower dimensional space us-

ing methods like Principal Component Analysis (PCA) or

Linear Discriminant Analysis (LDA) [17, 19]. However,

these methods usually change the meaning of the original

data as the features in the low-dimensional space are linear

combinations of the original bands. A second approach to

dimensionality reduction for hyperspectral and multispec-

tral images is band selection, which selects a subset of the

original bands. Band selection techniques can be divided

into two categories: supervised and unsupervised [7]. Su-

pervised methods aim to preserve the object information re-

lated to a target function, which is known a priori [7, 43],

while unsupervised methods do not assume any object in-

formation [2, 16]. All previous band selection methods fol-

low a two-step procedure where an independent method is

used initially to select a subset of bands and then a learning

algorithm is run using these bands as input.

We propose a new approach for dimensionality reduc-

tion that directly integrates supervised feature selection with

a deep learning classifier. We call this method Integrated

Learning and Feature Selection (ILFS). ILFS allows fea-

ture selection to be optimized by the learning algorithm,

and because information from bands that are not ultimately

selected is available during the learning process, it can im-

prove performance. We demonstrate that integrating fea-

ture selection into and end-to-end deep learning algorithm

greatly improves performance in multispectral image classi-

fication. We also show that it is an effective defense against

adversarial examples.

It has been shown recently that machine learning models

based on RGB images are often vulnerable to adversarial

examples [22, 25, 33, 34, 37]. Adversarial examples are

inputs maliciously constructed to induce errors by machine

learning models at test time. This represents a new attack

vector against systems that rely on machine learning mod-

els for critical functions (e.g., facial recognition to establish

identity, among many others). Researchers are working to-

wards developing defenses against attacks on RGB-based

11309



classifiers and have proposed numerous strategies to train

models that are more robust to adversarial examples or to

detect adversarial examples [6, 15, 26, 35, 29]. However,

they have frequently been found to be vulnerable to other

types of attacks, or come at the cost of decreased perfor-

mance on clean inputs [3, 8, 9, 10, 23, 29].

Many highly sensitive applications of remote sensing

and image analysis rely on more sophisticated imaging

technologies that go beyond RGB. Such applications in-

clude screening systems in airport security, military appli-

cations of satellite imagery for mission planning, situational

awareness, surveillance, night vision systems, thermal sen-

sors, and target identification systems [18, 21, 31, 36, 39,

40, 41, 44, 46]. These systems are especially attractive tar-

gets for highly skilled and motivated attackers, and the con-

sequences of adversarial attacks on learning algorithms in

these domains could be catastrophic. However, we are not

aware of any previous work that focuses on adversarial ex-

amples for machine learning with non-RGB images.

We present the first rigorous study of the robustness of

non-RGB image-based systems (VNIR, SWIR, Panchro-

matic) against adversarial examples for the task of semantic

segmentation. We show that it is not only feasible to gener-

ate deceptive examples for machine learning models based

on non-RGB images, it is easier in a sense than attacking

models for RGB images. However, we show that perform-

ing band selection using ILFS can substantially improve the

robustness of machine learning models against these adver-

sarial examples. ILFS limits the attack surface by reducing

the number of features that can be modified by an attacker

to induce errors, and does so in an unpredictable way. ILFS

also forces the model to perform well when there is uncer-

tainty in the input space because the input changes through-

out the learning process. While we demonstrate ILFS here

for band selection, this technique could be adapted to any

learning task with a continuous input space.

We summarize our main contributions as follows:

• We propose Integrated Learning and Feature Selection

(ILFS) as a generic framework for supervised dimen-

sionality reduction. We demonstrate ILFS is effective

for dimensionality reduction of multispectral and hy-

perspectral imagery, and significantly improves perfor-

mance on the semantic segmentation task for high di-

mensional imagery.

• We present the first study of constructing adversarial

examples for non-RGB imagery, and show that non-

RGB machine learning models are vulnerable to ad-

versarial examples.

• We show that Integrated Learning and Feature Selec-

tion (ILFS) is an effective defense to make multispec-

tral image-based models more robust against adversar-

ial examples.

2. Semantic Segmentation and Multispectral

Image Classification

Semantic segmentation makes dense predictions, infer-

ring labels for every pixel in an image. In the end, each

pixel is labeled with the class of the enclosing object or re-

gion. The per-pixel labeling problem can be reduced to the

following formulation: find a way to assign a label from

the label space L = l1, l2, ..., lk to each element in a set of

pixels X = x1, x2, ..., xN .

Each label l represents a different class or object, e.g.,

building, vehicle, man-made structure, or background. This

label space has k possible labels which is usually extended

to k + 1, treating l0 as a background or void class. Usually,

X is a 2D image of W ×H = N pixels. However, that set

can be extended to any dimensionality such as volumetric

data or multispectral and hyperspectral images. Multispec-

tral image classification is the task of classifying every pixel

in a multispectral data cube, which is similar to performing

semantic segmentation using a multispectral data cube as

the input image. This is one of the most common uses of

multispectral data so we focus on this task for our experi-

ments.

3. Integrated Learning and Feature Selection

We propose ILFS as a framework to automatically se-

lect the input features that are most useful for the learning

task. Dimensionality reduction is done simultaneously with

learning a model to solve the learning task. In the case of

our semantic segmentation task, this corresponds to choos-

ing bands that will help a deep neural network better dis-

criminate objects in a multispectral image.

Let us consider I as the input space with n features

and let Z be the vector encoding the selected features

{z1, z2, . . . zk−1, zk} (e.g., the bands in a multispectral or

hyperspectral image). We define X to be the image that re-

sults from selecting features Z from I , and J to be the cost

function of the network. To discover and select features that

can discriminate objects more effectively, we include the

input feature selection in the learning process. To achieve

this, we compute the gradient of the loss with respect to the

selected features using the chain rule:

∂J

∂Z
=

∂J

∂X

∂X

∂Z
(1)

3.1. Obtaining the Derivatives

To compute ∂J
∂X

, it is only necessary to backpropagate

the loss from the last layer up to the input image. To obtain
∂X
∂Z

, we compute ∂X
∂zi

for each of the features in Z. While

the bands in the high dimensional image are discrete, they

are densely sampled, thus they can be viewed as a continu-

ous and differentiable space. We compute the values of frac-
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Figure 1: H(I, Z) for a pixel by selecting k features

tional bands using simple linear interpolation, which leads

to piecewise constant derivatives (see Figure 1). Thus, if we

define H(I, z) to be the resulting image from selecting fea-

ture z from I , equation 2 shows how a change in a particular

feature zi produces a change in X .

∂X

∂zi
= H(I, ⌊zi⌋+ 1)−H(I, ⌊zi⌋) (2)

Finally, we define ∂X
∂Z

, as the vector with the values
[

∂X
∂z1

, ∂X
∂z2

, . . . ∂X
∂zk−1

, ∂X
∂zk

]

3.2. ILFS Implementation Details

Our implementation of ILFS initially defines Z as a ran-

dom vector with the bands selected. We use this vector

to obtain the image X from the input image I that has all

bands. We update the bands 10 times per epoch using gradi-

ent descent and an adaptive learning rate. This is necessary

to prevent premature convergence in the model. We use an

initial learning rate of 0.2 and decrease it exponentially after

every epoch using exponential decay. We update X every

time Z is updated.

4. Experimental Setup

4.1. DSTL Satellite Imagery Dataset

The Defense Science and Technology Laboratory

(DSTL) released a dataset of 1km × 1km satellite images

for detection and classification of the types of objects found

in these regions at the pixel level. There are two types of

spectral imagery content provided in this dataset: 3-band

images with RGB natural color and 16-band images con-

taining spectral information captured by wider wavelength

channels. This multi-band imagery is taken from the Visible

and Near Infrared (VNIR) (400-1040nm) and short-wave

infrared (SWIR) (1195-2365nm) range collected using the

DigitalGlobes WorldView-3 satellite system. DSTL labeled

10 different classes:

1. Buildings: large building, residential, non-residential,

fuel storage facility, fortified building.

2. Misc: manmade structures.

3. Road

4. Track: poor/dirt/cart track, footpath, trail.

5. Trees: woodland, hedgerows, groups of trees, stan-

dalone trees.

6. Crops: contour ploughing/cropland, grain crops

(wheat, corn), row crops (potatoes, turnips).

7. Waterway

8. Standing Water

9. Large, Vehicle: large vehicle (e.g. lorry, truck, bus),

logistics vehicle.

10. Small Vehicle: small vehicle (car, van), motorbike.

4.2. Models

In semantic segmentation, we want to assign each pixel

in the input image to an object class. Most popular ap-

proaches to do semantic segmentation are based on Fully

Convolutional Networks (FCN) [28]. FCN are a type of

Convolutional Neural Network architecture for dense pre-

dictions that do not use any fully connected layers. This

allows segmentation maps to be generated for large images.

Almost all subsequent state-of-the-art approaches for se-

mantic segmentation have adopted this paradigm [4, 5, 12].

We used Tensorflow to train different models of VGG-

19-based FCN-8 for semantic segmentation [28, 38]. We

trained models both with and without using ILFS for di-

mensionality reduction. We trained our deep network on

the DSTL Satellite Image Dataset using either RGB, VNIR,

SWIR, or VNIR and SWIR channels as input. 10000

randomly selected (without replacement) 224x224 patches

were used for training, and 500 224x224 patches were re-

served for testing. The models were trained on an NVIDIA

Tesla GPU on Amazon Web Services. All the models were

trained for the same number of epochs on the training set. A

small batch size (4 patches) was necessary to fit the training

set in memory.

4.3. ILFS Evaluation

We report performance results using mean intersection

over the union (mean IoU), a standard metric for common

semantic segmentation and scene parsing evaluations.

meanIoU = (1/ncls)
∑

i

nii/(ti +
∑

j

nji − nii) (3)

where nij is the number of pixels of class i predicted to

belong to class j, there are nclsdifferent classes, and ti =
∑

j nji is the total number of pixels of class i.

5. Results

5.1. ILFS Significantly Improves Performance

Figure 2 presents the results of training models for se-

mantic segmentation using different inputs, including ILFS
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Figure 2: Performance Evaluation for Semantic Segmentation of Hyperspectral Images. All of models were trained on the

same deep neural network architecture (VGG19-based FCN-8) for the same number of epochs. For RGB we trained using

only the three RGB bands as input. For VNIR, we trained with all of the bands from the visible and near-infrared (VNIR)

region of the spectrum. For VNIR + SWIR all of the available bands were used as input while training. ILFS 1...7 show the

results when ILFS is used to pick 1, 2, 3, 4, 5, 6, and 7 input features, respectively.

used to select different numbers of input features. Perfor-

mance is measured using the mean IoU. All of the models

used the same network architecture (VGG19-based FCN-8)

and the same number of training epochs. The results show

that ILFS improves performance by up to 12.409% over the

best model without ILFS. All ILFS models with more than 2

features beat all of the non-ILFS models. Hyper-parameters

were fine-tuned for ILFS 3 and then used for the other ex-

periments. Improvement in performance could be obtained

by fine-tuning hyper-parameters for every model. The in-

tuition for the improved accuracy is that ILFS allows the

network to find a combination of bands (including interpo-

lated bands) that allow for better discrimination of the ob-

jects in the scene while the smaller feature space prevents

overfitting of the training data.

Another advantage of ILFS with 3 features is the feasi-

bility of doing transfer learning. Training a deep neural net-

work from scratch may not be feasible for various reasons:

a dataset of sufficient size may not be available, or reaching

convergence can take too long, or the memory requirement

may be too high for the available hardware. Even if train-

ing a network is feasible, it is often helpful to start with

pre-trained weights instead of randomly initialized weights.

Here we can use a model previously trained on RGB for a

similar task to initialize the weights and selected features

and then continue the training using ILFS 3. Yosinski et

al. showed that transferring features even from distant tasks

can be better than using random initialization, taking into

account that the transferability of features decreases as the

difference between the pre-trained task and the target one

increases [45].

5.2. ILFS Visualization

For ILFS 3 it is possible to display a false color image of

the selected bands. This allows the user to visualize what

the network has learned and determine if it is a good set of

discriminative channels or bands. Figure 3 shows the true

color image of one portion of the data cube and the cor-

(a) True Color (b) False Color ILFS 3

Figure 3: ILFS 3 Visualization. We see similar results to

what is known as spectral indices in the remote sensing

community, and can visually discriminate classes.

responding false-color image of the features obtained from

ILFS 3. This output is very similar to what is known as

spectral indices in remote sensing. We can visually discrim-

inate classes (e.g., vegetation is bright white), which may be

useful for human analysts as well.

6. Adversarial Examples Beyond RGB

The objective of adversarial learning is to find a pertur-

bation ξ that when added to an input X changes the output

of the model in a desired way. The attacker tries to keep

ξ small enough such that when it is added to X to produce

XAdv = X + ξ the difference between XAdv and X is almost

imperceptible.

We denote by the function fθ a deep neural network with

parameters θ. fθ(X) is the output of fθ, and ytrue is the cor-

responding ground-truth label. In this work, x is an image,

fθ(X) is the conditional probability p(y|X; θ) encoded as

a class probability vector, and ytrue is a one-hot encoding

representation of the class. J(fθ(X), ytrue) is the classifi-

cation loss function. We assume that J is differentiable with

respect to θ and with respect to X .
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(a) Clean Input (b) Adv. Example (c) Amplified Noise

(d) Ground-Truth (e) Pred. Clean (f) Pred. Adversarial

Figure 4: An adversarial example generated with l∞-norm

of 4. (a) RGB of the original image (b) RGB representa-

tion of the adversarial examples obtained using the Iterative

FGSM ll method (c) the amplified noise added to the orig-

inal image (d) the ground-truth image (e) the model pre-

diction when the original image is the input (f) the model

prediction when the adversarial example is the input.

(a) True Color Input (b) Pred. Clean (c) Pred. Adversarial

Figure 5: Dynamic Adversarial Perturbation for HSI Se-

mantic Segmentation attack.

6.1. Methods to Generate Adversarial Examples

We tested the following attack methods:

Fast Gradient Sign Method (FGSM): Goodfellow et

al. [22] proposed a fast single-step method for computing

untargeted adversarial perturbations. This method defines

an adversarial perturbation as the direction in image space

that yields the greatest increase in the linearized cost func-

tion under L∞ norm with the perturbation bounded by the

parameter ǫ. This can be achieved by performing one step

in the gradient sign’s direction with step-width ǫ:

XAdv = X + ǫ sign(∆xJ(fθ(X), ytrue)) (4)

This method is simple and computationally efficient

compared to more complex methods but it usually has a

lower success rate [25].

One-step Target Class Method (FGSM ll): Kurakin

et al. [24] proposed an alternative approach to FGSM that

maximizes the conditional probability p(ytarget|X) of an

specific target class ytarget which is unlikely to be the real

class for the input image X.

XAdv = X − ǫ sign(∆xJ(fθ(X), ytarget)) (5)

As proposed in [24], we choose the least likely class

predicted by the model as the target class ytarget.

Basic Iterative Method (Iterative FGSM): [25, 29]

This is an extension of FGSM in which FGSM is applied

multiple times with a small step size:

XAdv
0 = X,

XAdv
i+1 = ClipX , ǫ {XAdv

i +α sign(∆xJ(fθ(X
Adv
i ), ytrue))}

(6)

This increases the chance of fooling the original net-

work. In this work, as in [24], we used α = 1, which means

that we changed the value of each pixel by 1 on each step.

We set the number of iterations to be min(ǫ+ 4, 1.25 ∗ ǫ).
ClipX , ǫ(A) refers to the element-wise clipping of A,

with Ai,j clipped to the range [Xi,j − ǫ,Xi,j + ǫ]. This

guarantees that the max l∞-norm of the perturbation is

never greater than ǫ.

Iterative Least-Likely Class (Iterative FGSM ll) [25]

is a stronger version of FGSM ll. In this case the target

class is set to be the least-likely class (yll) predicted by the

network to fool:

XAdv
0 = X,

XAdv
i+1 = ClipX , ǫ{XAdv

i − α sign(∆xJ(fθ(X
Adv
i ), yll))}

(7)

we used α = 1 and the number of iterations was set to

min(ǫ+ 4, 1.25 ∗ ǫ).

These attacks were all originally proposed in the context

of RGB image classification, but they have been adapted

to semantic segmentation [14, 20, 30, 42], object detection

[42], and other tasks.

Dynamic Adversarial Perturbations for Semantic

Segmentation: For semantic segmentation, the loss func-

tion is a sum over the spatial dimensions of the ground-

truth.

Js(fθ(X), y) = 1/nmPix
∑

(i,j)∈X

Jcls(fθ(X)ij , yij) (8)

Metzen et al. [30] describes an adversarial example for

semantic segmentation as an input xadv for fθ such that
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Js(fθ(X), ytgt) is minimal without making perceptible

changes to the input. In the context of multispectral and

hyperspectral images in addition to keeping the spatial in-

formation almost identical to the input, the spectral signa-

ture of every pixel should be preserved. Otherwise, experts

could identify the perturbations by just looking at the spec-

tral information. Real world scenarios in remote sensing

may consist of an adversary trying to hide certain kind of

object. We assume that the adversary has access to the

model fθ, so he can use ypred = fθ(X) as an initial step,

and he would like to keep ytgt as similar as possible to ypred

to avoid attracting the attention of humans monitoring the

system. To accomplish this Metzen et al. proposed assign-

ing to the target class the predicted output for all the pixels

in the background (Xbg) (the ones you are not looking to

hide) and filling the gaps of the objects trying to hide (Xo)

by interpolating pixels in the background using a nearest-

neighbor heuristic. We follow the same idea for ytgt in this

work.

Given ytgt, adversarial examples to hide objects while

making the spatial and spectral changes imperceptible can

be obtained using the following formulation:

Js(fθ(X), y) = 1/nmPix{w
∑

(i,j)∈Xo

Jcls(fθ(X)ij , y
tgt
ij )

+(1− w)
∑

(i,j)∈Xbg

Jcls(fθ(X)ij , y
tgt
ij }

(9)

XAdv
0 = X,

XAdv
i+1 = ClipX , ǫ {XAdv

i −α sign(∆xJs(fθ(X
Adv
i ), ytgt))}

(10)

6.2. Attacks Used

We used the FGSM, FGSM ll, Iterative FGSM, Iterative

FGSM ll, and Dynamic Adversarial perturbations for Se-

mantic Segmentation attacks. The attacks were generated

with l∞ norms of 2, 4, 8, 16, and 32, which corresponds to

allowing increasingly more perceptible changes to the orig-

inal image.

6.3. Robustness Evaluation

The mean Intersection over Union (mean IoU) is the

primary metric used for evaluating semantic segmentation.

However, as the accuracy of each model varies, we adopt

the relative metric used in [1] and measure adversarial ro-

bustness using the mean IoU Ratio. The mean IoU Ratio

is the ratio of the network’s IoU on adversarial examples to

that for clean images computed over the entire dataset. A

higher mean IoU Ratio implies more robustness.

6.4. Non­RGB Image­Based Models are Vulnerable
to Adversarial Examples

Figure 4 shows an example of an attack on a multispec-

tral model using the Iterative FGSM ll with an l∞-norm

of perturbation of 4. To visualize the results we show the

true color composition for the multispectral clean and ad-

versarial input. The difference between the clean and the

adversarial input is visually imperceptible, but the predic-

tions of the model are totally different. FGSM, Iterative

FGSM, FGSM ll, and Iterative FGSM ll attacks try to cause

the model to make as many mistakes as possible. The main

issue with these attacks is that in real life scenarios totally

disassociated with the real classes will make the attacks

obvious. Attackers will likely prefer attacks like the one

shown in Figure 5. This attack can be used to hide specific

classes and/or objects from the scene while giving as output

a prediction that is as close as possible to the real predic-

tion. Figure 5 shows how we successfully hid a tree for the

adversarial prediction.

Figure 6 shows the mean IoU ratio as a measure of the

robustness of the trained models to adversarial examples ob-

tained in a white box setting with different l∞-norm of per-

turbation (2, 4, 8, 16, 32). From Figure 6 we can see that

multispectral image-based models are vulnerable to adver-

sarial examples. In fact, it is even easier to fool those mod-

els in a white box setting, as they produce lower mean IoU

ratio than RGB models for the same amount of perturbation.

The intuition behind this result is that with high dimensional

images an attacker has more information to manipulate.

6.5. Non­RGB Adversarial Examples in the
Physical World

Adversarial attacks have proven to be successful in the

physical world as well [11, 37]. Adversarial examples in

the physical world are normally accomplished by printing

the color image of the adversarial examples. To test this,

we generated adversarial examples against an RGB image-

based semantic segmentation model and used those adver-

sarial examples to modify the RGB part of the input im-

ages sent to the model trained on both Visible Near Infrared

(VNIR) and Short Wave Infrared (SWIR) images. This is

an attempt to study attacks in settings where the attacker is

constrained in the information that can be manipulated. In

the physical world, modifying RGB is trivial, but modifi-

cations in other regions of the spectrum like near infrared

are more difficult because other physical conditions like

the temperature of the objects need to be manipulated as

well. Figure 7 provided evidence that this type of attack

will not be successful when attacking models that include

more spectral information.
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(a) FGSM Attack (b) FGSM ll Attack

(c) Iterative FGSM Attack (d) Iterative FGSM ll Attack

Figure 6: Robustness of multispectral image-based models to adversarial examples. We observe that models trained on high

dimensional images are even more vulnerable to adversarial examples than RGB image-based models for white box settings

for all four tested attacks.

(a) FGSM Attack

(b) Iterative FGSM ll Attack

Figure 7: Attacks in the Physical World. For these set of

attacks, the attacker can only manipulate the visible region

of the spectrum.

6.6. Spectral Signature of Adversarial Examples

It is possible to obtain the spectral signature of the dif-

ferent materials from high dimensional imagery. Figure 8

shows the mean reflectance for the pixels belonging to the

class “standing water” for the clean input images and ad-

versarial examples crafted using different l∞-norm of per-

turbation for two different attacks. Figure 8 offers an intu-

ition for what the attack is doing on the input image. Larger

l∞-norm perturbations produce more drastic changes in the

spectral signature of the class. This could be exploited to

actually detect these adversarial perturbations.

6.7. ILFS as a Defense to Adversarial Examples

To test the robustness of ILFS to adversarial exam-

ples, we attacked ILFS models obtained selecting different

amount of features with four attack methods and different

l∞-norm of perturbation. We use the mean IoU Ratio as

a metric to compare robustness between ILFS models and

models trained in the traditional way on RGB, VNIR, VNIR

+ SWIR regions of the spectrum. Figure 9 shows that, in

general, ILFS models not only achieve better performance

on clean inputs but are also more robust to adversarial ex-

amples as their mean IoU ratio is consistently higher. This is

particularly the case for all l∞-norm of perturbation smaller

than 32. When the l∞-norm of perturbation is 32 the margin

between the most and least robust model is smaller as none

of them perform well. For l∞-norm of 32 the perturbations

are visually obvious and the spectral signature of the differ-

ent classes is drastically modified (See Figure 8) which will

not represent acceptable adversarial examples. Moreover,

as expected, the Iterative FGSM ll attack is more powerful

at fooling networks than single-step FGSM for non-RGB

image-based models.

We trained a model using the output bands from ILFS 3

as a fixed input and compare it’s robustness with the model

trained using Integrated Learning and Feature Selection.

Figure 10 shows that the model trained on fixed inputs is

less robust. This supports our hypothesis that as ILFS keeps

changing the input space during training, ILFS forces the

network to perform well even when the input is maliciously

modified.
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(a) FGSM (b) Iterative FGSM ll

Figure 8: Spectral Signature of Adversarial Examples. Larger l∞-norm produces more drastic changes to the spectral signa-

ture of the class.

(a) FGSM Attack (b) FGSM ll Attack

(c) Iterative FGSM Attack (d) Iterative FGSM ll Attack

Figure 9: ILFS as a Defense to Adversarial Examples

Figure 10: Robustness of ILFS 3 vs training on fixed input.

7. Conclusions

In this study, we have introduced Integrated Learning

and Feature Selection (ILFS) as a framework for dimen-

sionality reduction of high dimensional imagery through su-

pervised feature subset selection using gradient descent on

the input space. ILFS not only reduces data dimensionality

but also improves performance on deep neural networks for

multispectral imagery applications. ILFS is general enough

to be extensible to any machine learning problem with con-

tinuous input space.

We have shown what, to the best of our knowledge,

is the first rigorous evaluation of the robustness of non-

RGB image-based machine learning models to adversarial

attacks. We showed that known methods to produce adver-

sarial attacks for RGB images generalize to fool non-RGB

image-based models with very little to no modifications. In

fact, it is even easier to fool this type of systems because

more information can be modified. Adversarial examples in

the physical world are more difficult to execute on non-RGB

image-based models because in those settings the attacker

will be required to manipulate not only the color but other

properties (i.e. temperature) of the objects in the scene.

Finally, we showed that applying IFLS increases robust-

ness to adversarial examples in the high dimensional seman-

tic segmentation problem, considering four state-of-the-art

attack algorithms.

Acknowledgement

This work was supported by the Army Research Office

under award W911NF-17-1-0370.

1316



References

[1] A. Arnab, O. Miksik, and P. H. Torr. On the robustness of

semantic segmentation models to adversarial attacks. arXiv

preprint arXiv:1711.09856, 2017. 6

[2] M. G. Asl, M. R. Mobasheri, and B. Mojaradi. Unsuper-

vised feature selection using geometrical measures in proto-

type space for hyperspectral imagery. IEEE transactions on

geoscience and remote sensing, 52(7):3774–3787, 2014. 1

[3] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients

give a false sense of security: Circumventing defenses to ad-

versarial examples. arXiv preprint arXiv:1802.00420, 2018.

2

[4] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. IEEE transactions on pattern analysis and

machine intelligence, 39(12):2481, 2017. 3

[5] M. Bai and R. Urtasun. Deep watershed transform for in-

stance segmentation. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2858–2866.

IEEE, 2017. 3

[6] J. Bradshaw, A. G. d. G. Matthews, and Z. Ghahramani.

Adversarial examples, uncertainty, and transfer testing ro-

bustness in gaussian process hybrid deep networks. arXiv

preprint arXiv:1707.02476, 2017. 2

[7] X. Cao, T. Xiong, and L. Jiao. Supervised band selec-

tion using local spatial information for hyperspectral image.

IEEE Geoscience and Remote Sensing Letters, 13(3):329–

333, 2016. 1

[8] N. Carlini and D. Wagner. Defensive distillation is not robust

to adversarial examples. arXiv preprint arXiv:1607.04311,

2016. 2

[9] N. Carlini and D. Wagner. Adversarial examples are not eas-

ily detected: Bypassing ten detection methods. In Proceed-

ings of the 10th ACM Workshop on Artificial Intelligence and

Security, pages 3–14. ACM, 2017. 2

[10] N. Carlini and D. Wagner. Magnet and” efficient defenses

against adversarial attacks” are not robust to adversarial ex-

amples. arXiv preprint arXiv:1711.08478, 2017. 2

[11] N. Carlini and D. Wagner. Towards evaluating the robustness

of neural networks. In Security and Privacy (SP), 2017 IEEE

Symposium on, pages 39–57. IEEE, 2017. 6

[12] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-

thinking atrous convolution for semantic image segmenta-

tion. arXiv preprint arXiv:1706.05587, 2017. 3

[13] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu. Deep

learning-based classification of hyperspectral data. IEEE

Journal of Selected topics in applied earth observations and

remote sensing, 7(6):2094–2107, 2014. 1

[14] M. Cisse, Y. Adi, N. Neverova, and J. Keshet. Houdini:

Fooling deep structured prediction models. arXiv preprint

arXiv:1707.05373, 2017. 5

[15] E. D. Cubuk, B. Zoph, S. S. Schoenholz, and Q. V. Le. In-

triguing properties of adversarial examples. arXiv preprint

arXiv:1711.02846, 2017. 2

[16] Q. Du and H. Yang. Similarity-based unsupervised band se-

lection for hyperspectral image analysis. IEEE Geoscience

and Remote Sensing Letters, 5(4):564–568, 2008. 1

[17] Q. Du and N. H. Younan. Dimensionality reduction and

linear discriminant analysis for hyperspectral image classi-

fication. In International Conference on Knowledge-Based

and Intelligent Information and Engineering Systems, pages

392–399. Springer, 2008. 1

[18] M. Ettenberg. A little night vision-ingaas shortwave infrared

emerges as key complement to ir for military imaging. Ad-

vanced Imaging-Fort Atkinson, 20(3):29–33, 2005. 2

[19] M. D. Farrell and R. M. Mersereau. On the impact of

pca dimension reduction for hyperspectral detection of dif-

ficult targets. IEEE Geoscience and Remote Sensing Letters,

2(2):192–195, 2005. 1

[20] V. Fischer, M. C. Kumar, J. H. Metzen, and T. Brox. Ad-

versarial examples for semantic image segmentation. In-

ternational Conference on Learning Representations (ICLR)

Workshop, 2017. 5

[21] M. G. Glaholt and G. Sim. Gaze-contingent center-surround

fusion of infrared images to facilitate visual search for hu-

man targets. Journal of Imaging Science and Technology,

61(1):10401–1, 2017. 2

[22] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and

harnessing adversarial examples. International Conference

on Learning Representations (ICLR), 1050:20, 2015. 1, 5

[23] S. Gu and L. Rigazio. Towards deep neural network architec-

tures robust to adversarial examples. International Confer-

ence on Learning Representations (ICLR) Workshop, 2015.

2

[24] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial exam-

ples in the physical world. arXiv preprint arXiv:1607.02533,

2016. 5

[25] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial ex-

amples in the physical world. International Conference on

Learning Representations (ICLR), 2017. 1, 5

[26] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple

and scalable predictive uncertainty estimation using deep en-

sembles. In Advances in Neural Information Processing Sys-

tems, pages 6393–6395, 2017. 2

[27] F. Li, L. Xu, P. Siva, A. Wong, and D. A. Clausi. Hyperspec-

tral image classification with limited labeled training sam-

ples using enhanced ensemble learning and conditional ran-

dom fields. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 8(6):2427–2438, 2015. 1

[28] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3431–3440, 2015. 3

[29] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and

A. Vladu. Towards deep learning models resistant to adver-

sarial attacks. stat, 1050:19, 2017. 2, 5

[30] J. H. Metzen, M. C. Kumar, T. Brox, and V. Fischer. Univer-

sal adversarial perturbations against semantic image segmen-

tation. 2017 IEEE International Conference on Computer

Vision (ICCV), 2017. 5

[31] P. Pallister, T. DSouza, C. Black, N. Hearns, and J. C. Smith.

Explosive detection strategies for security screening at air-

ports. In Molecular Technologies for Detection of Chemical

and Biological Agents, pages 243–251. Springer, 2017. 2

1317



[32] B. Pan, Z. Shi, and X. Xu. Mugnet: Deep learning for hyper-

spectral image classification using limited samples. ISPRS

Journal of Photogrammetry and Remote Sensing, 2017. 1

[33] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,

and A. Swami. The limitations of deep learning in adversar-

ial settings. In Security and Privacy (EuroS&P), 2016 IEEE

European Symposium on, pages 372–387. IEEE, 2016. 1

[34] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman. To-

wards the science of security and privacy in machine learn-

ing. arXiv preprint arXiv:1611.03814, 2016. 1

[35] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami.

Distillation as a defense to adversarial perturbations against

deep neural networks. In Security and Privacy (SP), 2016

IEEE Symposium on, pages 582–597. IEEE, 2016. 2

[36] D. A. Robertson, D. G. Macfarlane, R. I. Hunter, S. L. Cas-

sidy, N. Llombart, E. Gandini, T. Bryllert, M. Ferndahl,

H. Lindström, J. Tenhunen, et al. High resolution, wide

field of view, real time 340ghz 3d imaging radar for security

screening. In Passive and Active Millimeter-Wave Imaging

XX, volume 10189, page 101890C. International Society for

Optics and Photonics, 2017. 2

[37] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. Ac-

cessorize to a crime: Real and stealthy attacks on state-of-

the-art face recognition. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Se-

curity, pages 1528–1540. ACM, 2016. 1, 6

[38] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. International

Conference on Learning Representations (ICLR), 2015. 3

[39] D. Stein, J. Schoonmaker, and E. Coolbaugh. Hyperspectral

imaging for intelligence, surveillance, and reconnaissance.

Technical report, Space and Naval Warfare Systems Center,

San Diego CA, 2001. 2

[40] G. Sun, T. Matsui, T. Kirimoto, Y. Yao, and S. Abe. Ap-

plications of infrared thermography for noncontact and non-

invasive mass screening of febrile international travelers at

airport quarantine stations. In Application of Infrared to

Biomedical Sciences, pages 347–358. Springer, 2017. 2

[41] A. M. Waxman, M. Aguilar, D. A. Fay, D. B. Ireland, and

J. P. Racamato. Solid-state color night vision: fusion of low-

light visible and thermal infrared imagery. Lincoln Labora-

tory Journal, 11(1):41–60, 1998. 2

[42] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille.

Adversarial examples for semantic segmentation and object

detection. In International Conference on Computer Vision.

IEEE, 2017. 5

[43] H. Yang, Q. Du, H. Su, and Y. Sheng. An efficient method for

supervised hyperspectral band selection. IEEE Geoscience

and Remote Sensing Letters, 8(1):138–142, 2011. 1

[44] Z. Ying, S. Simanovsky, R. Naidu, and S. Marcovici.

Ct scanning systems and methods using multi-pixel x-ray

sources, Aug. 22 2017. US Patent 9,739,724. 2

[45] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-

ferable are features in deep neural networks? In Advances

in neural information processing systems, pages 3320–3328,

2014. 4

[46] P. W. Yuen and M. Richardson. An introduction to hy-

perspectral imaging and its application for security, surveil-

lance and target acquisition. The Imaging Science Journal,

58(5):241–253, 2010. 2

1318


