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Figure 1: POL-LWIR Vehicle detection. This paper uses the Thales Catherine MP LWIR sensor, which is based on long

wave polarised infrared technology. It contains 4 linear polarisers (0o, 45o, 90o, 135o). From the linear polarisers we can

compute the Stokes components I ,Q,U ,P and φ. Two configurations are created (I ,Q,U and I ,P ,φ), which are passed to

2 types of neural networks: Faster R-CNN [24] and SSD [22]. The networks are trained to detect vehicles in both day and

night conditions.

Abstract

For vehicle autonomy, driver assistance and situational

awareness, it is necessary to operate at day and night, and

in all weather conditions. In particular, long wave infrared

(LWIR) sensors that receive predominantly emitted radia-

tion have the capability to operate at night as well as dur-

ing the day. In this work, we employ a polarised LWIR

(POL-LWIR) camera to acquire data from a mobile vehi-

cle, to compare and contrast four different convolutional

neural network (CNN) configurations to detect other ve-

hicles in video sequences. We evaluate two distinct and

promising approaches, two-stage detection (Faster-RCNN)

and one-stage detection (SSD), in four different configura-

tions. We also employ two different image decompositions:

the first based on the polarisation ellipse and the second

on the Stokes parameters themselves. To evaluate our ap-

proach, the experimental trials were quantified by mean av-

erage precision (mAP) and processing time, showing a clear

trade-off between the two factors. For example, the best

mAP result of 80.94 % was achieved using Faster-RCNN,

but at a frame rate of 6.4 fps. In contrast, MobileNet SSD

achieved only 64.51 % mAP, but at 53.4 fps.

1. Introduction

The future of autonomous cars is still uncertain, but im-

pressive new results are being achieved with most car man-

ufacturers promising level 4 autonomy by 2020. A nec-

essary capability for autonomy is sensory perception, but

the vast majority of research is based on publicly available

video benchmarks like KITTI [9] and CityScapes [6]. These

datasets are acquired during daytime, in good weather con-

ditions, using video cameras. For full autonomy and situa-

tional awareness in all weather conditions, sensors and per-

ceptual algorithms workable continuously in 24 hours capa-

bility are required. Infrared sensors are capable of sensing

beyond the visible spectrum and are robust to falling illumi-
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nation.

The majority of previous works, e.g. [19] [16], have used

IR sensors in a military or surveillance context to detect hot

objects, especially during night. From the perspective of a

commercial road vehicle, IR sensors have also been used

at night to detect other actors such as vehicles and pedes-

trians [17]. However, it has long been recognised that ad-

ditional analysis of polarisation state, governed by the ma-

terial refractive index, surface orientation and angle of ob-

servation, can lead to better discrimination. False colour

representations of the polarimetric data can visually reveal

hidden targets [31] and to some extent, 3D structure [18].

By exploiting knowledge about the dependence of polarisa-

tion state on surface and viewing angle, and the fixed vehi-

cle to road geometry, Connor et al. [5] constructed a road

segmentation algorithm. Bartlett et al. [4] used polarisation

to improve anomaly detection. Using a nearest neighbour

detection based on Euclidean distance, foreground vs back-

ground clustering is performed. The points whose distance

from background components are higher than a threshold

are labeled anomalous. Romano et al. [26] also used po-

larisation for anomaly detection. A data cube was formed

from the primary (i0,i90) imagery and the sample covari-

ance within a local (sliding) window is compared to the

sample covariance of the entire image. They found this

method is better at discriminating between target and back-

ground pixels at different times of the day than using Stokes

components.

With its dramatic increase in popularity, there have been

a number of recent studies based on deep neural networks

to recognise objects in IR images. For example, Rodger et

al. [25] used CNNs to classify pedestrians, vehicles, he-

licopters, airplanes and drones using a LWIR sensor. Ab-

bott et al. [2] used the YOLO method [23] and transfer

learning from a high resolution IR to a lower resolution IR

(LWIR) dataset to detect vehicles and pedestrians. Lie et

al. [21] used the KAIST dataset [15] to fuse RGB and ther-

mal information in a Faster R-CNN architecture, again to

detect pedestrians. Gundogu et al. [12] combined a CNN

detection stage with a long term correlation tracker to de-

tect tanks in cluttered backgrounds. However, all of these

studies only used intensity data.

Dickson et al. [7] exploited a polarised LWIR sensor to

detect vehicles in both still images and to a lesser extent,

video sequences. In rural settings, LWIR emissions from

man-made objects appear more strongly polarised than veg-

etation. However in urban settings, most of the environment

is man-made. Therefore, in their work on vehicle recog-

nition [7], the key observation was that although there are

many other man-made structures in urban scenes, there is

a distinct, differential spatial arrangement of surface signa-

tures in LWIR polarimetric images of vehicles due to their

regular structure and size. This leads to a regular pattern of

pixel clusters in a 2D space encoding the degree and angle

of polarisation.

In this paper, our contribution is to evaluate the effective-

ness of CNNs to detect vehicles in polarised LWIR data. We

evaluate the two main research directions in deep learning

for object detection: two-stage detection, which first pro-

poses the bounding boxes then performs classification in

each bounding box based on Faster R-CNN [24], and one-

stage detection which detects and classifies in a single net-

work, based on Single-Shot Multibox Detection (SSD) [22].

To the best of our knowledge, this is the first paper to exploit

the use of polarised infrared together with neural networks

for object detection.

2. Methodology

2.1. Sensing and the Polarisation Parameters

Figure 1 illustrates a schematic diagram of our approach.

We use the Thales Catherine MP LWIR Polarimeter [7], op-

erating in the range of 8µm to 12µm to record video im-

ages. Each pixel of a 320 × 256 image frame has 2 × 2
sensing sites that contains linear polarisers oriented at 0,

45, 90 and 135 degrees. The data capture rate is 100 frames

per second (fps). Our dataset was collected in Glasgow,

UK on 14th and 15th of March, 2013. Seven sequences

are recorded and the bounding boxes of the vehicles are an-

notated, from which we use 4 sequences for training and 3

for testing. In total, we have 10659 annotated frames for

training and 4453 annotated frames for testing.

The polarisation state of the emitted LWIR radiation can

be expressed in terms of the Stokes vector, {I,Q, U, V } [3]:

The I component measures the total intensity; the Q and U

components describe the radiation polarised in the horizon-

tal direction and in a plane rotated 450 from the horizon-

tal direction, respectively; the V component describes the

amount of right-circularly polarised radiation. To measure

the V component we require an additional quarter wave-

plate. As a result we can only measure I,Q and U . There-

fore, with respect to the measured intensities at each pixel

site, we deduce that

I =
1

2
(i0 + i45 + i90 + i135) (1)

Q = i0 − i90 (2)

U = i45 − i135 (3)

The degree of linear polarisation, P , and the angle of polar-

isation, φ, can also be calculated as follows,
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P =

√

Q2 + U2

I
(4)

φ =
1

2
tan−1

(

U

Q

)

(5)

2.2. Faster­RCNN

The Faster R-CNN method [24] relies on a two-stage ob-

ject detection procedure. First, a sub-network is used to pro-

pose the bounding boxes; Second, a separate sub-network is

used to classify objects within each bounding box. The idea

of Faster R-CNN evolved from R-CNN [11], which pro-

poses several bounding boxes based on the selective search

algorithm [30]. Selective search applies a segmentation al-

gorithm in many stages to under and over segment the im-

age. Bounding boxes are proposed at each region segment;

these are inputs to a CNN to classify the type of object. This

CNN can be chosen from popular successful architectures,

such as VGG [28], InceptionNet [29] or ResNet [13].

Since selective search usually outputs large number of

regions (∼2000 regions), it is computationally expensive.

Fast R-CNN [10] reduces this complexity by running a

CNN over the whole image. Proposed regions are trans-

formed to the last feature map before the fully connected

layers and the regions in the feature map are classified in

a simple neural network, resulting in a significant compu-

tational complexity reduction. Despite such improvement,

the authors realised that the selective search is indeed a bot-

tleneck preventing faster execution of the overall algorithm.

As a solution, Faster R-CNN [24] created a network to

learn how to generate bounding boxes. This pipeline is also

known as region proposal network (RPN). The RPN creates

a grid in the original image which anchors the bounding

box annotations to the map. Using the previous annotations

of the bounding box in the original image, the RPN learns

how to propose bounding boxes. RPN can also reduce the

number of proposals compared to selective search. Replac-

ing selective search with the RPN improved both speed and

accuracy (using the PASCAL VOC 2012 dataset).

Since it is easy to plug any CNN into the Faster R-CNN

method, we decided to use ResNet-50 and ResNet-101 [13],

where the number attached to the name of the network re-

lates the number of layers used. ResNet uses residual layers

that are CNNs with shortcut connections. Those connec-

tions skip the current layer and the skipped output is added

to the output after the convolution is applied. ResNet has

a trade-off between accuracy and depth of the network: the

smaller the network is, the faster it performs.

2.3. Single Shot Multi­box Detection

Single Shot Multi-box Detection (SSD) [22] uses one-

stage detection, in which the output of a single network is

a set of bounding boxes with the respective classes. This

is different from Faster R-CNN which has two stages, the

region proposal and the classification stages.

The use of one-stage detection attracted the attention of

many researchers in the field. Sermane et al. [27] used

a CNN over the whole image, where each cell of the last

feature map corresponds to a region in the original image.

The regions are always uniformly distributed over the im-

age, which constitutes a major disadvantage as there is no

a priori reason why this should be the case. The YOLO

network [23] created a CNN which is trained using anchor

boxes from the annotation (similar to RPN from Faster R-

CNN) to output the region location plus its classification.

SSD is similar to YOLO in the sense that it uses a CNN

to output the region’s location and its classification result.

However, SSD generates the output at several scales of the

feature map produced by the convolution. The output maps

are based on a grid of anchor boxes, as with Faster R-CNN.

All the results at several scales are then combined, followed

by a non-maximum suppression step to remove multiple de-

tections of the same object.

The architecture of SSD is based on convolutional stages

of other networks, such as VGG [28] and InceptionNet [29]

and MobileNet [14]. InceptionNet (GoogleNet) was the

winner of the ImageNet 2014 competition for image clas-

sification. This network applies convolutions of different

sizes ( 1 × 1, 3 × 3, 5 × 5) in the same layer and con-

catenates them into a single feature map. These convolu-

tions are called ”Inception modules”, and when done sev-

eral times create a deep network of inception modules. This

showed that applying several convolutions to the same fea-

ture map can retrieve more robust features. MobileNet [14]

was designed to be a fast and small CNN to run on low

powered devices. It is a convolutional layer approximator;

Instead of applying N×M×C convolutions, it first applies

a 1 × 1 × C convolution to reduce the size of the input to

W×H×1, then applies a N×M×1 convolution (where N

and M are the convolution mask sizes, W and H are width

and height of the image and C is the number of channels).

This strategy reduces the number of weights to be learned

by the network and the complexity of the convolution. SSD

with MobileNet is used in our experiments to evaluate how

a small network can learn the polarised infrared features.

2.4. Experiments, Training and Evaluation

We have evaluated two configurations of the measured

polarised image data to train and test our several CNN archi-

tectures. The first configuration uses the I,Q, U parameters

as the input image planes. In Figure 2a, we can visualise the

image of each component I,Q, U . Again, in Figure 2b we

can visualise the image of each component I, P, φ. We use

four configurations of neural network for our experiments.
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(a) I,Q, U configuration. (b) I, P, φ configuration.

Figure 2: Visualisation of each configuration based on the Stokes components.

1. The SSD network using the InceptionV2 network [29]

to extract features.

2. The SSD network using the MobileNet network [14]

to extract features.

3. Faster R-CNN using ResNet-50 [13] to extract fea-

tures.

4. Faster R-CNN using ResNet-101 [13] to extract fea-

tures.

We trained our 4 different configurations on both

(I,Q, U) and (I, P, φ) data, and for comparison with previ-

ous work that has applied CNNs to intensity data alone, on

the I data in isolation. The networks are trained using a i7-

7700HQ, 32 GB ram, NVIDIA Titan X and developed us-

ing the Tensorflow Object Detection API [1]. The network

weights for both SSD and Faster R-CNN are initialised from

the MS-COCO object detection dataset [20]. The parame-

ters for the Faster R-CNN networks are: batch size 1, learn-

ing rate 0.0003, momentum 0.9. The parameters for the

SSD networks were: batch size 24, learning rate 0.004, mo-

mentum 0.9. Eq. 6 shows the gradient descent formula.

Wt+1 = Wt − α∇f(x;W ) + η∆W (6)

where η is the momentum, α is the learning rate, t is the

time current time step, W is all weights of the network and

∇f(x;W ) is the derivative of the function that represents

the network and x is our dataset.

The evaluation metrics used are mean average preci-

sion (mAP) and processing time in frames per second (fps).

The mAP classifies correct detection when Intersection over

Union (IoU), > 0.5, which follows the PASCAL VOC pro-

tocol [8]. (The KITTI protocol [9] uses IoU > 0.7 for

vehicles. However, since unlike KITII, our annotations are

not pixel-level, we followed the PASCAL criteria.) To com-

pute the fps we compute the average time over 100 frames.

Table 1: Results for each configuration

mAP [I] mAP [I,Q,U] mAP [I,P,φ]

MobileNet SSD 48.50 % 64.51 % 58.56 %

InceptionV2 SSD 59.79 % 72.17 % 73.24 %

Faster R-CNN Resnet-50 75.63 % 72.82 % 76.43 %

Faster R-CNN Resnet-101 75.21 % 73.67 % 80.94 %

Table 2: Computational speed (fps) for each network con-

figuration.

fps

MobileNet SSD 53.4

InceptionV2 SSD 37.2

Faster R-CNN Resnet-50 7.8

Faster R-CNN Resnet-101 6.4

Tables 1 and 2 show the results for each configuration.

Precision-recall curves are also generated for each results

and can be visualised in Figure 3a for I alone, Figure 3b for

I,Q, U and Figure 3c for I, P, φ.

Qualitative examples of images can be seen in Figure 4.

This uses a pseudo-colour display, converting P and φ to

HSV colour space. Based on qualitative results we can see

that the main problem of the SSD lies with small objects.

The network needs to learn the location and features at the

same time, which affects the detection of small objects.

Considering the results of Table 1 and the precision-

recall curves, a key question is whether the use of polarised

data improves detection when compared to the intensity

data alone, as used by most previous authors. We believe

that it is indeed the case, particularly for the SSD examples,

although we qualify that statement by noting that the dif-

ference in the R-CNN results is less definitive, and that the

dataset is limited and many more trials are needed for full

statistical verification. In general, for all datasets, Faster

R-CNN performs better for this limited trial, as measured
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(a) Precision-Recall curve for the I configu-

ration.

(b) Precision-Recall curve for the I,Q, U

configuration.

(c) Precision-Recall curve for the I, P, φ con-

figuration.

Figure 3: Precision-Recall curves

by mAP, although this comes with the penalty of a much

slower frame rate. However, this latter result is consis-

tent with the published results on video sequences, where

splitting the tasks of region proposal and classification ar-

guably makes the network more robust in learning directly

the object features. In contrast, SSD needs to learn the lo-

calisation together with classification, and hence both loca-

tion and object characteristics influence the weights of the

network which can degrade performance. Nevertheless, in

our trial, SSD-InceptionV2 achieves similar performance to

Faster R-CNN ResNet-50, at a much increased speed, since

it just needs one CNN for both region proposal and classifi-

cation.

Comparing I,Q, U and I, P, φ, the best result is ob-

tained with the I, P, φ parametrisation. Although the dif-

ferences are not proven as significant, such that much more

extensive characterisation is required. At this stage, given

the complexity of these neural networks, it is hard to define

what type of feature is being learned in each case, although

from Dickson et al. [7] the authors claim that material,

shape and surface and viewing angles influence the under-

lying polarisation patterns. As a specific example, one can

see that the I, P, φ configuration does detect an occluded

car that the I,Q, U does not in the Faster R-CNN exam-

ple. However, although this occurs more often than the con-

verse, much better understanding of the network and more

extensive trials are necessary to draw reliable conclusions.

For a necessary perception by an autonomous car, compu-

tational time is clearly quite a crucial factor. As expected,

the one-stage SSD architectures shows higher frame rates.

MobileNet SSD is the fastest and can process on average at

53.4 fps, but it has the lowest mAP.

3. Conclusions

In this paper, we evaluated and compared a series of dif-

ferent CNN architectures for vehicle detection in polarised

long wave infrared image sequences, using two different

image decompositions. We showed that the use of polarised

infrared data was effective for vehicle detection, and ap-

peared to perform better when CNNs are used for detection

in infrared intensity data alone, confirmed also by previous

researches. Faster R-CNN based networks achieved bet-

ter results in terms of detection accuracy, splitting the tasks

of region proposal and classification to make the network

more robust. However, it should be mentioned that improv-

ing the accuracy of one-stage detection network is quite an

active field of research, providing much higher frame rates.

We could reach no firm conclusion on which image decom-

position was preferable, although anecdotally the {I, P, φ}
parametrisation is both more intuitive in describing the po-

larisation ellipse and achieved the best overall result with

Faster R-CNN ResNet 101. Our detection rates are similar

to those of KITTI dataset for vehicle detection from simple

video data in daylight using the same networks. Overall,

our work shows that polarising LWIR data is a relatively

robust option for day and night operation.
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Figure 4: Qualitative results for each configuration with threshold at 0.7.
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