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Abstract

The capacity to model temporal dependency by Recur-

rent Neural Networks (RNNs) makes it a plausible selection

for the multi-object tracking (MOT) problem. Due to the

non-linear transformations and the unique memory mech-

anism, Long Short-Term Memory (LSTM) can consider a

window of history when learning discriminative features,

which suggests that the LSTM is suitable for state estima-

tion of target objects as they move around. This paper fo-

cuses on association based MOT, and we propose a nov-

el Siamese LSTM Network to interpret both temporal and

spatial components nonlinearly by learning the feature of

trajectories, and outputs the similarity score of two trajec-

tories for data association. In addition, we also introduce

an online metric learning scheme to update the state es-

timation of each trajectory dynamically. Experimental e-

valuation on MOT16 benchmark shows that the proposed

method achieves competitive performance compared with

other state-of-the-art works.

1. Introduction

One of the key challenges at multi-object tracking

(MOT) is to continuously and effectively model the vast

variety of object appearances with high uncertainty in ar-

bitrary scenarios, caused by occlusions, illumination varia-

tions, motion blur, false alarm and miss detections, varia-

tions of targets numbers, etc. Traditional methods to find

the locations of target objects by using low-level hand-

crafted features [13, 41, 8, 12, 10] led to rather limited per-

formance. Followed by the galloping progresses of deep

learning techniques, many works have been proposed to u-

tilize pre-trained models on a large-scale dataset to obtain

richer feature representations based on convolutional neu-

ral networks (CNNs) [35] [11]. However, lack of sufficien-

t training data and only rely on appearance feature leave

the tracking issues unsolved. With the progress in object

detection, ”Tracking-by-detection” framework [23] has be-

come a leading paradigm whereby the detection results of

objects are represented as bounding boxes and available in

a video sequence as prior information. Here, the track-

ing is casted as a problem of data association where the

objective is to connect detection outputs into trajectories

across video frames using reasonable measurements. Clas-

sical methodologies such as Multiple Hypothesis Tracking

(MHT) [27] and the Joint Probabilistic Data Association

Filter (JPDAF) [9] focused on establishing sophisticated

models to capture the combinatorial complexity on a frame-

by-frame basis. Later on, lots of works have been combin-

ing various of components such as motion dynamics and

interaction information to obtain an effective state estima-

tion [24, 32, 25, 7, 37, 29, 1].

Recently, Milan et al. [21] presented an end-to-end

Recurrent Neural Network (RNN) for online multi-target

tracking and confirmed that RNN-based approach can be u-

tilized to learn complex motion models in realistic environ-

ments. In order to further explore the capability of combin-

ing both temporal and spatial components to model people

trajectories using RNN, we introduce a Siamese LSTM net-

work for metric learning, and thus introducing a new feature

model for computing similarity between trajectories. By in-

corporating a window of the previous history of an object,

LSTM is able to capture both linear and nonlinear features

in a long-term, which should be more effective to analyze

the objects’ motion pattern. For each object, three cues

of features are fused into one LSTM network for metric

learning. Specifically, these cues are the people appearance

learned by a re-id CNN, the motion represented as bound-

ing boxes coordinates and the velocity of the object. Unlike

the traditional metric learning using CNN, we argue that L-

STM is capable of analyzing how these features evolve and

keeping the sophisticated pattern as a memory for each ob-

ject. After establishing the unique model for each trajectory,

we introduce a Softmax layer for similarity computation be-

tween two objects. This enables our network to accomplish

the tasks of metric learning and affinity computation jointly.
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Figure 1. The architecture of our proposed MOT framework using LSTM

Our framework is showed as Fig.1.

Since offline training of an unified LSTM could not easi-

ly adapt to real scenario as each object has a separate motion

pattern, we also introduce an online metric learning method

to update the LSTM for each trajectory frame-by-frame.

When assigning a trajectory to an existing one, we update

the corresponding LSTM model by incorporating new fea-

tures. In this way, feature representations of trajectories can

be more accurate and update-to-date. We use two tradi-

tional yet robust methodologies as our initialization meth-

ods to obtain short tracklets for LSTM inputs, specifically

the Kalman filter [14] along with Hungarian method [16],

and the LK Optical Flow algorithm [20] along with IOU

(intersection-over-union) distance computation. Our main

contributions are as follows:

1) We fuse three features into one metric learning LSTM

network for learning both temporal and spatial features, and

at the same time our network can also output the similarity

score for data association;

2) We propose an efficient and simple method for gener-

ating robust tracklets using Optical Flow and Affine Trans-

formation, apart from the well-known Kalman Filter;

3) We introduce an online method to establish a discrim-

inative trajectory model of each object;

4) Our proposed approach achieves a competitive track-

ing accuracy compared with other state-of-the-art method-

s, and our framework has the flexibility of any baseline

methodologies which is applicable to arbitrary scenarios.

2. RELATED WORK

Within the ”Tracking-by-detection” paradigm, tradition-

al data association techniques including the Multiple Hy-

pothesis Tracker (MHT) [27] and the Joint Probabilistic

Data Association Filter (JPDAF) [9] to solve the MOT

problem is establishing sophisticated models to capture the

combinatorial complexity on a frame-by-frame basis. Both

methods have been revised recently in conjunction with a

novel appearance model [15] or an efficient approxima-

tion [28] and shown great improvements in performance.

Recently, a large amount of works have focused on casting

the tracking problem as global optimization with simplified

models. Flow network formulations [42] [26] [3] and prob-

abilistic graphical models [39] [38] [2] [22] are often con-

sidered in this fashion, along with shortest-path, min-cost

algorithms or even graph multicut formulations [33]. How-

ever, these methods are not applicable to online scenarios

without seeing the future objects.

Learning an effective model for feature representation

with corresponding similarity computation plays the central

role in data association. Over the past decades, adopting
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CNN-based feature representations for people appearance

along with computation of the affinity between two mea-

surements has been a popular trend. Nevertheless, merely

rely on appearance feature can be problematic due to a sim-

ple fact that people with similar appearances are not neces-

sarily identical. To this end, various trackers were taken to

model different features of objects in the scene by incorpo-

rating a myriad of components such as motion, appearance,

scale, etc. [24] [32] [25] [7] [37] [29] [1] have been com-

bining the motion dynamics and interaction between mea-

surements along with the target appearance. Only reason on

adjacent temporal frames and combine these components

linearly leads to a bottleneck of the feature representation

methods.

Inspired by the success of Recurrent Neural Network-

s (RNNs) and their application to language modeling [34],

some researchers have been trying to learn an end-to-end

representation for state estimation utilizing RNNs [30] [21].

Sadeghian et al. [30] proposed an offline metric learning

framework using a hierarchical RNN to encode long-term

temporal dependencies across multiple cues, i.e., appear-

ance, motion, and interaction. Milan et al. [21] presented

an online RNN-based approach for multiple people tracking

which is capable of performing prediction, data association

and state update within a unified network structure. These

works confirmed that RNN-based approach can be utilized

to learn complex models in realistic environments, further-

more, LSTM networks are capable of tackling the one-to-

one assignment task. Our work extend the research of RNN-

based methods and leverage the power of LSTM for learn-

ing a discriminative model of object trajectory by integrat-

ing dynamic features both in temporal and spatial. Unlike

training an unified model within a hierarchical framework in

an offline fashion as [30], we introduce an online updating

mechanism to establish dynamic models for each trajectory

and achieve a state-of-the-art tracking performance.

3. Methodology

The proposed approach casts the MOT problem into four

steps: feature learning, tracklets initialization, data associ-

ation and trajectory updating, as presented in the following

sections:

3.1. Feature Learning

Our overall architecture (Fig.1) includes both the metric

learning component and the similarity computation compo-

nent. For metric learning, the framework is consisted of two

identical networks with a deep CNN and one LSTM layer.

Three different features are integrated into one network for

metric learning. We first employ a deep CNN pre-trained on

a person re-identification dataset CUHK03 [19] proposed

by Sanping et al. [43] to extract the 800 dimensional appear-

ance feature. Once we generated the feature map of each

object, we add the motion features represented by 4 bound-

ing boxes coordinates as well as their corresponding veloc-

ities using a fully connected layer, then we obtain a fusion

feature represented by a 808 dimensional vector which con-

sist of 800 dimensional appearance feature, 4 dimensional

motion feature and 4 dimensional velocity feature.

After this, we employ a LSTM layer for incorporating

temporal dependencies of the tracking module. Different

from RNNs, LSTM uses a memory cell containing a self-

connected linear unit to prevent error signals from decaying

quickly as they flow back in time. At any point in time,

errors in the network (whether from cells or from gates)

are used to drive weight changes. However, only the so-

called constant error carousels (CECs) keep track of error

as it flows back in time; errors elsewhere are truncated (er-

rors outside CECs vanish exponentially fast anyway, just

like in traditional RNNs). By tracking long-time scale de-

pendencies in the CECs, LSTM is able to bridge huge time

lags (1000 discrete time steps and more) between relevant

events, while traditional RNNs already fail to learn in the

presence of 10 step time lags, even with complex update

algorithms such as real-time recurrent learning (RTRL) or

back propagation through time (BPTT). In general, how-

ever, it is not sufficient to simply add linear counters to a

RNN. Without some method of protecting the contents of

these counters, such a network could quickly diverge. For

this reason, LSTM CECs are arranged in memory blocks of

cells that control the flow of information through the CECs.

Though LSTM could in principle work with any differen-

tiable protective mechanism, existing implementations use

a small set of multiplicative gates as shown in Fig.2: an in-

put gate learns to protect the CECs from irrelevant inputs,

an output gate learns to turn off a cell block that is gen-

erating irrelevant output, and a forget gate allows CECs to

reset themselves to zero when necessary. The mathematical

expressions of this gated mechanism are shown in Eq.(1),

Eq.(2), Eq.(3) and Eq.(4). Here i, o, f are the expressions

of input, output and forget gates separately, clt denotes the

cell state of layer l at time t, hl
t denotes the lth hidden layer

at time t and
⊙

represents element-wise multiplication.

i, o, f = σ(W l(hl−1

t , hl
t−1

)⊤) (1)

g = tanh[W l(hl−1

t , hl
t−1

)⊤] (2)

clt = f
⊙

clt−1
+ i

⊙

g (3)

hl
t = o

⊙

tanh(clt) (4)

For similarity computation, we have two streams of fea-

ture vectors flow into one softmax layer, so as to identify

whether the two belong to a same identity or not. We use

the Mean Squared Error (MSE) for model training as de-

picted by Eq.(5). Here n is the number of training samples
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Figure 2. A LSTM memory block with one cell

in a batch, ylabel is the ground truth value where 1 means t-

wo inputs are the same identity and 0 otherwise, ypred is the

output value of softmax and ‖ · ‖ is the squared Euclidean

norm. We use the Adam method for stochastic optimiza-

tion.

LMSE =
1

n

n
∑

i=1

‖ylabel − ypred‖
2

2
(5)

3.2. Tracklets Initialization

For the sake of learning long-term features using LST-

M and computing the affinity of two trajectories, we need

to initialize short tracklets as the inputs of our LSTM net-

work. We employ two separate algorithms for initializa-

tion, specifically the Kalman filter [14] along with Hungar-

ian method [16], and the LK Optical Flow algorithm [20]

along with IOU distance computation.

As described in [5], using Kalman filter for prediction

and updating, along with Hungarian method for assigning

multiple labels, facilitates both efficiency and reliability for

online tracking. We establish the motion model as Eq.(6),

here x,y are the bbox coordinates of center point, and w, h

are the weight and height of the bbox. The state estimation

and data association approaches are the same as [5]. More

specifically, we predict the object location in next frame vi-

a Kalman filter by solving the velocity components opti-

mally, then we compute the assignment cost matrix with

the intersection-over-union (IOU) distance and solve the as-

signment optimally using the Hungarian algorithm. When

a detection is associated to a target, we update the target

state using the detected bounding box. If no detection is as-

sociated to the target, its state is simply predicted without

correction using the linear velocity model. Here we set a

rather high threshold value IOUmin in order to obtain short

but reliable tracklets.

X = [x, y, w, h, ẋ, ẏ, ẇ, ḣ]T (6)

Since using Kalman Filter for state determination is al-

ready a mature methodology for visual tracking, which

provides a recursive solution to the linear optimal fil-

tering problem based on the established motion model,

here we introduce a simple and efficient initialization ap-

proach to distinguish the feature learning process of mo-

tion from Kalman Filter. Optical Flow presents an apparen-

t change of a moving object’s location or deformation be-

tween frames, further more, Optical Flow estimation yields

a two-dimensional vector filed, i.e., motion field, that repre-

sents velocities and directions of each point of an image se-

quence. We argue that using Optical Flow along with Hun-

garian algorithm is a simple and feasible approach for visual

tracking and can hence generate robust tracklets. The over-

all visual tracking approach using Optical Flow is illustrated

in Fig.3. Giving the previous and the current image frames

It−1, It, sparse local optical flow information V t−1,t(x, y)
can be derived. Specifically, the optical flow determination

is solved by the calculation of partial derivatives of the im-

age signal using Lucas-Kanade method [20]. And the prop-

agated position d̂ti of point i in the frame t is

d̂ti = V t−1,t(dt−1

i ) = dt−1

i + v
t−1,t
i (7)

where v
t−1,t
i is the local displacement for dt−1

i . We then

compute the affine transformation of inner points of bbox

between two adjacent frames:

f(d̂ti(x
′, y′), pt−1

i (x, y)) =

{

x′ = α1x+ β1y + γ1
y′ = α2x+ β2y + γ2

(8)

Here d̂ti(x
′, y′) is 2D propogated position of point i at

frame t, and pt−1

i (x, y) is the same point i at frame t −
1, α, β and γ are the affine transformation coefficients.

The predicted location ˆBBox
t

is obtained by fitting the

previous bbox coordinates into the affine transformation:

f(BBoxt−1, ˆBBox
t
). Other than this, we employ the same

assignment strategy as above which is computing cost ma-

trix using IOU distance and make the assignment using
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Figure 3. The illustration of visual tracking approach using Optical Flow. The red lines are optical flow information, yellow lines are affine

transformation and the green dashed lines at frame t is predicted location.

Hungarian algorithm. More specially, we assume that de-

tections of an object in consecutive frames hava an unmis-

takably high overlap IOU (intersection-over-union) which

is commonly the case when using sufficiently high frame

rates. The IOU measure used in our approach is defined as:

IOU(a, b) =
Area(a)

⋂

Area(b)

Area(a)
⋃

Area(b)
(9)

We first compute the IOU distance IOU( ˆBBox
t

i, D
t
i) be-

tween the predicted location ˆBBox
t

i of target i with it-

s neighborhood detections {dtk} ∈ Dt
i at frame t. We

pick the detection result with the max IOU value higher

than IOUmin as the candidate, if all the IOU( ˆBBox
t

i, D
t
i)

are lower than IOUmin, we just use the predicted location

ˆBBox
t

i as the candidate. We then compute the IOU dis-

tance between the detection results at frame t − 1 and the

candidate locations at frame t for each target. Followed by

this, the assignment problem leads to an optimal association

between detections and candidates which can be solved by

applying the Hungarian algorithm maximizing the sum of

all IOUs at frame t. All detections not assigned to an exist-

ing track will start a new one. All tracks without an assigned

detection will end.

3.3. Data Association and Trajectory Updating

As described above, our network is able to output the

similarity score of two trajectories. Therefore, after we

obtain numbers of short yet reliable tracklets in time or-

der with initialization, we input these tracklets into our

pre-trained LSTM network for affinity computation. To

be specific, for each tracklet Ai{t + 1, t + 2, ...t + l},

we put a window of frames with length l from the end

of tracklet into one stream of our Siamese network as an

anchor. For those tracklets whose first frames are within

{t+ l+1, t+ l+2, ..., t+ l+α}, we take the same length

l of frames from the beginning of tracklets and input them

into another stream of our network as candidates. Here the

parameter α indicates the time gap, if the interval of two

tracklets are longer than α, we take these two targets not re-

lated. Our siamese LSTM network pre-trained on the train-

ing dataset is then taken into a forward propagation to ob-

tain the similarity scores of the anchor and all its candidates.

The output of LSTM network is a single value between 0

and 1 which indicates the affinity of two tracklets. We set

a threshold value Smin to filter out the candidates with low

confidence. If the output is lower than Smin, we take the

target as different identity with the anchor and remove it

from the candidates. For those candidates with similarity

scores higher than Smin, if there exist time overlaps, we

just use the tracklets ahead in time and remove others from

the candidates. After we compute the similarity scores of

all anchors with their corresponding candidates at one time

step, we employ the Hungarian algorithm to solve the glob-

al optimal problem for our data association and thus obtain

the longer tracklets. For those candidates assigned to the

anchors, we mark them as matched pairs, and for all those

not assigned ones, we take them as unmatched pairs.
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Table 1. Evaluation results of the proposed method on MOT16 benchmark.
Method MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓

EAMTT 52.5 78.8 19.0% 34.9% 4407 81223 910 1321

SORT 59.8 79.6 25.4% 22.7% 8698 63245 1423 1835

Deep SORT 61.4 79.1 32.8% 18.2% 12852 56668 781 2008

IOU 57.1 77.1 23.6% 32.9% 5702 70278 2167 3028

LSTM+Kalman filter 62.6 78.3 32.7% 21.1% 10604 56182 1389 1534

LSTM+Optical Flow 62.1 79.1 32.5% 29.1% 6179 62206 793 832

Using an unified network trained offline could not be

easily adapted to real scenario as each object has a sepa-

rate motion pattern. Thus we introduce an online updating

approach to retrain the LSTM for each tracklet frame-by-

frame. That is to say, when assigning a tracklet to an ex-

isting one, we train the LSTM model again to update the

metric by adding new feature vectors of appearance, motion

and velocity. More specifically, we initialize new LSTM

models for all targets at first, and when the process of da-

ta association at one time step is accomplished, we pick up

training samples from matched pairs with label 1 along with

unmatched pairs with label 0. Then we input these training

samples into the Siamese networks to train one more time

and thus obtain the updated feature representation for each

target. In general, each trajectory is initialized with a pre-

trained model and each model will be updated when an as-

signment occurs. The data association and model updating

is proceeded interactively within a time step. In this way,

feature representations of trajectories can be more accurate

and update-to-date.

4. Experiments

4.1. Implementation Details

We implemented our framework in Python using Ten-

sorflow, with six cores of 2.4GHz Inter Core E5-2680 and

three NVIDIA GTX 1080 GPUs. The input of our network

for metric learning is a sequence of cropped images for each

pair of trajectories which are resized to 224×224. Here we

set the window length l which is also called timestep of L-

STM input to 6 and the number of LSTM hidden layers is

20. At the stage of initialization, we set an uniform thresh-

old value IOUmin to 0.8 for both approaches. At the stage

of data association, we set the parameter Smin to 0.7 and

parameter α to 30. Moreover, to compare with other state-

of-the-art online tracking algorithms like SORT [5], we em-

ploy a private detector provided by Yu et al. [40].

4.2. Benchmark Results

Our proposed method was evaluated with a set of test-

ing sequences from the MOT challenge [17] database which

contains both moving and static camera sequences. We e-

valuated our tracking performance using the standard MOT

metrics [4]: Multi-Object Tracking Accuracy (MOTA↑),

Multi-Object Tracking Precision (MOTP↑), Mostly Tracked

targets (MT↑), Mostly Lost targets (ML↓), False Positives

(FP↓), False Negatives (FN↓), ID Switches (IDS↓) and

Fragments (Frag↓). Evaluation measures with (↑) means

that higher scores denote better performance, while evalua-

tion measures with (↓) means that lower scores denote better

performance.

Table 1 show the quantitative results of our method on

MOT16 benchmark. For a fair comparison, we only list the

most relevant online trackers with state-of-the-art accuracy.

The baseline method EAMTT proposed by [31] is an on-

line multi-target tracker which exploits strong and weak de-

tections in a Probability Hypothesis Density Particle frame-

work. As discussed above, our proposed method use two

different initialization approaches. Specifically, as shown

in table 1, using Kalman filter [14] along with Hungarian

algorithm [16] as initialization for our method is called ”L-

STM+Kalman filter”, while using LK Optical Flow algo-

rithm [20] along with IOU distance computation as initial-

ization is called ”LSTM+Optical Flow”. Generally, both

two proposed methods achieved the highest MOTA scores

compared to other online trackers. As described in [18],

MOTA is the measure that best aligns with the human vi-

sual assessment (HVA), and Mostly Tracked (MT) follows

as second-best measure. Higher than other trackers in MO-

TA, our method also gains a competitive MT score of 32.7%
which is very close to the highest one (32.8%). In compar-

ison to SORT [5] whose core framework is using Kalman

filter [14] for tracking and Hungarian algorithm [16] for as-

signment, MOTA score of our method ”LSTM+Kalman fil-

ter” increases from 59.8 to 62.6. And compared with the

tracker IOU [6] which also uses the strategy of introducing

Optical Flow algorithm with IOU distance computation, the

MOTA score of our method ”LSTM+Optical Flow” increas-

es from 57.1 to 62.1. That is to say, due to the online metric

learning using LSTM, we successfully improved the track-

ing performance of baseline methods. And we notice that

the ID Switches (IDS) of both our methods (1389 and 793)

do not gain a significant decline compared to other state-of-

the-art trackers (781). That is because instead of focusing

on filling the gaps to obtain long trajectories, our tracker-

s take more interest in exploiting feasible information to

better recover trajectories. Specifically, our trackers tend

to update the feature representation of targets dynamically

when they are visible in the scene, and initialize new repre-

sentation when they reappear after a long occlusion which
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Figure 4. The tracking results of our proposed method on selected MOTChallenge sequence. Our trackers are able to maintain identities

through a rather long variation.

is highly related to the parameter α. This can also be ver-

ified from the quantitative results that we achieve the low-

est Fragments (Frag) among all the state-of-the-art track-

ers, which means by fusing both temporal and spatial fea-

tures with LSTM and update the models for each trajectory,

our tracker is able to maintain identities through longer and

more intense variations. An exemplary illustration of our

tracking performance is shown in Fig.4.

Due to the rapid development of sensor technology, non-

visible range sensors have raised lots of researchers’ atten-

tion in both academia and industry. Many investigators have

suggested that use of TIR (thermal infrared) images which

typically operate in the midwave (3 to 5µm) or long-wave (8

to 14µm) can provide information on important cultural, ge-

ological, and agricultural variables. As for our work, [36]

has published a thermal infrared video benchmark called

TIV for various visual analysis tasks which include multi-

object tracking. Lack of RGB appearance feature, our pro-

posed algorithm can not be adapted to infrared videos di-

rectly. As mentioned before, our proposed framework fuses

three cues into one network for feature learning. We now

intend to replace the RGB feature by thermal infrared one,

and pay more attention to the motion component in feature

learning phase. More experimental evaluations and analy-

sis on infrared videos especially the TIV benchmark will be

demonstrated in the future.

5. Conclusions

MOT using RNNs has drawn more and more attention

in recent years. As an extension of researching RNN-based

methods, we present a novel Siamese LSTM network for

metric learning along with an online updating scheme for

data association based MOT, by leveraging the power of

LSTM. Our proposed network fuses three most relevan-

t features of trajectories into one LSTM to interpret both

temporal and spatial components nonlinearly, and is able

to output the similarity score at the same time. Further-

more, we initialize a LSTM model for each trajectory and

update the metric in an online fashion during the tracking

phase. And we also introduce an efficient and feasible visu-

al tracking approach using Optical Flow and affine transfor-

mation, which can generate robust tracklets for our initial-

ization. The presented MOT framework achieves state-of-

the-art tracking accuracy, and as shown in the experiments,

the improvement on performance confirms that our method

has the flexibility to be applied to arbitrary scenarios.
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