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Abstract

Segmentation is a critical step for many computer vi-

sion applications. Among them, the remote photoplethys-

mography technique is significantly impacted by the quality

of region of interest segmentation. With the heart-rate es-

timation accuracy, the processing time is obviously a key

issue for real-time monitoring. Recent face detection al-

gorithms can perform real-time processing, however for

unsupervised algorithms, i.e. without any subject detec-

tion based on supervised learning, existing methods are

not able to achieve real-time on regular platform. In this

paper, we propose a new method to perform real-time un-

supervised remote photoplethysmograhy based on efficient

temporally propagated superpixels segmentation. The pro-

posed method performs the segmentation step by implicitly

identifying the superpixel boundaries. Hence, only a frac-

tion of the image is used to perform the segmentation which

reduces greatly the computational burden of the process.

The segmentation quality remains comparable to state of the

art methods while computational time is divided by a factor

up to 8 times. The efficiency of the superpixel segmentation

allow us to propose a real-time unsupervised rPPG algo-

rithm considering frames of 640x480, RGB, at 25 frames

per second on a single core platform. We obtained real-

time processing for 93% of precision at 2.5 beat per minute

using our inhouse video database.

1. Introduction

The photoplethysmography method (PPG) is used in

many devices as pulse oxymeter or fitness smart watch. The

blood volume variation measured this way is primarily used

to determine the heart rate. Moreover, oxygen saturation or

breath rate can also be determined with this measure. The

PPG measurement is usually performed with contact to the

skin. A light source illuminates the tissue and the small

variations of the reflected or transmitted lights are measured

with a photodetector [27]. However, this method requires a

stable contact between the sensors and the skin which tends

to make this method not suitable for damaged skin or if

the contact cannot be maintained steadily. The motion and

the pressure applied on the sensor can also affect the signal

waveform [29].

Based on the computer vision advances, recent works

demonstrate that cardiovascular activities can be monitored

using back-scattered ambient light [27]. It requires no ex-

pensive or specific hardware as a standard camera sensor

(smart-phone or web-cam) can be used to perform the mea-

sure. Most methods share a common pipeline-based frame-

work. First, a region of interest (ROI) is selected and

tracked over frames. Second, the RGB informations are av-

eraged over the entire ROI and combined to constitute the

temporal traces which is then filtered. Finally, the heart-rate

can be estimated, based on the frequency decomposition of

the remote photoplethysmographic (rPPG) signal.

The pulsatile information is mixed with the reflected

light and shadow casting over the skin due to movement.

This mixed signal is then captured by the camera. It sug-

gests that blind source separation methods can be used to

extract rPPG information from the mixed signal. The RGB

mixture can then be linearly combined in order to maximize

independence. Hence, Independent Component Analysis

(ICA) has been used in severals works [16] or [24] along

with Principal Component Analysis (PCA) in order to ex-

tract the signal which maximize the variance [18]. These

methods require no knowledge of the plethysmographic sig-

nal. Otherwise, prior information of the signal has lead to

the development of several methods. In [21] and [22], the

authors proposed to incorporate a priori information about

the periodicity of the cardiac signal into a constraint ICA al-

gorithm or a multiobjective optimization framework to aid

in the extraction of the most prominent rPPG signal. On

the other hand CHROM [9], PBV [12] or POS [15] use

fixed coefficients between the RGB channels to maximize
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the rPPG informations while minimizing the perturbation

induced by motion. Some methods have even used data-

driven approach to adapt to the scene [33].

The ROI selection step is crucial to obtain a reliable sig-

nal. From earlier studies to recent works, ROI selection has

evolved through several approaches. Initially manually se-

lected [30, 26], most of the methods are using face detection

[24] and tracking algorithms [28] and possibly refined with

a skin pixel classification [31] to select ROI. Lately, refined

ROI selection has been proposed for maximizing the infor-

mation quality [35]. It leads to an higher Signal Noise Ratio

(SNR) and so a more robust heart rate estimation based on

prior information as it has been shown that face does not ex-

hibit rPPG information homogeneously [17]. Indeed, cheek

and forehead contribute significantly more than other areas.

For unsupervised segmentation, i.e. without any subject

detection based on supervised learning, methods use pixel

clustering to create multiple ROI which are evaluated inde-

pendently to determine their contribution to the rPPG infor-

mation. Wang et al. [32] use voxels to construct spatio-

temporal clusters and sparse PCA method to determine the

contributive voxels. This method has then been extended

to segment living skin based on rPPG information recog-

nition [34]. In [3], temporally propagated superpixels are

used as the segmentation step and later merged according

to their SNR. It leads to a maximization of the rPPG infor-

mation. All of these methods suffer from a high computa-

tional burden. Indeed, the temporal superpixels are made

using the SLIC method [2] for superpixels construction and

optical flow to determine the temporal propagation which is

computationaly extremely expensive. In the case of voxels,

spatio-temporal clustering requires too much costly oper-

ations to be performed in real-time on common PC plat-

forms. It has been shown that the number of pixels in a ROI

has a direct impact on the signal quality [4]. It means that

the segmentation level of the frame has a direct impact on

the signal quality [3]. As a higher superpixel number means

less pixels per cluster, the RGB quantization error increases

accordingly. This may be understood as the reduction of the

sensor noise amplitude by a factor equal to the square root

of the number of pixels used in the averaging process of the

ROI [11]. However, a small number of superpixels leads to

a less accurate segmentation which also affects the signal

quality because of non-skin pixels [33].

This paper introduces a new real-time temporal super-

pixels segmentation method for remote photoplethysmogra-

phy. As most of the computational burden of the previously

introduced methods are linked with the segmentation task,

we propose in this paper a new way of performing superpix-

els segmentation which requires notably less computation.

Our method, called Iterative Boundaries implicit Identifica-

tion for superpixel Segmentation (IBIS), significantly limits

the computation burden by implicitly identifying the super-

(a) (b)
Figure 1. Example of segmentation with IBIS: (a) Segmented im-

age, (b) Pixels of the image that are actually processed.

pixels boundaries without processing the entire image. The

process can be performed up to 8 times quicker than cur-

rent state of the art methods. Figure 1 shows an example of

IBIS segmentation with the pixels of the image that are ac-

tually processed in order to retrieve superpixels boundaries.

Moreover as the number of superpixels increases, the num-

ber of iterations decreases to guarantee a low computation

burden even for a large number of superpixels. The tempo-

ral propagation is performed relatively to the modification

of the consecutive images. Thus, the creation and deletion

of superpixels are performed such that the number of clus-

ters remains the same. To overcome the tedious selection

of the number of superpixels, we propose an automatic seg-

mentation level selection in order to maximize the quality

of the rPPG information while guarantying a good segmen-

tation quality.

The method is detailed in section 2. Then the exper-

iments are presented in section 3 which introduces the

dataset and the metrics used to evaluate both the superpixels

method IBIS and the temporal propagation with regards to

the quality of the rPPG measurement. The conclusion and

discussion are proposed in section 4.

2. Method

First the proposed superpixel segmentation method is

presented in subsection 2.1. Then, the temporal propagation

principles are presented in subsection 2.2 and finally the

rPPG heart-rate estimation is presented in subsection 2.3.

2.1. Efficient superpixels segmentation

Superpixels algorithms perform segmentation in order to

group pixels in a coherent way with respect to the edges.

They are used for a wide range of applications such as ob-

ject tracking [14], image segmentation [19], video represen-

tation [5] or for biomedical applications [3]. The clusters

are established based on various scenarios.

Graph-based methods model the relation between neigh-

boring pixels with graph. As an example, the Normal-

ized cuts method [25], represents pixels as nodes and link

to pixel neighbors as edges. Segmentation is done by re-

cursively minimizing a cost function on the graph. Guid-
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(1) Fixed grid and initial 
seeds on input image

(2) Iterative Boundaries 
Identification Segmentation (3) Post processing step

Figure 2. Overview of the method: (1) Initial seeds definition with fix grid, (2) IBIS segmentation and (3) Post processing step.

ing model [23] reduces the complexity of the segmentation

based on the same approach.

Other methods based on gradient-ascent use initial re-

gions as references and refine boundaries location to gen-

erate compact superpixels. Mean shift [6], SLIC [2] or

USEQ [13] segment the image in spatially regular clusters

based on the euclidean distance evaluated between super-

pixels and all the pixels in the image.

All the existing methods focus on increasing segmen-

tation quality or decreasing the computational cost for the

process. Our method focuses on the complexity by propos-

ing a simple iterative way to perform the segmentation by

processing a fraction of the image.

Figure 2 shows an overview of the proposed method. (1)

Seeds are initialized based on a fixed grid. (2) Segmentation

is performed by iterative and implicit boundaries identifica-

tion on blocks of pixels decreasing recursively the size of

the block. (3) A post-processing step is added to ensure

superpixel contiguity and a minimal size.

2.1.1 Superpixels generation

Introduced by Archanta et al. [2], the SLIC method is one

of the main contribution in the field of superpixels. It

is still one of the most reliable superpixels segmentation

method [1] and is still widely used and cited (e.g. [7], [8]).

The clustering is done by agglomerating pixels to initially

define superpixels centers, later called seeds, with respect

to the spatial and chromatic euclidean distances. The chro-

matic space is the CIE l∗a∗b∗ because this color space is

widely considered as perceptually uniform for small color

distances [2]. The process is repeated 10 times to ensure a

high segmentation quality to be reached as the seeds are up-

dated between each iteration as 5-dimensional vectors com-

posed of the averaged pixel coordinates x and y along with

the averaged l∗a∗b∗ color values. Due to the simplicity of

the distance computation and the quality of the resulting

segmentation, we have based our procedure to assign pix-

els to the superpixels on SLIC.

As in SLIC, pixels are agglomerated following their

color similarity and spatial proximity in the image plane.

Pixels in the image are associated with the nearest seed ac-

cording to the sum of the color distance Dlab and the spatial

distance Dxy . The total distance D between the ith pixel

and the kth seed (with k = [0,K] and K the number of

superpixels) is defined by D = Dlab + θ ∗Dxy with

Dlab = ||(l, a, b)i − (l, a, b)k||, (1)

Dxy = ||(x, y)i − (x, y)k||. (2)

||.|| is the Euclidian norm and θ is a compacity factor de-

fined by θ = 1/c2 with c a parameter fixed by the user. This

operation is the most computationally expensive. Indeed

considering each iteration, every pixel has to be evaluated

for all possible seeds. The cost of conventional approaches

cannot be reduced and varies according to the number of

pixels in the image and according to the number of su-

perpixels specified by the user. Obviously, the search area

should be limited in order to reduce the computational bur-

den and as in SLIC, pixels are compared to the adjacent

seeds within a range defined by the user. This way pixels

are evaluated to a subset of seeds value only considering

their spatial repartition.

The IBIS method is similar to the SLIC procedure pre-

sented above. However, in addition to limiting the compu-

tation to a locality considering a subset of seeds for evalua-

tion, we introduce a new approach to limit significantly the

quantity of pixels evaluated in the image. This procedure is

presented in the next subsection.

2.1.2 Boundaries identification

Based on results generated by state of the art methods as

SLIC [2], SEEDS [10] or USEQ [13], superpixels can be

defined by common properties. Superpixels should be reg-

ular, contiguous and have a minimal size. The output of the
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segmentation is an assignation of every pixels to a super-

pixel. We propose to use a set of square block to iteratively

identify the boundaries between superpixels.

The image is first divided into blocks using a regular

grid. A block is said to be coherent if a subset of pixels

within that block, called the processed pixels, are assigned

to the same superpixel. In that case, all pixels of this block

are assigned to the corresponding superpixel. On the other

hand, as soon as the processed pixels of a block are as-

signed to different superpixels, the process is stopped then

the block is divided into four smaller blocks and the pro-

cess is repeated iteratively. With this strategy, it is possible

to drastically limit the number of pixels that are evaluated.

Actually, only the pixels located on the border of a block are

evaluated to determine whether a block is coherent or not.

By doing this, we determine iteratively blocks that contain

the edges of the image and boundaries of superpixels. The

procedure is further optimized by evaluating only one pixel

over two that is on the block boundary. These pixels are

called the processed pixels and represent only a fraction of

the image (cf. Figure 1).

The block size τi for the ith iteration is defined by:

τi = 2α−i+1 + 1 (3)

with

α = ⌊log2(
√

N/K)− 1⌋ (4)

i ∈ [1, α],
√

N/K the average size of the superpixels and

N the number of pixels in the image.

Block 1 Block 2

Block 3 Block 4

(a) (b) (c)
Figure 3. Superpixels boundaries are identified by evaluating one

pixel over two on the block boundary. (a) Pixels of the top-level

blocks that are actually processed. (b) Top-level blocks are inde-

pendent and (c) Iterative Boundaries Identification.

Top-level blocks (at first iteration) are completely inde-

pendent and can therefore be evaluated in parallel, which

allows for massive parallelization of the segmentation pro-

cess. For this purpose, it is necessary that the blocks are

formed so that the boundaries do not overlap. The bound-

aries of two top-level neighboring blocks are simply con-

tiguous as shown in Figure 3.

For the last iteration α (corresponding to a block size of

3, i.e. τα = 3), if the processed pixels are not assigned to

the same superpixel, i.e. the block is not coherent, all the

pixels within that block are individually evaluated so that

the superpixels adhere precisely to the image edges.

2.1.3 Seeds update

In the initial SLIC method, the seeds update allows for an

increase of the quality of the Boundary Recall as the seeds

agglomerate more homogeneous pixels based on their color

similarity and proximity in the image plane. In our ap-

proach, seeds are also updated after each iteration, as an

average of all the pixels assigned to the corresponding su-

perpixel. If no pixel is assigned to this superpixel, its seed

remains unchanged.

Figure 4. Evolution of the absolute difference between the seed

value at a current iteration and the seed value after convergence

with respect to the number of iterations for SLIC (top) and IBIS

(bottom). The absolute error is the averaged error on the 5-

dimensional seeds values for all superpixels.

Figure 4 shows the evolution of the absolute error, be-

tween the seed value at a current iteration and the seed value

after convergence for both SLIC and IBIS methods. For

compactness, 5D seed vector values are averaged.

As the number of superpixels increases, the quantity of

pixels per superpixel decreases and consequently the vari-

ations of the seeds values will be smaller. For SLIC, the

convergence is reached after 10 iterations regardless of the

number of superpixels as it is fixed in the algorithm. For

the IBIS method, the number of iterations is dependent of

the number of block sizes which is determined by the num-

ber of superpixels (cf. Eq. 3). The shape difference of the

curves is due to the way seeds are updated in both methods.

For SLIC, all pixels in the image are assigned to the nearest

superpixel. On the contrary, for IBIS, through the iterations

and the block-size decreasing accordingly, a larger number

of blocks will be coherent as the probability of hitting a

boundary will decrease with the masks size getting smaller.

The post-processing step is the same as the SLIC method
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where a mask is applied along all the image to ensure the

contiguity and a minimal size for all superpixels.

2.2. Temporal propagation

In order to perform the rPPG measurement as proposed

in [3], we have to consider the temporal propagation of the

seeds value. Hence, each temporal superpixels provides an

instantaneous averaged chromatic value as long as the best

possible inheritance. Two superpixels are said to be adja-

cent if they share the same boundary. Parent superpixels

for the frame t − 1 are defined by the minimal euclidean

distance for a seed value at time t with the seed and adja-

cent seeds at time t − 1. As pixels can only be exchanged

between adjacent superpixels, this method ensures to con-

struct the most coherent possible RGB traces.

The temporal propagation of the superpixels is done with

respect to the pixels that have been modified between two

consecutive frames. Only pixels that could possibly have

been exchanged with adjacent superpixels are processed.

Such pixels are considered if the average absolute chromatic

difference between spatially identical pixels is superior to

an empirically selected threshold. It allows for an additional

computational cost reduction as long as a high stability of

the background superpixels in the scene.

The post processing step ensures the superpixel contigu-

ity as long as deleting the superpixels that are too small,

which contains a number of pixels inferior to four times the

average size of the image superpixels, i.e. (
√

N/K)/4. The

number of clusters should remain stable in the scene and

their size kept under control over the frames. Hence, the

k largest superpixels are divided in two superpixels, with k
the number of clusters deleted in the previous step. Split-

ting superpixels generates two new seeds only separated by

their spatial coordinates for one pixel in both dimension.

Once the seed value are updated, only pixels contained in

deleted superpixels and the split ones are processed again

to update the segmentation.

2.3. Heart­rate estimation

As in [3], the input video frames are decomposed into

several temporal superpixels from which the pulse signals

are extracted. CHROM method is used for each temporal

superpixel and a pulsatility measure is then used to merge

the pulse traces and estimate the photoplethysmogram sig-

nal. For each temporal superpixel, the RGB traces are band-

pass filtered from 40 to 240 bpm and RGB channels are lin-

early combined according to the CHROM [9] method. It

consists on projecting the RGB traces onto two orthogonal

vectors defined as :

Xi(t) = 3yRi (t)− 2yGi (t),

Yi(t) = 1.5yRi (t) + yGi (t)− 1.5yBi (t).
(5)

The pulse signal Si, for the ith temporal superpixel,

is calculate with Si(t) = Xi(t) − αYi(t) where αi =
σ(Xi)/σ(Yi). The rPPG signals are fused based on their

quality, estimated with the SNR value as:

SNRi = 10 log10

∫ f2

f1
hi
signal(f)|F{Si(t)}|

2df
∫ f2

f1
hi
noise(f)|F{Si(t)}|2df

(6)

where F{Si(t)} is the Fourier transform of the rPPG signal

of the ith temporal superpixel. The double-step function h
for the two first harmonic defined as:

hi
signal(f) = [δ(f − f i

0) + δ(f − 2f i
0)] ∗

∏

(±fr)

hi
noise(f) = 1− hi

signal(f)
(7)

with δ the Dirac delta function, f i
0 the fundamental fre-

quency, convoluted with the rect function, noted as
∏

of

half-width fr. SNRi will be high for skin superpixels and

low for background ones.

The heart-rate is estimated as the fundamental fre-

quency of the rPPG signal S(t) which is obtained by a

weighted average of all the pulse signals Si(t), i.e. S(t) =
∑

i∈K Si(t)wi with wi:

wi =
10SNRi

∑

i∈K 10SNRi

(8)

The weights are normalized and in order to favor pul-

satile signals. They are defined with 10 time the log−1(x)
function (i.e. 10x).

In addition, in order to take into account the need to

have superpixels with well-defined boundaries and to have

superpixels large enough to reduce quantization noise, the

adjacent superpixels with similar color (evaluated with the

euclidian chromatic distance) are also considered when the

pixels are spatially averaged. By doing this, the size of the

superpixels can be small enough to maintain the quality of

the superpixel boundaries, and the spatial average considers

a large number of pixels to reduce the impact of the quanti-

zation noise. The number of superpixels is defined by ν ∗ β
with β the average number of adjacent superpixels (typi-

cally β = 6) and ν the optimal superpixel resolution.

3. Experiments

First the superpixel evaluation is done in 3.1 we have

compared the quality of the IBIS segmentation with state-

of-the-art methods. Then the rPPG accuracy is evaluated in

subsection 3.2. Performance tests are run with codes pro-

vided by the authors and are performed on the same plat-

form, which runs an Intel i7 4790@3.6 GHz. First we de-

scribe the datasets used to evaluate the proposed method.
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Figure 5. Comparisons of superpixels method IBIS with state of the art methods SLIC, SEEDS and USEQ for boundary recall, underseg-

mentation error and computation time metrics.

Then we present the evaluation metrics and finally we dis-

cuss on the results. Each metric result is the average over

the entire dataset in both experiments.

3.1. Superpixels segmentation evaluation

Superpixels evaluation is done with comparison to three

state-of-the-art methods SLIC [2], SEEDS [10], and USEQ

[13]. Each implementation was provided by the author on

their website. The IBIS and temporal IBIS codes are avail-

able on the project web-pages1,2.

3.1.1 Datasets and Metrics

For the superpixels quality evaluation, the Berkeley seg-

mentation benchmark BSDS500 dataset was selected [20].

It contains 500 manually labeled segmented images. This

dataset is one of the most commonly used for superpixels

evaluation.

The following metrics are applied for all the methods and

used for comparison:
• Boundary Recall (BR), represents the correctness of

adhering the true boundaries of objects.
• Under segmentation Error (UE), measures the su-

perpixel overlapping with multiple objects by the per-

centage of pixels that leak from the ground truth

boundaries.
• Computation time, was measured with the help of the

std::chrono::duration from the C++ standard library.

The measured times are the segmentation processing

times plus the post processing step. The initial tasks of

defining the seeds and the initial grid are not taken into

account as multiple images with the same resolution

can be processed with the same parameters. For fair

comparisons, times are given for forced single core ex-

ecution as SLIC and SEEDS methods does not gain in

performance running on multi-core platform with the

implementations given by the authors.
Computation times are only indicative of the relative

complexity. Indeed, as the complexity of the four methods

are all on O(N), times are given relatively of the level of

optimizations of the integration and are relative to the hard-

ware platform. Nevertheless, the observed performance gap

1https://github.com/xapha/IBIS
2https://github.com/xapha/IBIS Temporal

between the methods, highlights the relative complexity dif-

ference.

3.1.2 Results

In Figure 5, the segmentation quality of three state-of-the-

art methods and IBIS are compared.

The SEEDS method has higher BR and a lower UE

which make it the best segmenting in our test. Nevertheless,

our method is consistently as good as the SLIC method,

even slightly better considering the BR. Which was ex-

pected as the superpixel generation procedure of SLIC and

IBIS is similar.

Considering that only a fraction of an image is consid-

ered for the segmentation, the IBIS method performs re-

markably well. On the performance side, up to 8 times

faster than the original SLIC method for similar quantita-

tive results, our method is much faster than the others. De-

spite the fact that its run-time depends on the number of

superpixels, the SEEDS method performs well once again.

As expected, for the SLIC, USEQ and IBIS method, the

computation time considering the number of superpixels in-

crease much slower due to the fact that the search space for

the superpixels assignment is limited to a predefined range.

3.2. Heart rate estimation evaluation

The proposed method has been compared to the imple-

mentation done in [3] that proposed similar video decom-

position into several temporal superpixels from which the

pulse signals are extracted. However, in [3] the temporal

segmentation is based on TSP [5] which is based on SLIC

and is significantly slower than IBIS. The heart rate is esti-

mated on a 20 seconds length window. The superpixels res-

olution is set to 150 for non averaged seeds value and 900

for seeds values averaged over the adjacent superpixels.

3.2.1 Datasets and Metrics

The rPPG quality measurement is evaluated on the UBFC-

RPPG dataset presented in [3] and publicly available, com-

posed of 43 videos, where each video is synchronized

with a pulse oximeter finger clip sensor (Contec Medical

CMS50E) for the ground truth. Each video is about 2 min-

utes long and recorded with a low cost webcam (Logitech
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Figure 6. Comparison of the heart rate estimation metrics obtained with the reference method [3] and the proposed method with and without

considering adjacent superpixels during the ROI pixel averaging.

C920 HD pro) at 30 frames per second with a resolution of

640× 480 in uncompressed 8-bits RGB format.

The following metrics are applied for all the methods and

used for comparison:

• Pearson correlation factor r is the correlation be-

tween heart rate estimated from the rPPG signal and

the heart rate estimated from the PPG reference signal.

• Root mean square error (RMSE) is the quadratic

error calculated between the measured value and the

ground truth.

• Precision at 2.5 and 5 bpm. This metric represents

the percentage of estimations where the absolute error

is under a threshold (2.5 or 5 bpm)

The estimations at 2.5 and 5 bpm are expressed within the

range [0; 1] as well as the Pearson correlation factor metric.

The RMSE is unit-less as it is the quadratic error measure-

ment.

3.2.2 Results

Figure 6 presents the comparison of the heart rate estima-

tion metrics obtained with the reference method [3] and the

proposed method with and without considering adjacent su-

perpixels during the ROI pixel averaging (cf. section 2.3)

using respectively 150 and 900 superpixels per frame. We

can observe that the proposed method increased the esti-

mation precision over the entire dataset for 7%. The aver-

aged seeds value over adjacent superpixels performs even

better with a 10% increased precision, which can be ex-

plained by the fact that the increased number of pixels con-

sidered for each superpixels values in our method, as long

as the increased number of superpixels, provide the best

compromise between segmentation quality and superpixel

sizes. It is important to note here that we compare the pro-

posed method to our previous implementation [3] because

this latter had already been compared favorably with con-

ventional supervised ROI selection techniques (such as face

or skin detection) combined with conventional methods of

RGB channel combinations such as CHROM or POS.

The computation time, which is up to several seconds

for the TSP [5] implementation is reduced to 25 ms per

frame on single core implementation, which corresponds to

40 frames per second on this platform and with this level of

optimizations.

4. Conclusion

Superpixels segmentation is a popular preprocessing step

in many computer vision tasks. Unsupervised rPPG moni-

toring needs high quality segmentation as well as low com-

putational burden. We have introduced in this paper, a low

complexity superpixel algorithm capable of performing su-

perpixels segmentation using only a fraction of the pixels of

an image identifying iteratively and implicitely the bound-

aries. Experimental results on the BSDS500 dataset have

demonstrated the efficiency of IBIS with a similar segmen-

tation accuracy than SLIC but with a 8 times faster process-

ing. At the same time, the quality of the segmentation and

the temporal regularity of the propagation assure great re-

sults considering rPPG with the heart-rate estimation bring-

ing real-time capabilities to unsupervised rPPG methods.

We can anticipate that the proposed method will not be

very robust on videos presenting important movements. In

future works, we will evaluate precisely this observation.

Then, we will study further the block definition as well as

the impact on the segmentation quality and the running-time

of various strategies to select the evaluated pixels. We also

plan to implement the algorithm on massively parallel plat-

form such as GPU target to propose ultra-fast rPPG mea-

surement. Hence rPPG could be part of a more complex

real-time process.

Acknowledgments

This research was supported by the Conseil Régional de
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