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Abstract

Facial micro-expressions (ME) are manifested by human

reflexive behavior and thus they are useful to disclose the

genuine human emotions. Their analysis plays a pivotal

role in many real-world applications encompassing affec-

tive computing, biometrics and psychotherapy. The first and

foremost step for ME analysis is ME spotting which refers

to detection of ME affected frames from a video. ME spot-

ting is a highly challenging research problem and even hu-

man experts cannot correctly perform it because MEs are

manifested using subtle face deformations and that too for a

short duration. It is well established that changes in the hu-

man emotions, not only manifest ME but it also introduces

changes in instantaneous heart rate. Thus, the manifesta-

tion of ME and changes in the instantaneous heart rate are

related to the change in human expressions and both of them

are estimated using temporal deformations of the face. This

provides the motivation of this paper that aims to explore

the feasibility of variations in the instantaneous heart rate

for performing the correct the ME spotting. Experimental

results conducted on a publicly available spontaneous ME

spotting dataset, reveal that the variations in instantaneous

heart rate can be utilized to improve the ME spotting.

1. Introduction

Perceiving the facial expression plays a pivotal role in

affective computing, human psychology understanding and

human communication [5]. Due to these applicabilities,

correct understanding of human expression is an active re-

search area. Human expression can be classified as: i) fa-

cial macro-expressions which are usually observed in day-

to-day life and easily elucidated by humans; and ii) facial

micro-expressions (ME) which are originated by human re-

flexive behavior. Since ME arises from the human reflex-

ive behavior which is hard to control or suppress, they are

hard to suppress and disclose the genuine human expres-

sions [10]. Due to these reasons, ME is useful in numerous

applications, some of the crucial amongst them are: i) busi-

ness negotiation and security applications where lie detec-

tion is required to circumvent frauds [5]; ii) psychotherapy

for monitoring suspicious intent or surveillance [10]; iii) ap-

plications in the realm of affective computing that require

the understanding of human genuine emotions like commer-

cial advertisement rating [16]; and iv) virtual/ augmented

reality for face synthesis. Requirement of ME in such ap-

plications, has ignited the research in ME analysis.

ME analysis consists of two stages, viz., ME spotting

which refers to the localization of ME frames in the face

video and ME recognition where the spotted frames are

analyzed to classify the expression. ME spotting is a

highly challenging problem and even human experts who

are trained for expression analysis cannot correctly perform

the ME spotting. The reason behind this incapability is that

ME are generated for short duration (usually 1/25 to 1/5 of

a second) by subtle stretching or contraction of facial ar-

teries located in the face areas belonging to like lips, eyes

and mouth. Human eyes are unable to process such short

duration subtle facial temporal movements [15]. Utilizing a

human expert for ME spotting is not only error-prone, but

highly expensive, as well. All these factors provide the mo-

tivation to propose an automatic ME spotting system in this

paper, that can automatically and correctly localize the ME

frames in the face video.

Prominent facial deformations are generated by the un-

avoidable pose variations and eye blinks. Unfortunately,

subtle facial deformations generated by ME and these in-

evitable prominent facial deformations usually co-exist. Fa-

cial deformation due to ME can also produce with the

deformations due to macro-expression such that ME and

macro-expression belong to either similar or opposite at-

tributes [22]. The facial deformations due to pose varia-

tions, eye blinks and macro-expression can be easily misin-

terpreted as deformations due to ME which eventually re-

sults in erroneous ME spotting. In the literature, ME spot-

ting is performed by analyzing the temporal deformations

that are produced by either variations in facial appearance

or movements of discriminative facial points. Both these
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deformations are inadequate for correct ME spotting. The

problem with such approaches are: i) the facial appear-

ance is easily influenced by illumination, eye-blinking and

macro-expressions; and ii) movements of the facial points

are error-prone due to inaccurate localization.

Human emotions, not only results in the manifestation of

ME but they also introduces changes in the instantaneous

heart rate (HR) [4]. Various studies have been conducted

to understand the correlation between variations in HR and

human emotions, but it still requires rigorous analysis [14].

But it is well established that fluctuations in HR are ob-

served when human emotion changes and this phenomenon

is used in polygraph based lie detection [3]. The paper aims

to explore the feasibility of variations in instantaneous HR

for improving the ME spotting.

HR estimation can be performed using either contact

mechanisms that require user to place sensors (like electro-

cardiography (ECG) or photo-plethysmography (PPG)) on

their body and non-contact mechanisms that do not require

any user contact. The contact mechanisms require the fixed

contact between the skin and sensor to be fixed [38]. It can

introduce psychological bias which degrades the HR esti-

mation [38]. In addition, long term HR monitoring is not

feasible using contact mechanisms. In contrast, well known

non-contact mechanisms based on Microwave Doppler and

laser [11] need highly expensive and bulky sensors for HR

estimation. Fortunately, another non-contact mechanism is

proliferating that require non-contact face videos for HR es-

timation [7]. Such an acquisition can be performed using

cheap and portable camera. In addition, these same videos

are useful for ME analysis.

All these factors motivate us to employ non-contact face

videos for estimating the variations in instantaneous HR and

used it for improving the ME spotting. This is the main

contribution of the paper. To the best of our knowledge, this

is the first attempt towards exploring the face video based

HR estimation for ME spotting.

The paper is organized in the following manner. The

preliminaries required to properly understand the proposed

system are discussed in the next section. It provides the

brief overview of ME spotting and HR estimation using face

videos. The next section describes the proposed ME spot-

ting system using HR monitoring. The experimental results

are analyzed in Section 4. Conclusions are given in the last

section.

2. Preliminaries

This section provides the brief overview of existing ME

spotting and HR estimation using face videos.

2.1. ME Spotting

Most of the existing work in the realm of ME analysis

is mainly concentrated around ME recognition rather than

ME spotting because of the unavailability of spontaneous

ME spotting datasets. Recently few ME spotting datasets

are made publicly available which ignites the research in

ME spotting. Some such datasets are SMIC-E-HS [17] and

CASMEII [37]. A ME spotting system usually consists of

the following steps: i) face alignment where face present in

each video frame is detected and aligned to a common refer-

ence so as to handle the geometric deformations; ii) feature

encoding where subtle temporal deformations in the video

frames are represented; and iii) spotting the ME frames by

analyzing the temporal deformations.

The efficacy of ME spotting is highly dependent on the

feature encoding. The ME spotting cannot be correct unless

feature encoding does not correctly represent those subtle

facial temporal deformations that are generated by ME and

simultaneously mitigate the spurious temporal deforma-

tions generated by expressions and illumination [20]. One

of the most extensively studied feature encoding for ME

spotting is the appearance based feature encodings which

are given by the variations introduced in the facial appear-

ance or texture in the video frames [22, 34]. The facial ap-

pearance features in a video frame can be determined by

applying main directional maximal difference [34] or his-

tograms of Local Binary Patterns (LBP) [22]. In [19], op-

tical flow is utilized to compute the local facial appearance

features. The corresponding appearance based feature en-

coding can then be obtained by subtracting the facial ap-

pearance features in the subsequent frames.

The most valuable information related to ME usually re-

sides in the following facial areas: lips, eyes and eye-brows.

It is because expressions are manifested by the contraction

or stretching of the facial arteries present in these facial ar-

eas. But most of the above mentioned appearance based

feature encoding, consider full face region to extract the fa-

cial appearance rather than the facial regions. Hence, it can

be inferred that appearance based feature encoding contain

large redundant information. In addition, these facial ap-

pearance features are easily influenced by illumination, eye-

blinking and macro-expressions which result in erroneous

ME spotting. Hence, the utilization of only some discrimi-

natory facial features known as facial landmarks is studied

in [24] for feature encoding. The facial landmarks are cho-

sen in such a manner that they can completely model the

facial dynamics. The main prerequisite for the utilization of

facial landmark in ME spotting is their correct localization

and unfortunately, it is usually violated due to the following

reasons: i) illumination significantly changes the appear-

ance of facial regions; and ii) some landmark points are less

discriminatory in the neighborhood like the landmarks lying

on lip regions. Another reason for erroneous ME spotting is

the inevitable eye-blinking that generates prominent tempo-

ral deformations near eye-areas which in-turn leads to spu-

rious eye-brow appearance and landmark localization. It is
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observed in [22] that it is better to avoid the eye region dur-

ing appearance based feature encoding to achieve better ME

spotting.

The feature encoding is analyzed to detect the frames af-

fected by ME. Generally, video frames can be classified [30]

based on the facial expression as: (i) onset frames where

expression comes into existence and thus the temporal de-

formations are escalating; (ii) apex frames where the ex-

pression is at its peak and thus the temporal deformation is

the most prominent; (iii) offset frames where the expression

diminishes and thus temporal deformations starts to fade

away; and (iv) neutral frames where no expression is no-

ticeable and thus temporal deformations are negligible. The

apex frames constituting the frames affected by ME, are the

frames corresponding to the peaks in the feature encoding

because they contain large temporal deformations as com-

pared to their neighborhoods [18]. It is quite possible that

spurious peaks are generated in the feature encoding due to

macro-expressions, eye-blinking and background noise. In

such a case, the apex frame will be wrongly classified which

in-turn results in wrong ME spotting.

2.2. Face HR Estimation

Cardiovascular pulse propagate in the human body due

to the contraction and expansion of the heart. This mecha-

nism introduces the color variations which can be observed

in the reflected light using a camera [25]. In addition, the

cardiovascular pulse also introduces subtle movements in

the face, which can be examined using camera [1]. Both

these mechanisms are used for HR estimation using face

video. Such HR estimation systems consist of three stages,

viz. preprocessing, temporal signal extraction and HR esti-

mation.

2.2.1 Preprocessing

In the first stage, face is detected from the input video by

using the existing face detectors like Viola-Jones [31] or

model based face detectors [2]. The detected face region

can contain non-skin pixels belonging to the background or

human hairs. Non-skin pixels do not contain enough in-

formation and hence they are eliminated using skin color

discrimination. Unavoidable eye blinking can result in er-

roneous HR estimation hence the eye areas can also be elim-

inated to improve the HR estimation. The eye areas can be

estimated by utilizing facial geometry heuristics or trained

classifiers [33]. In some cases, facial boundary is also re-

moved to improve the performance [7]. Region of interest

(ROI) is defined using the remaining facial area. Full face,

forehead region or cheek areas can be used as ROI [12].

ROI can also be adaptively defined by selecting few impor-

tant rectangular face blocks [13].

2.2.2 Temporal Signal Extraction

Subtle motion or color variations introduced in the face

video due to heart beats can be observed using Eulerian

[25] or Lagrangian methodologies [1]. The variations intro-

duced in subsequent frames are referred as temporal signals.

In Lagrangian methodology, discriminating features are ex-

plicitly tracked and their variations in the subsequent frames

provide the temporal signal. The efficacy of these tempo-

ral signals is dependent on correct localization, but unfor-

tunately these are improperly localized due to illumination.

In addition, the temporal signal are not useful when few

discriminatory features are available. Another factor that

restricts its utility is that extraction of such temporal signal

is highly time-consuming. Hence, Eulerian methodology

is introduced for temporal signal extraction [25]. The tem-

poral signal in this methodology is given by the variations

produced in the fixed region of interest (ROI). Such an im-

plicit tracking is less time-consuming than the Lagrangian

methodology. They are relevant only when subtle variations

are present, as in case of HR estimation [36].

2.2.3 HR Estimation

Pulse signal is extracted from the temporal signal using

blind source separation techniques [7]. The pulse signal

is transformed into the frequency domain by applying Fast

Fourier Transform (FFT) and the frequency containing the

maximum amplitude in the spectrum corresponds to HR fre-

quency [23]. It is possible that several spurious peaks are

produced in the spectrum when noise is present in the pulse

signal. In such a scenario, maximum amplitude peak might

not corresponds to actual HR frequency, i.e., HR estimation

is erroneous. The impact of such noise is mitigated by ap-

plying filtering techniques like Detrending filter is used to

handle the non-stationary trend of a signal [28].

3. Proposed System

In this section, the ME spotting system is proposed

which explore variations in the instantaneous HR so as to

improve the spotting. It consists of the following five stages:

i) Face alignment; ii) ROI extraction; iii) Evaluating in-

stantaneous HR variations; iv) Determining plausible ME

spots; and v) Post-processing of spots. In the first stage,

face present in the face video frames is detected and rigid

deformations present in them are removed by aligning them

to a common reference. In the second stage, non-skin pix-

els in the facial area are removed and the remaining area is

used to define the several ROIs. Subsequently, the ROIs are

utilized to evaluate the instantaneous HR at multiple loca-

tions and they are followed by calculating the variations in

instantaneous HR. In the fourth stage, the temporal defor-

mation in the ROIs is encoded and the peaks corresponding
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Figure 1. Flow-graph of the proposed system

to the encoding is used to locate the plausible ME spots.

Eventually, variations in instantaneous HR are utilized to

select the genuine ME spots from the plausible ME spots.

The flow-graph of the proposed system is shown in Figure

1.

3.1. Face Alignment

The input video contains human face along with large

background. But instantaneous HR estimation and ME

spotting require only the facial region, thus the facial re-

gion is detected and the remaining area (i.e., background) is

removed. For this purpose, accurate localization of discrim-

inating facial landmarks is required. We employed Con-

strained Local Neural Field model (CLNF) [2] for the facial

landmark detection. These landmarks represent the contour

of eyes, lips, nose and facial boundary. CLNF first applies

Viola-Jones face detector [32] to detect plausible faces ar-

eas. Subsequently, the actual face is determined from the

plausible face areas and facial landmarks are localized using

the global and local facial models. The face area is deter-

mined using the facial landmarks and the background (or re-

maining area) is removed. The detected face contains rigid

deformations like translation and rotations which degrade

the performance of HR estimation and ME spotting. Thus,

the detected face region is aligned to a common reference.

We normalize the detected faces such that their eye distance

is fixed, as proposed in [21].

3.2. ROI Extraction

The efficacies of HR estimation and ME spotting are re-

stricted by the unavoidable eye-blinking. We handle this

issue by removing the eye areas for the processing. The

eye areas are given by the convex hull of only those facial

landmarks that correspond to the eyes. In addition, it is ob-

served in [7] that even slight movement in face boundaries

introduces large color variations and thereby significantly

degraded the HR estimation. Thus, we apply morphologi-

cal erosion to remove the facial boundaries [9]. Moreover, it

is observed in [8] that if full face is considered as one ROI,

then expression variations localized in small face area can

tremendously deteriorate the HR estimation. Hence, we ex-

tract several non-overlapping square blocks from the resul-

tant image and mark the blocks containing only skin pixels

as ROIs.

3.3. Evaluating Instantaneous HR Variations

In this stage, instantaneous HR and their variation are

evaluated. It consists of the following steps: i) Temporal

signal extraction; ii) Temporal filtering; iii) Pulse extrac-

tion; and iv) Variations.

3.3.1 Temporal Signal Extraction

Each ROI consisting of skin pixels, contains the cardiovas-

cular pulse information in terms of color variations. It is

noticed in [29] that green channel intensities provide the

most useful information regarding cardiovascular pulse as

compared to red and blue channel intensities. Reason for

this phenomenon are: i) green light better penetrates in-

side the skin as compared to blue light; and ii) green light

provides better hemoglobin absorption than red light [29].

Thus, temporal signal of an ROI is provided by its mean

green value of pixels [7]. That is, the temporal signal of ith

ROI, T i is:

T i =





∑

(x,y)∈Ri

I1g (x, y) , · · ··,
∑

(x,y)∈Ri

Ing (x, y)



 (1)

where n is the total number of frames; (x, y) represents the

pixel location; Ri is the ith ROI; and Ikg contains the green

channel intensities of kth frame.

3.3.2 Temporal Filtering

Band-pass filter is employed to minimize the noise in tem-

poral signals. It is observed in [8] that human heart beat

within the range of 42 to 240 beat-per-minute (bpm). Thus,

the frequency range for the band-pass filter is set from
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0.7 to 4 Hz. Moreover, the temporal signals contain non-

stationary trend due to focus or illumination changes. Thus,

Detrending filter is also applied to remove the noise from

temporal signals [28].

3.3.3 Pulse Extraction

Each temporal signal contains pulse signal along with the

noise. In case of multiple temporal signals, the pulse sig-

nal is extracted using blind source separation by estimating

the individual source components [25]. Amplitudes of pulse

signal and noise in the temporal signals depend on the facial

structure, user characteristics (like skin color) and environ-

mental settings (like illumination). Hence, z-score normal-

ization [27] is applied to normalize the temporal signals.

The pulse signal is extracted from these temporal signals by

applying the kurtosis based optimization, as utilized in [8]

because it quickly provides the global convergence and it is

proved in [7] that such a pulse estimation provides correct

pulse extraction.

3.3.4 Variations

The pulse signal is divided into overlapping windows and

HR is estimated from each window. Such HR estimates are

referred as instantaneous HR. The size of each overlapping

window is 60 frames and there is an overlap of 30 frames

in the subsequent windows. The variations in instantaneous

HR at mth frame, vm is given by:

vm =

p
∑

a=−p

∣

∣hi − h(i+a)

∣

∣ (2)

where p is the number of neighbors; |•| denotes the absolute

operation; i is the fragment containing mth frame; and hl

denotes the instantaneous HR in lth fragment. The value of

p is set to 2.

3.4. Determining plausible ME spots

In this section, the extracted ROIs are used to determine

the plausible ME spots. Initially, the feature variations in

each ROI are evaluated. Based on the feature variations,

only some ROIs are selected that might contain the tempo-

ral deformations due to ME. Appearance based features are

encoded using these selected ROI and the encoding is used

to extract the plausible ME spots.

3.4.1 Feature Variations

Variations in the features are required for ME spotting. In

this section, such variations are evaluated using changes in

facial appearance. We calculate the feature variations in

each ROI by utilizing Eulerian methodology described in

[8]. That is, the intensity variations in a particular ROI pro-

vide the variations in appearance feature. More clearly, fea-

ture variation corresponding to ith ROI in αth frame, Fi(α)
is given by:

Fi(α) =
∑

(a,b)∈Ri



Gα
(a,b) −

(

G
(α+k)
(a,b) +G

(α−k)
(a,b)

)

2





2

(3)

where Ri denotes the ith ROI and Gw
(a,b) is the gray-scale

intensity at pixel location (a, b) of the wth frame. It can be

observed that in the equation, the feature difference is evalu-

ated by subtracting the features of sequential frames within

a specified interval (defined by K) rather than subtracting

the features of alternating frames. It provides a better fea-

tures representation than considering alternating frame dif-

ference [18].

3.4.2 ROI Selection

Usually, small facial regions are affected by the ME and

they are sufficient for correct ME spotting [18]. Hence we

choose only few ROI that contain significant temporal de-

formations. The total variation in an ROI, d (i) is given by

adding its features variation, i.e.,

d (i) =

n−q
∑

i=q+1

Fi (α) (4)

where Fi is the feature variation for ith block; n is the num-

ber of video frames; and q is the interval used for frame

feature difference. We selected 40% of the ROI containing

the largest total variations.

3.4.3 Feature Encoding

The appearance based feature encoding is obtained by

adding the feature variations of the selected ROI, i.e.,

A (α) =
∑

i∈B

Fi (α) (5)

where A is the appearance based feature encoding; Fi is

feature variation for ith block; α is the frame number; and

B stores the index of the selected ROI.

3.4.4 Plausible Spot Detection

ME are given by the peaks in the feature encoding. It is

observed that spurious peaks can be generated by the noise.

Such spurious peaks usually contain low amplitude as com-

pared to the genuine ME peaks. Hence a threshold, T is

defined to remove some spurious peaks [18]. It is set ac-

cording to the algorithm proposed in [18], i.e.,

T = Amean + τ × (Amax −Amean) (6)
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where Amean and Amax indicate the mean and maximum

value in A respectively; and τ is a predefined parameter. All

the peaks whose magnitude are greater than T are marked

as plausible ME peaks.

3.5. Post­processing of spots

Amongst all the detected plausible peaks, only some

peaks corresponds to the genuine ME spot and the remain-

ing peaks are falsely generated due to noise. We employ

the variations in instantaneous HR to classify the plausible

peaks into genuine and false peaks. It is based on the intu-

ition that HR fluctuates when expression changes, thus vari-

ations in instantaneous HR should be higher at the frames

affected by ME. Hence, we classify the peaks using:

Classify (s) =

{

Genuine, if vs > tf

Spurious, otherwise
(7)

where s is a plausible location of ME; vs is the variations in

instantaneous HR at sth location frame; and tf is a prede-

fined threshold which is set to 10 bpm.

4. Experimental Results

4.1. Dataset Description

The efficacy of the proposed ME spotting using vari-

ations in instantaneous HR is tested using CAS(ME)2

dataset [26]. It is important to note that HR evaluation re-

quires large number of video frames. Since other ME spot-

ting datasets (like SMIC datasets) provide small duration

video frames that are unsuitable for HR estimation, they are

avoided in the performance evaluation. The dataset contains

57 micro-expressions acquired from 22 subjects. Logitech

Pro C920 camera is utilized to acquire its face videos at 30

fps and its resolution is set to 640 × 480 pixels. Moreover,

uniform illumination is maintained during the acquisition.

The dataset is provided with the onsets and offsets of ME.

These are used as the ground-truth.

4.2. Performance Metrics

The performance is evaluated by verifying the genuine

peak denoting the apex of ME with ground truth. If the

genuine peak lies within the range of [onset-20, offset+20],

then the spotted ME is considered as true positive; other-

wise false positive. Behavior of true positive rate (TPR) and

false positive rate (FPR) is analyzed for the performance

evaluation. TPR is given by the percentage of true positives,

divided by the total number of ME; while FPR is given by

the percentage of false positives, divided by the total num-

ber of false peaks. Performance of ME spotting is evaluated

using receiver operating characteristic (ROC) curves whose

x and y axis denote FPR and TPR respectively. The thresh-

olds required for plotting the ROC are obtained by varying

the predefined parameter τ in Equation (6) from 0 to 1.

Figure 2. ROC curves of ME spotting systems.

Figure 3. An example where variations in instantaneous HR has

successfully classified plausible ME spots as either genuine or spu-

rious ME spots. The variations in instantaneous HR at the depicted

genuine and spurious ME spots are 16 bpm and 3 bpm respectively.

4.3. Analysis

For the performance analysis, the proposed system is

compared with system MEP . MEP is obtained by uti-

lizing only the proposed ME spotting while excluding the

utilization of instantaneous HR. Hence it provides only the

plausible ME spots. ROC curves of the proposed system

and MEP are depicted in Figure 2. It can be seen that a

large number of genuine MEs is spotted at low thresholds,

but it also provides a large number of spurious ME spots. As

the threshold value, T increases both genuine and spurious

ME spots start decreasing. In addition, it can be observed

from Figure 2 that the proposed system performs better that

MEP which indicate that variations in instantaneous HR

can successfully classify some plausible ME spots as either

genuine or spurious. One such example where the varia-

tions in instantaneous HR has successfully classify the ME

spots is shown in Figure 3.

4.4. Failure Cases and Future Work

After rigorous experimentation, we observe that most of

the false ME spots are reported due to eye-blinking even

though we have excluded the eye areas from the ROI. It

indicates that eye-blinking induces subtle temporal defor-

mations in other facial regions. Another reason behind the

poor performance is that the instantaneous HR fails to de-

tect false ME spots due to the following reasons:
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Figure 4. Failure case of variations in instantaneous HR for classi-

fying the plausible ME spots. It shows true positive in green color

while false positives in red color.

1. The instantaneous HR is spurious because the face

video contains large facial movements due to noise.

2. The detected plausible ME peaks are close to each

other and only some of them are genuine peaks. In

such a case, all the plausible peaks have large varia-

tions of instantaneous HR. One such example is shown

in Figure 4.

3. The threshold tf on variation of instantaneous HR is

fixed. It is better to adaptively select this threshold be-

cause the variation in human HR depends on human

psychological and health parameters.

In the future, we will try to improve the ME spotting using

instantaneous HR by: i) providing better face video based

HR estimation; ii) providing better feature encoding for ME

spotting; and iii) adaptively selecting the threshold on vari-

ation of instantaneous HR. Better face video based HR esti-

mation can be performed by utilizing all the color channels

instead of just employing the green channel [35]. Similarly,

ME analysis can be improved by considering the inter-beat

intervals instead of instantaneous heart-rate because it is

more closely related to human emotions than instantaneous

HR [6]. In addition, ME analysis can be improved by an-

alyzing the impact of different ME on variations in instan-

taneous HR because positive and negative emotions impact

the HR in a different manner [6].

5. Conclusions

An automatic ME spotting system based on variations

in instantaneous HR has been proposed in this paper. ME

spotting is required in many real-world applications encom-

passing affective computing, biometrics and psychotherapy.

But it is a highly challenging problem because MEs are

manifested using subtle face deformations and that too for

a short duration. Moreover, prominent inevitable facial de-

formations generated by pose variations, macro-expression

and eye blinking can be easily misinterpreted as ME. We

have explored the feasibility of variations in the instanta-

neous HR for correctly verifying the ME spots. The moti-

vation behind the exploration is this that both manifestation

of ME and changes in instantaneous HR are related to the

change in human emotions.

Experimental results conducted on a publicly available

spontaneous ME spotting dataset, have demonstrated that

the variations in instantaneous heart rate can be utilized to

verify the ME spots and eventually improve the spotting.

We will improve the proposed system in the future by pro-

viding better face video based HR estimation; incorporating

better feature encoding for ME spotting; and adaptively se-

lecting the threshold on variation of instantaneous HR.

ACKNOWLEDGMENT

Authors are thankful to the researchers, who have pro-

vided us the access of CAS(ME)2 dataset.

References

[1] G. Balakrishnan, F. Durand, and J. Guttag. Detecting pulse

from head motions in video. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 3430–

3437, 2013.

[2] T. Baltrusaitis, P. Robinson, and L.-P. Morency. Constrained

local neural fields for robust facial landmark detection in the

wild. In Proceedings of the IEEE International Conference

on Computer Vision Workshops, pages 354–361, 2013.

[3] N. R. Council et al. The polygraph and lie detection. Na-

tional Academies Press, 2003.

[4] H. D. Critchley, P. Rotshtein, Y. Nagai, J. O’doherty, C. J.

Mathias, and R. J. Dolan. Activity in the human brain pre-

dicting differential heart rate responses to emotional facial

expressions. Neuroimage, 24(3):751–762, 2005.

[5] P. Ekman. Lie catching and microexpressions. The philoso-

phy of deception, pages 118–133, 2009.

[6] J. J. Gross and R. W. Levenson. Hiding feelings: The acute

effects of inhibiting negative and positive emotion. Journal

of abnormal psychology, 106(1):95, 1997.

[7] P. Gupta, B. Bhowmick, and A. Pal. Accurate heart-

rate estimation from face videos using quality-based fu-

sion. In IEEE International Conference on Image Process-

ing, (ICIP), pages 4132–4136, 2017.

[8] P. Gupta, B. Bhowmick, and A. Pal. Serial fusion of eulerian

and lagrangian approaches for accurate heart-rate estimation

using face videos. In IEEE Engineering in Medicine and

Biology Society (EMBC), pages 2834–2837. IEEE, 2017.

[9] P. Gupta and P. Gupta. An efficient slap fingerprint segmen-

tation and hand classification algorithm. Neurocomputing,

142:464–477, 2014.

[10] E. A. Haggard and K. S. Isaacs. Micromomentary facial ex-

pressions as indicators of ego mechanisms in psychotherapy.

In Methods of research in psychotherapy, pages 154–165.

Springer, 1966.

[11] M.-C. Huang, J. J. Liu, W. Xu, C. Gu, C. Li, and M. Sar-

rafzadeh. A self-calibrating radar sensor system for measur-

ing vital signs. IEEE transactions on biomedical circuits and

systems, 10(2):352–363, 2016.

1435



[12] S. Kwon, J. Kim, D. Lee, and K. Park. Roi analysis for

remote photoplethysmography on facial video. In IEEE In-

ternational Conference of the Engineering in Medicine and

Biology Society (EMBC), pages 4938–4941. IEEE, 2015.

[13] A. Lam and Y. Kuno. Robust heart rate measurement from

video using select random patches. In IEEE International

Conference on Computer Vision (ICCV), pages 3640–3648,

2015.

[14] R. D. Lane, K. McRae, E. M. Reiman, K. Chen, G. L. Ahern,

and J. F. Thayer. Neural correlates of heart rate variability

during emotion. Neuroimage, 44(1):213–222, 2009.

[15] A. C. Le Ngo, Y.-H. Oh, R. C.-W. Phan, and J. See. Eule-

rian emotion magnification for subtle expression recognition.

In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 1243–1247. IEEE, 2016.

[16] P. Lewinski, M. L. Fransen, and E. S. Tan. Predicting ad-

vertising effectiveness by facial expressions in response to

amusing persuasive stimuli. Journal of Neuroscience, Psy-

chology, and Economics, 7(1):1, 2014.

[17] X. Li, T. Pfister, X. Huang, G. Zhao, and M. Pietikäinen.
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