
 

 

 

 

Abstract 

 

Recent advances in computer vision methods have made 

physiological signal extraction from imaging sensors 

feasible. There is a demand to translate current post-hoc 

methods into real-time physiological monitoring 

techniques. Algorithms that function on a single frame of 

data meet the requirements for continuous, real-time 

measurement. If these algorithms are computationally 

efficient they may serve as the basis for an embedded system 

design that can be integrated within the vision hardware, 

turning the camera into a physiological monitor. 

Compelling results are presented derived from an 

appropriate algorithm for extracting cardiac pulse from 

sequential, single frames of a color video camera. Results 

are discussed with respect to physiologically relevant 

features of variability in beat-to-beat heart rate.  

 

1. Introduction 
 

Encoded in physiological signals are neural indicators of 

health status and regulation of visceral organs. Simple 

applications of cardiac monitoring, such as vital sign 

tracking, can be achieved with only an estimate of heart rate 

(HR). Neurophysiological systems that regulate the heart 

create defined patterns in beat-to-beat heart rate that reflect 

dynamic control in response to physical and psychological 

processes. These dynamic patterns of variations in the time 

between sequential heartbeats may be quantified with heart 

rate variability (HRV) metrics. Systems and tools for 

quantifying HRV during dynamic psychological and 

health-related processes, such as attention, fatigue, and 

deception are of use to clinicians, researchers, commercial 

products, and security operations. 

Due to a need for specialized bio-amplification 

equipment, assessment of neurophysiological regulation of 

the heart, via HRV metrics, has been limited generally to 

laboratory and clinical settings. To extract the precise 

timing of interbeat intervals (IBI), an accurate digital 

representation of the electrocardiogram (ECG) is 

considered best practice [2, 10]. Recent advances in Micro-

Electro-Mechanical Systems (MEMS) have led to an 

explosive growth in inexpensive, portable sensor 

technologies that have provided new opportunities to 

monitor neural regulation of the heart, via HRV parameters, 

outside the laboratory and clinic. However, these 

technologies are often constrained by an inability to 

dynamically monitor beat-to-beat heart rate with the 

requisite measurement accuracy to quantify HRV metrics. 

Computer vision methods for extracting cardiovascular 

signals are driving the next wave in physiological 

assessment tools. Extraction of cardiac pulse from color 

video data has advanced from blind-source separation [11] 

of the Red-Green-Blue components of a webcam video to 

include Eulerian [18] magnification of rhythmic 

components of video that include pulse related color, 

motion tolerance estimation of published techniques [7, 8], 

and implementation of spatial redundancy to improve the 

motion robustness [17]. Despite the success of these 

research tools, the most promising applications of this 

technology will require embedded systems that can 

generate near real-time physiological parameter estimates. 

Such systems require computational algorithms that are 

sufficiently fast and efficient to process digital images at 

sampling frequencies capable of capturing transient 

physiological signals. 

When HRV parameters are derived from the ECG, 

optimal output requires a robust cardiac signal and a 

sampling rate of at least 250 Hz [2]. The interaction 

between the rapid ventricular depolarization event and 

vascular transmission results in a smoothed pulse wave 

without high-frequency fiducial marks, yet precision in 

tracking beat to beat interval changes is still required. 

In this manuscript we describe a method that builds on 

the system presented by Davila, et al. [5] to monitor beat-

to-beat heart rate using a CCD color video camera as a 

photosensor, the PhysC. We present a new Physiological 

Camera for real-time (PhysCRT) applications with 

capabilities to continuously monitor the arterial pulse with 

sufficient precision to derive HRV metrics. Data are 

presented contrasting the analysis strategy described in [5] 

with a new analysis strategy that can be implemented in 

real-time. The PhysCRT embodies several enhancements of 

the PhysC that were empirically determined to improve 

motion tolerance, reduce artifacts due to speaking, and 

optimize estimation of HRV parameters.  
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As shown in Figure 1, the PhysC methodology uses the 

ambient light (1) that is captured by the camera (2) in front 

of the participant’s face to apply a combination of a 

geometric and a skin color mask ROI (3).  The methodology 

then separates the image in the RGB color plane (4) to 

utilize the ratio of mean Green to Red level to obtain a value 

of arterial pulse per frame (6). Additional signal processing 

(7) filters the signal to produce a clear representation of the 

arterial pulse wave (8). 

In addition, future innovations of this technology are 

outlined. Critically, the algorithms and analytic strategies 

described here are suitable for deployment to an embedded 

camera system that functions without delay or video 

archiving. In this study, no video was recorded, all 

processing of pixel level data occurred in real-time, and 

extracted parameters were analyzed to create these results. 

The PhysCRT combines an external head tracker 

(Microsoft Kinect) and a CCD digital color video camera 

as shown in Figure 2. The participant’s face tracking is done 

by the Kinect device and the capturing of the physiological 

information (arterial pulse) is done by the color camera. The 

use of two devices improves the face tracking and allows 

for faster sampling frequencies. The tracking feature is a 

stand-in for a secondary processing pipeline in an 

embedded system that would locate faces for processing. 

 
 

 
 

Figure 2: The Physiological Camera in real-time system 

(PhysCRT): 1) Digital Color Video Camera, 2) Microsoft Kinect. 

 

2. Material and Methods 
 

When HRV is deconstructed through statistical 

procedures, it is possible to quantify rhythmic components 

that reflect specific pathways of neural regulation. The most 

salient components are: 1) a respiratory oscillation known 

as respiratory sinus arrhythmia (RSA) assumed to reflect  

 

 

 

 

 

 

 

 

 

cardiac vagal tone via myelinated pathways originating in a 

brainstem area known as nucleus ambiguus [6] and 2) a 

slower frequency (LFHRV) assumed to be related to blood 

pressure regulation via the baroreceptors and peripheral 

vasomotor activity [13, 16]. Heart period (HP) the time 

between heart beats, was also monitored, since it reflects 

the sum of neural, neurochemical, and intrinsic influences 

on the heart. To validate the variables derived by the 

PhysCRT, an experiment was conducted to identify and 

describe the similarities and differences among the heart 

rate indices derived from signals monitored by the PhysCRT, 

an earlobe photoplethysmogram (elPPG), and an ECG. The 

camera data were reduced to a single dimension time-series 

in real-time, making direct comparison to post hoc video 

analysis methods impossible. Video storage would have 

reduced the achievable frame rate of the current system 

below tolerances necessary to achieve sufficient precision 

in the timing of heart rate in the real-time processing 

pipeline. 

 

2.1. Experiment Design 
 

Participants were seated in front of a computer, 3 m away 

from the camera lens. Criterion signals were collected with 

contact sensors, ECG and elPPG. The protocol consisted of 

synchronously collecting pulse wave activity and ECG data 

during a ten minute period including two minutes for task 

preparation, three minutes of baseline, two minutes of 

watching a video chosen to elicit focused attention, and 

three minutes of answering questions related to the video. 

Of interest for this manuscript are the three-minute baseline 

and the two-minute video.  

 

2.2. Participants 
 

The study was approved by the Institutional Review Board 

of the University of North Carolina at Chapel Hill (UNC) 

as protocol # 14-1560 with the title “PhysioCam: A 

noncontact system to monitor heart rate.”. The IRB 

authorized the recruitment of 30 subjects from the student 

subject pool and volunteers. Twenty-seven participants 

between the ages of 18 and 33 (M = 20.11, SD = 2.98) were 

recruited. The gender mix was, 56% female and 44% male. 

Participants self-identified as White or Caucasian 

(62.96%), Asian (18.52%), Black or African American 

(3.70%), American Indian or Alaskan Native (0%), 

1 

2 

Figure 1: Process to obtain arterial pulse from a video source, the PhysC [4]. Steps to transform one frame of live 

video into one sample of the cardiac pulse wave. 
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Hispanic or Latino (3.70%), Asian and Hispanic or Latino 

(3.70%), Asian and White or Caucasian (3.70%), and White 

or Caucasian and Hispanic or Latino (3.70%). 

 

2.3. Hardware and Software 
 

The PhysCRT used a Pt.Grey Grasshopper video camera 

(model GRAS-03K2C-C) with Fujinon manual zoom 

optics and MS Kinect for Windows Academic. The face 

tracking was implemented with a modified version of the 

Kinect SDK v1.8 program “Face Tracking Basics-WPF”. 

The modification made the tracking results available to 

Labview via a UDP port connection. Algorithms to extract 

the arterial pulse signal and derive the HRV parameters 

were implemented on NI Labview 2014 (64-bit). 

The criterion contact signals, ECG and elPPG, were 

collected using the BIOPAC MP150 and the 

AcqKnowledge 4.1 software.  

 

3. Data Quantification 
 

Since the HRV parameters of interest are derived from 

the IBI obtained from the ECG or the pulse waves, the data 

was quantified in four phases. 

 

3.1. Phase 1: Raw PhysCRT Signal Processing  
 

The arterial pulse from the face was captured by the 

PhysCRT system [15]. The system was controlled in stages 

that included manual calibration, as a stand-in for future 

automated initialization processes, and a continuous 

collection stage that is our model for embedded device 

operation. The pipeline critically maintained the frame-

level analysis procedures that were selected to optimize 

signal stability during natural head movement, including 

during talking. 

 

Camera-Kinect registration: this stage is done when the 

system is initialized to collect data from individual 

participants. The Kinect for Windows Software 

Development Kit (SDK) offers the Microsoft Face 

Tracking Software Development Kit (Face Tracking SDK). 

The SDK and the Face Tracking SDK, in conjunction with 

the Kinect device, facilitate the tracking of the subject’s 

face in real-time. The Face Tracking SDK uses the 

CANDIDE-3 [1] model to parameterize the human face into 

output information data. X and Y coordinates of several 

vertices of the parameterized face are available in an array 

of 121 set of points; each point corresponds to an X and Y 

pixel position on the Kinect image output.  For example: 

Point #6 will be the (X,Y) pair that relates to the pixel 

position of the bottom middle edge of nose; point #3 will be 

the (X,Y) pair that relates to the pixel position of the 

midpoint between eyebrows. Points from the CANDIDE-3 

array are translated to the color camera frame dimensions 

by a “camera registration” procedure; correcting for 

differences in the field of view (FOV) between the Kinect 

device and the color camera. These points were used to 

track the subject’s face in real-time in the color camera 

space. This spatial information feeds the coordinates to 

create the “Geometric Mask”, which is the region of interest 

(ROI).  The ROI representing features of the participant’s 

face is formed by a semi-annulus centered on the 

participant’s nose covering most of the face and the 

subtraction of an oval shape where the mouth is. Using the 

Kinect sensor for motion tracking facilitates processes 

associated with: 1) identifying the subject’s face rapidly on 

initialization, 2) quickly and automatically recalibrating 

following movements that disrupt detection of the face, 3) 

adjusting to variations in the distance between the 

participant and the camera, and 4) improving the real-time 

PhysCRT frame rate. Overall incorporating the Kinect face 

tracking provided an efficient tracking solution that reduced 

computational load on the PhysCRT processor and allowed 

an operational frame rate of 50 Hz with only minimal 

restriction of subject movement across all tasks. Under 

these conditions, natural body sway and head nodding 

resulted in the Geometric Mask tracking the participant’s 

face as it dynamically moved across the field-of-view. The 

PhysCRT system reported here can be used in near field (2m 

or less) or far field (3-10m) settings.  

 

Customizing camera attributes: before starting pulse 

acquisition the parameters of gain, gamma, saturation, 

white balance, and shutter were manually adjusted for each 

participant to optimize the distribution of light captured by 

the sensor over the selected integration time. Parameters 

were adjusted to maximize the distribution of Red and 

Green pixel levels of skin across the 8-bit range of the 

sensor. Empirical testing indicated that this increased the 

motion tolerance of the system. After setting the camera 

parameters, values for each frame were constrained in the 

Hue-Saturation-Luminance color plane to correspond to the 

participant’s particular skin color, creating a “Skin Mask” 

that assured that the pixels being analyzed were highly 

likely to only include skin regions. This step maximizes the 

information content of the subsequent images processed; 

minimizes the computational load, allowing faster frame 

rates; and assures prioritization of the physiological 

information of interest.  

 

PhysCRT functioning and pulse extraction: the image of 

the participant is captured at a 50 Hz sampling frequency; 

each frame is processed independently to continuously 

generate samples to the 1D arterial pulse output signal. 

Figure 3 depicts the processes that are applied to each 

frame: Ambient light (1) is reflected by the participant’s 

face and captured by the camera (2), the ROI (3) is 

generated by combining a geometric mask obtained by the 

CANDIDE 3 points and the skin mask obtained by the skin 
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color optimization, the hardware encoded Bayer map 

decomposition is used to estimate RGB values per pixel 

from which the (4) HSV plane is calculated in software, 

pixel level values of R, G, and V are used to compute eq. 

(1) the Preprocessed Pixel Value (PPV) (5): 

  													ܸܲܲ = 5 + ଵ݈݃ ቀ2 + ሾୖୣୢିୋ୰ୣୣ୬ሿ௨ ቁ                (1) 

 

the resulting matrix (6) is down-sampled to ¼ resolution 

then flattened, sorted and binned with a histogram (7), the 

trimmed mean PPV value, user adjustable but default set to 

central 40% of initial frame PPV values, is calculated (8) to 

generate a single sample of the raw cardiac pulse waveform 

(9). The raw signal (10) is continuously filtered to eliminate 

very low frequencies not related to the pulse wave and 

transformed into the discreet difference between samples to 

stabilize the detection of pulse wave arrival times (11). This 

process yields a final arterial pulse wave at 50 Hz. Steps 4-

6 are computationally inefficient due to the onboard Bayer 

map decomposition architecture, but could be eliminated in 

an optimized embedded system design. Down-sampling of 

the image is used to reduce calculation time in the per-pixel 

quantification of PPV, in order to approximate calculations 

on discreet Red, Green or Blue pixels on a planned sensor 

that does not include Bayer map decoding. 

 Compared to the PhysC, the PPV algorithm and 

subsequent exclusion of PPV outliers, were empirically 

determined to increase the motion tolerance due to natural 

body sway, head nodding, and talking. The arbitrary offsets 

of 5 and 2 were selected for convenience. Consistent with 

the PhysC, the pulse signal was derived from the local 

difference between red and green light absorption on the 

skin. Weighting these differences by the local illumination 

(Value) reduced the influence of outlier pixels near 

saturation level. A log transformation normalized   the PPV 

distributions for most subjects in most illumination settings. 

 

3.2. Phase 2: Raw Criterion Signal Processing 
 

Earlobe Photoplethysmogram (elPPG): the earlobe pulse 

was monitored with elPPG.  The pulse wave sampled at 1 

kHz through a DC amplifier with no filter setting to 

preserve the trend of the vasomotor activity that reflects 

sympathetic influences. 

 

 

 

 

 

 

 

 

 

 

Electrocardiogram (ECG):  ECG was sampled at a 1 kHz 

using the preferred ECG BIOPAC MP-150 settings. 

 

3.3. Phase 3: Dynamic Heart Rate Measures. 
 

Interbeat Interval (IBI): IBI is the time between 

consecutive heart beats expressed in milliseconds. IBIs are 

calculated by the consecutive differences of the time 

component of the ECG R-wave peaks or of the arterial pulse 

peaks. The R-wave and pulse peak coordinates were 

extracted using the Cardio Peak-Valley Detector (CPVD) 

[5]. The result is the IBI event series. 

 

5 Hz instantaneous IBI (instIBI): An innovative strategy 

was implemented to obtained heart rate (HR) measures 

from the pulse signals (PhysCRT and elPPG); this approach 

will facilitate the transition to a real-time system. A time-

frequency method was applied to monitor the energy 

distribution of the pulse wave to determine the confidence 

that could be assigned to each instantaneous heart rate 

measure. This reduces the delay in detecting aberrant pulse 

wave intervals that could contaminate the HRV parameters 

in a real-time estimation procedure, while eliminating the 

time-sampling procedure required for a beat detection 

method. Figure 4 outlines the proposed algorithm: (a) 5-

second portion of the pre-processed pulse signal obtained 

from the PhysCRT or the elPPG; (b) a Blackman-Harris 

scaled window is applied to the portion of data for the auto-

regressive (AR) spectral analysis model to facilitate the 

extraction of the predominant frequency; (c) the AR 

spectrum identifies the instantaneous HR, an estimated 

‘instIBI’ (i.e., the inverse of the instantaneous HR). The 5-

second window moves 200 ms to cover the following 

portion of 5-seconds data and obtain the next HR estimate, 

each portion of the data overlaps by 4,800 ms. The result is 

the 5 Hz instIBI signal. 

 

 
Figure 4: Steps to obtain the instantaneous IBI (instIBI): a) 5 

second window of the arterial pulse; b) a window function; c) 

predominant frequency is obtained by an AR-Spectrum function, 

this frequency corresponds to heart rate. 

 

Figure 3: The Physiological Camera (PhysCRT) functioning. Steps to transform one frame of live video into one sample of the cardiac

pulse wave time-series. 
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An editing step was added to prevent spurious instIBI 

values, usually due to participant’s movement or 

spontaneous arrhythmias. A Signal to Noise Ratio (SNR) is 

obtained from the AR-Spectrum.  Applying the SNR 

threshold helps to discriminate between good (Pass) instIBI 

or bad (Fail) instIBI; bad instIBI are replaced by a linear 

spline, producing the final edited 5 Hz instIBI pulse signal. 

The SNR was set as 1 for instIBI values less or equal to 950 

ms and 2 for instIBI greater than 950 ms. These values were 

the result of previous observations; future work will include 

an auto set SNR informed by the instIBI dynamics. 

 

3.4. Phase 4: Quantification of HRV Parameters. 
 

Time Sampled Mean IBIs from 2 and 5 s Windows (IBI 

2sW and IBI 5sW): The IBI event series was resampled at 

2 Hz to generate an equally spaced intervals time series. 

Sequential IBIs were averaged within 2- and 5-s windows 

to create smoothed IBI trends.  

 

Time Sampled Mean 5 Hz instantaneous IBI from 1, 2, 

and 5 s Windows (instIBI 1sW, instIBI 2sW, and instIBI 

5sW): Sequential instIBIs were group and average within 

1-, 2- and 5-s windows to create smoothed intsIBI trends.  

 

Heart Period (HP): is the average value of the 2 Hz IBI or 

the 5 Hz instIBI time series within a specific task.  

 

Respiratory Sinus Arrhythmia (RSA): Calculations were 

based on the Porges-Boher method [12, 14], applying a 

third-order moving polynomial filter (MPF) with a duration 

of approximately 10.5 seconds on the two HR time series 

(2 Hz IBI and 5 Hz instIBI) to remove low frequency 

oscillations and slow trend. The residual detrended output 

of the MPF is filtered with a Kaiser FIR windowed filter 

with cutoff frequencies that remove variance not related to 

spontaneous breathing in adults (0.12–0.40 Hz). The 

filtered detrended output is divided into sequential 30-s 

epochs and the variance within each epoch is transformed 

by a natural logarithm [ln(ms2)], the mean of these epoch 

values is used as the estimate of RSA.  

 

Low Frequency Heart Rate Variability (LFHRV): 

Calculations were made for both HR time series, based on 

the Porges-Boher method [12, 14] that uses a moving 

polynomial window of approximately 25 seconds to 

remove extremely low frequencies, and a Kaiser FIR 

windowed filter with cutoff frequencies between 0.04-0.10 

Hz. The output was divided into sequential 30-s epochs and 

the variance within each epoch is transformed by a natural 

logarithm [ln(ms2)], the mean of these epoch values is used 

as the estimate of LFHRV for each task. 

 

 

3.5. Data Analysis 
 

Statistical analyses were approached on three levels: 1) 

Replicate results previously reported [5] by comparing and 

contrasting traditional offline analyses based on IBI values 

derived from the PhysCRT and the ECG and elPPG criterion 

signals; 2) Compare and contrast the new instIBI analysis 

between the PhyC and the elPPG to evaluate feasibility of 

a real-time system; 3) Compare HRV parameters obtained 

by IBI and instIBI for the different sensor combinations. 

Statistical analyses were processed using IBI SPSS 

Statistics for Windows, Version 24.0. Armonk, NY, USA: 

IBI Corp.  

 

Bland-Altman (B-A) Plots: B-A plots [3] were used to 

compare IBI from the PhysCRT with IBI from the criterion 

signals (ECG and elPPG) and also to compare values 

generated by the elPPG and ECG signals. Heart rate 

parameters obtained with the new instIBI approach were 

evaluated using B-A plots between measures of the 

PhysCRT and the elPPG. B–A plots enable the 

determination of agreement between two sensors, by 

plotting the mean between pairs of measurements against 

its difference. Visual inspection of the B–A plots was used 

to identify systematic biases and possible outliers.  

 

Scatter Plots and Linear Regressions: Scatter plots and 

linear regression analyses were used to visualize and 

calculate the level of convergence between the 

physiological measures derived from the different sensors 

and from the two approaches to process heart rate data, the 

traditional IBI and the proposed instIBI. For the IBI, 

PhysCRT was evaluated with each of the criterion signals 

(ECG and elPPG), and the two criterion signals between 

each other. For the instIBI, the PhysCRT was evaluated with 

the elPPG.  Derived measures of HRV from the two 

approaches were evaluated between sensors combinations 

(ECG-PhysCRT, elPPG-PhysCRT, and ECG-elPPG).  

 

4. Results 
 

4.1 IBI 
 

Visual inspection of the Bland-Altman (B-A) plot located 

in panel A of Figure 5 indicate excellent agreement and 

minimal bias between the sequential IBIs measured with 

ECG and PhysCRT (color coded by participant), panels C 

and E show B-A plots of the 2 s and 5 s IBI windowing, as 

the window widens the agreement between the two sensors 

increases, the differences between measures approaches 

zero and the 95 % confidence interval decreases. Panels B, 

D, and F show the linear regression for IBI, 2 s and 5 s IBI 

windowing, R2 increases to show complete agreement as 

the window widens.  
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 Differences LR 

 IBI N Mean SD R2 

PhysCRT 

vs ECG 

IBI  8088 0.09 29.13 .96 

2 s W  3165 -0.90 13.07 .99 

5 s W  1266 -0.92 5.90 1.00 

HP 40 -0.88 0.80 1.00 

PhysCRT 

vs elPPG 

IBI  8088 0.10 29.16 .96 

2 s W  3165 -0.96 12.29 .99 

5 s W  1266 -0.98 5.78 1.00 

HP  40 -0.93 0.79 1.00 

elPPG vs 

ECG 

IBI  8088 0.00 6.19 1.00 

2 s W  3165 0.06 5.64 1.00 

5 s W  1266 0.06 2.30 1.00 

HP  40 0.05 0.23 1.00 

Table 1: Difference means and standard deviations for all 

subjects. All tasks between the ECG and PhysCRT, elPPG and 

PhysCRT, and ECG and elPPG for IBI, IBI 2 s windows (W), IBI 

5 s windows (W), and HP 30 s epoch. R2 from linear regressions 

between PhysCRT and ECG, PhysCRT and elPPG, and elPPG and 

ECG. 
 

Table 1 reaffirms this observation, as the window to 

average IBI measures widens from individual IBIs to 2 s 

and 5 s windows, the standard deviation of the differences 

between the PhysCRT and the ECG decreases and the R2 

increases, eventually reaching unity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the means of the differences are less than 1 ms 

and that there are no significant differences between the 

metrics in central tendency. 

The PhysCRT performs acceptably when compared with 

traditional contact sensors, ECG and elPPG, that collect the 

data at 1kHz under the same real-time conditions. 
 

4.2 5 Hz Instantaneous IBI 
 

Visual inspection of the Bland-Altman (B-A) plots 

located in panel A of Figure 6 indicate excellent agreement 

and minimal bias between the sequential instIBIs from 1-

second windows of the elPPG and PhysCRT (color coded by 

participant), panels C and E show B-A plots of the 2 s and 

5s IBI windowing, as the   window  widens   the   agreement   

between   the  two sensors increases, the differences 

between measures and the 95% confidence interval 

decrease; panels B, D, and F show the linear regressions 

indicating agreement between the sensors which again 

approaches unity as the window widens from 1 s to 2 s and 

to 5 s. Table 2 reaffirms this observation, as the window to 

average instIBI measures widens from 1 s to 2 s and 5 s 

windows, the standard deviation of the differences between  
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Figure 5: B-A and scatter plots for IBI, IBI 2 s W, and IBI 5 s W from the ECG and PhysCRT, color coded by participant. (A and B) 

B-A and scatter plots for IBI, (C and D) B-A and scatter plots for IBI 2 s W, and (E and F) B-A and scatter plots for IBI 5 s W. 
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5s IBI windowing, as the   window  widens   the   agreement    

 

 

the PhysCRT and the elPPG decreases and the R2 increases 

reaching unity in the case of the HP average on 30 s epoch.  

 

  
 Differences LR 

  
N Mean SD R2 

PhysCRT 

vs elPPG 

instIBI 

1sW 6308 -0.05 25.62 
.97 

instIBI 

2sW 3153 -0.05 23.52 
.97 

instIBI 

5sW 1261 -0.02 19.59 
.98 

HP  40 -0.22 10.24 1.00 

Table 2: Difference means and standard deviations for all 

subjects. All tasks between the elPPG and PhysCRT for instIBI 1 s 

window (W), instIBI 2 s windows (W), instIBI 5 s windows (W), 

and HP 30 s epoch. R2 from linear regression between PhysCRT 

and elPPG. 

 

Note that the means of the differences are less than 0.5 

ms and that there are no significant differences between the 

metrics in central tendency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Quantification Methods Comparison: IBI 

versus 5 Hz instIBI 

 

Table 3 shows R2 values between the different sensors 

for the HRV parameters of HP, RSA, and LFHRV obtained 

by the traditional IBI method and the new instIBI method. 
 

  R2

Sensors HRV 

Parameter 

IBI 5 Hz 

instIBI 

ECG- PhysCRT HP 1.00 1.00 

RSA .85 .74 

LFHRV .97 .91 

elPPG- PhysCRT HP 1.00 1.00 

RSA .86 .74 

LFHRV .96 .84 

ECG-elPPG HP 1.00 1.00 

RSA .99 .93 

LFHRV .99 .90 

Table 3: HRV parameters linear regression (R2) between 

sensors for measures derived from IBI and 5 Hz instIBI. 

 

Measures obtained with ECG and PhysCRT of HP, RSA 

and   LFHRV  were  highly  correlated [9]. Similar   strong 

correlations were observed when comparing the HP, RSA 

and LFHRV  monitored  with  elPPG  and the PhyCRT or 
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with ECG and elPPG. Considering that the PhysCRT is a 

non-contact sensor performing in this embodiment that is 

currently camera limited to 50 Hz, the results are 

compelling, since data from the contact sensors, ECG and 

elPPG, were sampled at  1kHz. 

 

5. Discussion and Future Directions 
  

This paper has described an innovative algorithm for 

extraction of HRV parameters from color video data that 

are computationally appropriate for applications in an 

embedded system design. The system, as illustrated in this 

paper, transforms a camera into a photosensor for 

physiological monitoring. Although video data are not 

stored, the PhysCRT has the capabilities to continuously 

monitor pulse wave activity and to extract three key metrics 

of dynamic heart rate patterns: HP, RSA, and LF. In 

addition, the system incorporates an artifact rejection 

feature that imposes minimal lag (5 seconds) on the output 

of HRV components.  

 The procedures embedded in this system provide a 

continuous estimation of interbeat interval, the instIBI, 

which is more appropriate for dynamic tracking of HRV in 

a noncontact photosensor system, due to its robustness 

against transient noise or signal loss. The dependence of 

traditional HRV analysis on peak detection and artifact 

correction imposes significant constraints on physiological 

monitoring. The comparable sensitivity of instIBI to IBI 

(post-hoc) based evaluations provides validation for the 

method. Furthermore, the results are similar with respect to 

contact HRV correlation as obtained by Davila, et al. [5] in 

post hoc analysis. 

 The results of this study validate the current approach 

to data reduction through simple arithmetic operations 

conducted on the pixel readout level of the sensor. The 

excellent convergence between contact and noncontact 

HRV parameters suggests that an acceptable noise level can 

be achieved with this approach. Unfortunately, the real-

time extraction of the PPV values, combined with project 

constraints, preluded direct comparison of this method with 

established post hoc methods (e.g., of [11] or [17]). 

Applications that demand real-time monitoring of 

physiological changes through noncontact sensing will be 

possible through integration of this algorithm into a camera 

system. Currently, several parameters of the color sensor 

and optical system are manually optimized prior to 

measurement. Motion tracking is also handled by an 

external system (Kinect). An optimal PhysCRT system 

would integrate these operations within a single processing 

structure. The power requirements and computational 

demand of these operations must be evaluated through 

further testing. 

This study demonstrates the feasibility of our approach 

to a continuous, real-time physiological monitor based on 

analysis of sequential, single frames. We continue to refine 

algorithms involved in instIBI estimation, integration of the 

instIBI parameter into a peak detection system, and 

extraction of noise features from the short-term cardiac 

pulse signal to inform editing decisions.  

We continue to innovate to optimize function of the 

PhysCRT system. In order to enhance the performance of 

future versions of the PhysCRT platform we are currently 

conducting research to modify the wavelength 

segmentation of the color filter array to prioritize 

physiological signal extraction over visual fidelity, 

minimizing the impact of melanin on sensitivity of the 

sensor, and integrating multiple overlapping sensor FOVs 

to enhance subject identification and tracking.  

 Although future comparison studies may reveal 

precision advantages to previously disclosed methods, such 

as Blind Source Separation, we believe that the tradeoff for 

real-time estimation of HRV is worthwhile in many 

applications. Our research approach will deploy computer 

vision based physiological measurement methods in health 

screening, critical care, security, psychological assessment, 

basic and applied research, and training settings. Faster 

frame rates, improved artifact rejection, and robust signal 

processing algorithms that optimize physiological features 

of interest without compromising stability will be possible 

in an embedded system design that integrates increased 

processing power with intelligent design decisions. 
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