
Periodic Variance Maximization using Generalized Eigenvalue

Decomposition applied to Remote Photoplethysmography estimation

Richard Macwan, Serge Bobbia, Yannick Benezeth, Julien Dubois, Alamin Mansouri

LE2I EA7508, Arts et Métiers

Univ. Bourgogne Franche-Comté
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Abstract

A generic periodic variance maximization algorithm
to extract periodic or quasi-periodic signals of unknown
periods embedded into multi-channel temporal signal
recordings is described in this paper. The algorithm
combines the notion of maximizing a periodicity metric
combined with the global optimization scheme to esti-
mate the source periodic signal of an unknown period.
The periodicity maximization is performed using Gen-
eralized Eigenvalue Decomposition (GEVD) and the
global optimization is performed using tabu search. A
case study of remote photoplethysmography signal esti-
mation has been utilized to assess the performance of
the method using videos from public databases UBFC-
RPPG [1] and MMSE-HR [31]. The results confirm
the improved performance over existing state of the art
methods and the feasibility of the use of the method in
a live scenario owing to its small execution time.

1. Introduction

In physiological signal measurement, quasi-
periodicity is a common property shared by many
types of signals such as electrocardiographic, elec-
tromyographic, electroencephalographic and pho-
toplethysmography signals. Extraction of such
underlying source signals from multichannel physio-
logical signal mixtures has been generally performed
using Independent Component Analysis (ICA) in the
context of Blind Source Separation (BSS) in problems
such as extraction of electrocardiogram (ECG) signals,
separation of fetal ECG, heart rate estimation using
remote photoplethysmography (rPPG) and speech
analysis. The independent components mixed into
the multichannel sensor data are typically separated
by maximizing independence, using metrics such as
non-gaussianity, kurtosis, or mutual information [8].

However, BSS methods fail to profit from this quasi-
periodic information which is a very common property
among many physiological signals. Furthermore, the
periodicity constraint can also mitigate against small
motion and illumination disturbances.

This periodicity criterion can be incorporated as a
priori information to successfully extract the quasiperi-
odic physiological signal sources. For instance, in
remote photoplethysmography measurement, this ex-
ploitation of quasiperiodicity can benefit in scenarios
such as remote, and possibly long-term, monitoring
of geriatric patients and infants, patients with severe
physical trauma, computer users and drivers. This cri-
terion is also exploited in extracting fetal ECG signals
from maternal ECG signal recordings[23] and can be
adapted to extraction of other afore-mentioned physi-
ological signals. It is worth noting that the exploita-
tion of periodicity is not enough in scenarios where the
perturbing signals are themselves periodic, e.g. heart
rate measurement in fitness scenarios. In such a case,
additional constraints would be needed to extract the
desired physiological signals.

In this paper, the iterative subspace decomposition
procedure of [23] is enhanced to extract the underlying
quasi-periodic signal of an unknown period embedded
into the signal recordings. This new algorithm, aptly
coined as Periodic Variance Maximization (PVM), is
applied to remote photoplethysmography to extract the
cardiac signal embedded in the RGB temporal traces.
The PVM algorithm aims to find the unknown period
of the desired signal, by combining two approaches.
First, the iterative subspace decomposition procedure,
that estimates a periodicity maximizing basis for a
given frequency, and second, a global optimization al-
gorithm of tabu search to find the frequency with the
highest global periodicity over the search space. The
proposed method can be used to extract any desired
quasi-periodic signal of an unknown period from a mix-
ture of signals, for any type of physiological signal mea-
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surement scenarios where periodic motion is not in-
volved.

We validate our methodology with the application to
remote photoplethysmography (rPPG) and analyse its
performance against two public databases, the UBFC-
RPPG [1] database and the MMSE-HR [31] database.
The rest of the paper is organized as follows. In section
2 we present an overview of periodicity maximization
algorithms and state of the art rPPG methods. The
algorithm is described in section 3 followed by perfor-
mance analysis in section 4.

2. Previous Work

Sameni et al. have exploited the periodic nature of
ECG signals to separate multichannel fetal and mater-
nal ECG recordings using periodic component analysis.
They achieve this separation by maximizing a measure
of periodicity [22]. They further expanded on their
work by proposing a generalized deflation framework
to separate the target signal based on not only peri-
odicity, but any other quantifiable properties, such as
SNR, stationarity, and spectral contrast, from noisy
multichannel recordings [23]. However, in their work,
the period of the desired signal to be separated is fixed
and known, calculated from the maternal ECG.

Tsalaile et al. provide an improvement to this
method, by allowing the sequential blind source ex-
traction of quasi-periodic signals having time-varying
periods, by diagonalizing time-lagged autocorrelation
matrices at time-varying lags [21]. Despite the ability
of their method to handle periods varying over time,
these periods are still known, and are a part of the
a priori information. On the contrary, in this paper,
we propose to extract the quasi-periodic signal of an
unknown period from the signal mixtures.

In the field of speech analysis, Saul et al. have used
an eigenvalue method to analyze and enhance weak
periodic signals which is insensitive to phase thanks
to the use of Hilbert transforms. They perform the
periodicity measurements using efficient sinusoidal fits
to extract the fundamental frequencies, albeit with ex-
tensive auditory preprocessing, habitual to the domain
of speech analysis which are computationally intensive
and may hurt its feasibility for real-time applications.

In this paper, we propose a method to extract pe-
riodic or quasi-periodic signals of unknown period em-
bedded into multi-channel temporal signal recordings.
The proposed technique is applied to remote photo-
plethysmography in order to extract the cardiac signal
embedded in the RGB temporal traces. The quasi-
periodic cardiac signal is mixed in the light reflected
by the tissue with other signals such as changes in in-
cident light or motion induced shadow casting varia-

tions. This mixed signal is then captured by the cam-
era. The proposed PVM algorithm aims to find the
quasi-periodic cardiac signal from the mixture. More-
over, contrary to the known problem of fetal ECG ex-
traction [23], the period is unknown and consequently
it is an interesting problem for us.

Recently, research on remote photoplethysmoraphy
measurements has been on the rise where different
classes of methods have been proposed to extract the
quasi-periodic cardiac signal embedded in RGB tem-
poral traces built from sequential video frames [25].
RPPG measurement algorithms can be classed under
various categories. First, blind or semi-blind source
separation/extraction methods based on Independent
Component Analysis (ICA) [19], [20] and [17], [18], [30]
and constrained ICA [13], [15], [14]. Second, methods
exploiting unique characteristics of skin and its chromi-
nance properties [3], [4], [29]. And last but not the
least, smart ROI based methods where the spatial char-
acteristics of images are utilized to construct the rPPG
signal [1], [10], [5].

To the best of our knowledge, the combination of
principal component analysis with periodicity maxi-
mization has not been combined for extracting a quasi-
periodic signal of unknown period. The Periodicity
Variance Maximization algorithm is presented in the
next section.

3. Method

The proposed method aims to extract the quasi-
periodic signal embedded in the recorded signals which
is marked by high periodicity, or in other words high
periodic variance, corresponding to its fundamental pe-
riod τ∗. For a centered temporal signal, y = y(t), we
define high periodic variance at period τ as the prop-
erty that corresponds to a high variance

∑
yyT , as well

as a high lagged variance
∑

yyτ , where yτ = y(t + τ).
Typically, a periodic or a quasi-periodic signal exhibits
high periodic variance at τ corresponding to its funda-
mental frequency f = 1/τ . Typical biomedical signals
such as electrocardiography, electromyography, neural
and photoplethysmography signals are quintessentially
quasi-periodic and at times periodic.

The method takes as input temporal traces x ∈ R
M

of length N and M channels, centered by subtracting
the channel-wise temporal means, to extract the most
periodic signal of an unknown period, using y = wT x.
Here, w ∈ R

M is the optimum weighting vector which
gives the desired signal y with the highest periodic vari-
ance, obviously corresponding to the fundamental pe-
riod of the desired signal. To this end, we use Gener-
alized EigenValue Decomposition (GEVD) on the pair
of the lagged covariance and covariance matrices of x
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defined as
Px = xxT

τ , Cx = xxT (1)

where xτ are the temporal traces centered and lagged
by τ seconds. Estimating the unknown fundamental
period is not an uncommon problem in a broad range
of applications. An optimization scheme can be used
to estimate the unknown fundamental period τ∗ of the
desired signal by maximizing a periodicity metric sim-
ilar to the one defined in [23] given by

P(τ, w)
.
=

Et{yyτ}

Et{y2}
=

wT Pxw

wT Cxw
(2)

Intuitively, the periodicity metric P represents the ex-
tent of periodic information in the signals since it is the
ratio of the lagged covariance matrix to the covariance
matrix in a different basis. If the constituent signals
were completely periodic, Px and Cx would be equiva-
lent giving P = 1. Also, to ensure that the generalized
eigenvalues are real, Px needs to be symmetrized us-
ing Px = (Px + P T

x
)/2. This symmetrized Px matrix

combines the two way variances between the channels,
for instance, variances between the channels (R, G)
and (G, R). This symmetrization represents the overall
lagged covariance among the channels to be maximized,
to make it as similar as possible to Cx.

W T PxW = D, W T CxW = I (3)

where the diagonal matrix D contains the generalized
eigenvalues corresponding to the eigenvectors W =
[w1, · · · , wN ], the eigenvalues being real and sorted in
the ascending order along the diagonal.

For a set of temporal signals x ∈ R
M , these gen-

eralized eigenvectors have three important properties.
First, they correspond to a change of basis onto which
the projection W T x of the original signals x are en-
tirely uncorrelated. This is evident from the fact
that the covariance matrix in this new space given
by (W T x)(xT W ) from equation 3 is diagonal, ensur-
ing maximum variance of the data. Second, they also
diagonalize the lagged covariance matrix Px, making
the projections of x and xτ on this new basis entirely
uncorrelated as well, which is possible only when the
lagged signal xτ is extremely similar to the original
signal x at that given lag. In fact, the magnitude of
the generalized eigenvalues actually reflects the amount
of similarity between the original and the lagged sig-
nals. And finally, the first eigenvector W1 correspond-
ing to the largest generalized eigenvalue that maximizes
the ratio defined in equation 2, also referred to as the
Rayleigh Quotient [24]. Consequently, the projection
of the original signals x to the new basis represented
by W1 captures the maximum periodic content. Ow-
ing to these properties of GEVD, it can be used in an

iterative algorithm to extract the components exhibit-
ing high periodicity and simultaneously containing the
maximum information.

3.1. Iterative Periodic Variance Maximization

We can now proceed with the formulation of an opti-
mization scheme that iteratively maximizes the peri-
odicity of the projected signals over the range of fre-
quencies corresponding to the specific application. For
instance, in the context of rPPG measurements, this
range corresponds to the human heart rate. Evidently,
the optimizer needs to estimate the optimum value of
the pair (τ, w) which maximizes the periodicity metric
P equation 2.

The most periodic signal can then be obtained by
estimating the weighting matrix w∗ that maximizes P
over the frequency search space F ∈ [fmin, fmax]. Of
course, owing to the time domain formulation of our
problem, the optimization needs to be performed over
the period τ , with a step of 1/Fs seconds, over the
temporal search space τ ∈ [τmin, τmax] corresponding
to the frequency range [fmax, fmin]. Here Fs is the
sampling rate of the recorded signals. An implicit ad-
vantage to this formulation in the time domain is the
restricted search space corresponding to discrete inte-
ger time lags of [τminFs, τmaxFs] which facilitates the
use of this method in a live scenario where the sampling
rate is not exceedingly high.

For instance, in the application of rPPG mea-
surement, the frame rate is typically between 20 to
30 frames/second for conventional cameras. Cou-
pled with the limited range of human heart rates
F ∈ [40, 200] bpm, or [.3, 1.5] second, this makes the
live implementation of this method undoubtedly fea-
sible. Indeed, the search space depends on Fs, facili-
tating finer searches at higher frame rates. This two-
variable optimization of the pair (τ, w) can be simpli-
fied into two following steps.

3.1.1 Estimate the basis that maximizes peri-
odicity

The first core step comprises of estimating the weight-
ing matrix w∗, which is nothing but a change of basis,
that maximizes the periodicity metric in equation 2 for
a given time period τ . This sub-method was adapted
from [23] and is listed in algorithm 1. It starts with
a GEVD step that orders the components by their pe-
riodicity, based on the magnitude of the generalized
eigenvalues. The decomposed signals are then pro-
jected onto the new subspace represented by W . Next,
denoising is performed on the first R signals by using a
wavelet denoiser, using the parameters similar to [22].
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Algorithm 1 Optimum Basis Estimation

1: procedure OBE(x, τ) ⊲ Estimate the best w for
τ

2: for k = 1 : K do
3: Calculate Px and Cx ⊲ Using equation 1
4: W ← GEVD(Px,Cx)
5: s←W T x ⊲ Project onto new basis
6: [s1...sR]← G([s1...sR]) ⊲ Smooth R

channels
7: x←W −1s ⊲ Back project to original space
8: end for
9: W = [w1 · · ·wM ] ⊲ M channels

10: y = wT
1 x ⊲ Most periodic component

11: w∗ = w1

12: return w∗

13: end procedure

And lastly, the mixture of the projected and denoised
signals are back-projected onto the original space. The
above steps are repeated for K iterations. The output
of this core step is the periodicity maximizing basis w1

which is the generalized eigenvector corresponding to
the highest generalized eigenvalue of the pair (Px, Cx).
Furthermore, for K > 1, the temporal signals are fil-
tered to enhance periodic components. The impact of
different values of K and R on the eventual estimation
of the most periodic signal is presented in section 4
with the application of rPPG measurement.

Finally, we can represent the output of this step con-
cisely as a functionW(τ) and consequently rewrite the
periodicity metric equation 2 solely as a function of τ

P(τ) =
W(τ)T PxW(τ)

W(τ)T CxW(τ)
(4)

This objective function can now be maximized by us-
ing an appropriate optimization scheme the details of
which are presented in the next subsection.

3.1.2 Optimize the periodicity metric P (τ)

To select an appropriate optimization scheme, the ob-
jective function P(τ) in equation 4 warrants some ex-
amination. First, it is evident that for temporal sig-
nals of a specific sampling rate, it is a continuous
function over the corresponding temporal search space.
The complexity, however, lies in the calculation of the
derivative W ′(τ) owing to the presence of the GEVD
step. In the general sense, differentiation of an eigen-
decomposition represents the change in the eigenvalues
with respect to change in the original data. Although,
such a differentiation is mathematically possible, it is

Figure 1: Typical distribution of P(τ)

admittedly non-trivial [16] [27] and even more compli-
cated with respect to the period τ , which points to-
wards the use of a derivate free optimization approach.

Another feature of interest was the shape of the
objective function. To assess this, application to the
problem of rPPG signal estimation was chosen. Using
videos from UBFC-RPPG and MMSE-HR databases
the objective function values of P(τ) for several videos
from UBFC-RPPG and MMSE-HR databases were ex-
amined. Figure 1 shows the variation of P with respect
to τ , calculated over a window of 15 seconds for a typ-
ical video, taken from the MMSE-HR database. It can
be observed that the variation of P(τ) is prone to mul-
tiple local maximas. This is expected behavior owing
to the product xxT

τ in the calculation of P(τ). Specif-
ically, a signal with a real period of τ∗ seconds will
exhibit a relatively higher value for P(τ)|τ=τ∗ . Ac-
companied by this global maximum are local maximas
exhibited at τ = nτ∗, n ∈ Z, albeit lower than Pτ=τ∗ ,
and with magnitudes inversely proportional to n. This
appearance of multiple local maximas, with decreasing
magnitudes, is similar to the plot of the autocorrela-
tion function. Additionally, the advantage of a limited
search space, suggests the use of a global optimiza-
tion scheme for best results. Algorithms that have the
ability to escape local optimas serve as an appropriate
solution. Consequently, the tabu search algorithm [6]
was used to perform the global optimization of P(τ).

3.2. Periodic Variance Maximization applied to
RPPG signal estimation

We present here the applicability of the PVM algo-
rithm implemented in the context of rPPG signal esti-
mation using sequential video data from conventional
cameras. The workflow of the procedure as depicted
in Fig. 2 is presented here. Temporal RGB traces,
x = [x1, x2, x3]T where each xm, m ∈ [1, 2, 3], corre-
sponds to a temporal trace of size N of each chan-
nel, were generated by frame-wise spatial averaging of
the skin pixels. To obtain these skin pixel averages,
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face detection and tracking was first performed using
the Viola-Jones and the Kanade-Lucas-Tomasi imple-
mentations provided by the computer vision toolbox
of MATLAB. Then, corner detection on the detected
face was performed for tracking to crop the face based
on facial landmarks. Skin detection as formulated by
Conaire et al. [2] was then performed to select the
candidate pixels which were then spatially averaged to
obtain a triplet of RGB values per frame and concate-
nated to obtain the RGB temporal traces.

These temporal RGB traces were then detrended
[26] to remove low frequency trends in the signal. Cen-
tering was then performed so that the obtained signal
y in y = Wx is zero-mean. After the rPPG signal was
obtained using PVM, the per window heart rate was
calculated from the highest peak of the FFT filtered
within the acceptable range of heart rate F ∈ [0.7, 3]
Hz over a 30 second moving window using a step size
of 0.5 second for the UBFC-RPPG datasets. This
30 seconds window size was chosen as a trade-off be-
tween speed and availability of enough data for anal-
ysis. However, for the MMSE-HR database a 15 sec-
ond window had to be chosen because of the relatively
small length of several constituent videos. The window-
wise heart rate estimations were then smoothed using a
Kalman filter. This helped to remove spurious outliers
resulting from sudden variation in illumination and/or
motion. We present the results of the experiments in
the next section.

4. Results and Discussion

The PVM algorithm was validated using the UBFC-
RPPG [1] database containing two datasets, labeled
SIMPLE and REALISTIC, comprised of 9 (about 21k
frames) and 46 (about 94k frames) videos respec-
tively, and the MMSE-HR [31] database comprising
of 97 (about 105k frames) videos. The UBFC-RPPG
database was acquired using a Logitech C920 web cam-
era placed at a distance of about 1m from the sub-
ject. The videos were recorded with a frame resolu-
tion of 640x480 in 8-bit uncompressed RGB format at
30 frames per second. A CMS50E transmissive pulse
oximeter was used to obtain the ground truth PPG
data comprising of the PPG waveform as well as the
PPG heart rates. The experimental setup with sample
images from both the databases is depicted in figure 3.
An overview of the framework along with a symbolic
graph of the core PVM algorithm is also presented in
figure 2.

The MMSE-HR database is inclined towards re-
search on emotion elicitation and recognition. As a
result, the videos in this database comprise of a large
number of facial expressions and movements, which

Table 1: Performance metrics

UBFC-RPPG
MMSE-HR

SIMPLE REALISTIC

MAE SNR r MAE SNR r MAE r

PVM 0.93 2.01 0.99 4.47 -0.22 0.82 4.38 0.82

ICA 0.67 2.70 0.98 6.02 -1.11 0.79 5.84 0.67

PCA 2.04 -1.43 0.97 9.65 -3.45 0.67 9.15 0.49

Green 9.86 -1.61 0.29 7.73 -2.78 0.68 10.65 0.47

CHROM 0.72 3.04 0.99 3.70 -0.32 0.87 5.59 0.83

POS 0.67 2.57 0.99 4.73 -1.60 0.80 5.77 0.82

G-R 0.67 1.97 0.99 9.79 -3.10 0.65 8.56 0.58

eventually aids in assessing our method thoroughly.
The MMSE-HR database does not provide ground
truth PPG waveforms, only the ground-truth heart
rates obtained using the BIOPAC 150 data acquisition
system at 1 kHz, calculated using contact based ECG
electrodes.

Table 1 shows the performance comparisons between
PVM and other state of the art methods, viz., ICA
[8], PCA [11], Green [28], CHROM [3], Plane Orthog-
onal to Skin (POS) [29], and G-R [7]. The ICA im-
plementation used for our analysis has been adapted
from FastICA [9]. Furthermore, the analysis of all
the methods was performed using exactly the same pre
and post processing steps like normalization, filtering
and smoothing. The exact metrics of ICA from re-
lated state of the art methods such as [19], [20] and
[17] could not be used because they all use their own
private databases which were inaccessible to the public.
However, the core algorithm of ICA remains the same
making the metrics in Table 1 applicable. Further-
more, comparison with smart ROI selection methods
such as [1], [12], [10] and [30] was not deemed rele-
vant in order to limit the comparison amongst source
separation/extraction methods, and the fact that our
method can easily be incorporated into any ROI selec-
tion framework.

The metrics used in our analysis are mean abso-
lute error (MAE) in beats per minute (bpm), signal-
to-noise ratio (SNR) and Pearson’s correlation coeffi-
cient (r) between heart rate calculated using the rPPG
signal, HRrP P G and the heart rate calculated using
the ground truth PPG waveform, HRP P G. The MAE
was calculated as the window-wise mean of |HRrP P G−
HRP P G|, averaged per video. The SNR (dB) was cal-
culated as the ratio of the power of the main pulsatile
component of the PPG to that of the background noise
to accommodate the wide dynamic range of the signals.

However, it is worth mentioning that the MMSE-HR
database does not provide the ground truth waveforms,
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Figure 2: System framework and Periodic variance maximization overview

Figure 3: Experimental Setup (top) and sample im-
ages from the UBFC-RPPG REALISTIC and SIMPLE
(middle) and MMSE-HR (bottom) databases

thereby obliging the use of the main pulsatile compo-
nent of the RPPG instead of the PPG for the SNR

calculation. In this case, the SNR just represented the
strength of the main pulsatile component, which, al-
though being a useful metric by itself, is not entirely
appropriate for the comparison with the SNR for other
databases which were calculated in a different man-
ner. As a result, the SNR values for the MMSE-HR
database are not really relevant and are omitted. The
MAE values, however, are relevant since it is calculated
as the difference between rPPG and PPG heart rates,
which are provided as ground truth for the MMSE-HR
database.

Figure 4 presents the overall correlation analysis
between the PVM method and the CHROM method
which in our experience is one of the most consis-
tent methods for rPPG estimation. The comparisons
were performed using window-wise calculations be-
tween HRs from PPG against RPPG obtained from all
the videos in each dataset for the skin-segmented pixel
data for one particular run. It is worth mentioning that
the MAE values in figure 4 and table 1 differ from those
in figure 5, which are averaged over 20 executions, but
are obviously in range. Moreover, differences in range
of 10−2 bpm are inconsequential.

With the UBFC-RPPG database, the analysis of the
SIMPLE dataset, as the name suggests, was relatively
simple and efficient, with an average MAE of less than
1 bpm. This can be attributed to the fact that the
subjects were generally relaxing, mostly with their eyes
closed, which resulted in minimal motion artifacts. On
the other hand, the REALISTIC dataset was slightly
more challenging since the subjects were actually work-
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(a) CHROM for UBFC-RPPG/SIMPLE

(b) PVM for UBFC-RPPG/SIMPLE

(c) CHROM for
UBFC-RPPG/REALISTIC

(d) PVM for UBFC-RPPG/REALISTIC

(e) CHROM for MMSE-HR

(f) PVM for MMSE-HR

Figure 4: Correlation comparison plots for CHROM vs PVM. The metrics PRECIS 2.5 and PRECIS 5 represent
the percentage of windows where δ = |HRrP P G −HRP P G| < 2.5 and 5 bpm respectively.

Figure 5: Box plot of MAE from the PVM and ICA
algorithms over 20 observations for the two databases

ing on the computer and were only requested to keep
their hand still for the PPG sensor. The performance
of the PVM method is similar to that of the CHROM
method, albeit with a slightly higher average MAE.

One possible hypothesis for this inconsistency in the
MAEs can be as follows. Since the REALISTIC dataset
was recorded under ambient light, the effect of the flu-
orescent light source in certain videos was more pro-
nounced, most probably due to lesser ambient light.
The 50 Hz flicker of fluorescent lights is a well known
problem in video recordings where each video frame is
exposed at different light pulses. The discrepancy be-
tween our 30 Hz frame rate and the 50 Hz flicker might
result in a perturbed periodic signal which overshad-
ows the cardiac signal in certain cases and is selected
by PVM. The CHROM method is able to overcome
this problem because of the projection of RGB signals
onto a different subspace where only the reflections spe-
cific to the skin properties are enhanced. On the other
hand, all the videos in the MMSE-HR database were
recorded with a more sophisticated lighting setup, thus
avoiding such an issue and resulting in a better perfor-
mance for the PVM method. However, the estimation
and elimination of this background flicker is in itself
not a difficult issue and can be solved with an appro-
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priate filtering scheme, which incidentally is one of the
issues we aim to address in our future work.

The MMSE-HR database was challenging owing
to it being an emotion elicitation database. There
were many instances where the subjects laughed out
loud, exhibited considerable movements, while regu-
larly manifesting various facial expressions. This re-
sulted in the usual problems arising from movement
of the subjects and the face ROIs. However, the PVM
method outperformed the CHROM method by a larger
margin for this database. This highlights the relative
robustness of the PVM method against motion vari-
ances as well. The better performance of the PVM
method can also be attributed to the sophisticated
lighting setup of the MMSE-HR database. This is also
evident from the correlation plot having a narrower
spread and the fitting line being slightly closer to the
45◦ line PVM as compared to CHROM.

Effect of the parameters K and R on the overall
result The value of K depends on the number of di-
mensions of the desired subspace, which is 2 in our case.
However, for our application, a value of K = 1 gives op-
timum results, which makes this algorithm suitable for
use in live scenarios. Similarly, the performance of the
method with respect to R ∈ [1 : M ] where M = 3 is the
number of channels, was also performed. It was equally
observed the algorithm was able obtain the most pe-
riodic component even by denoising just one channel
thanks to the efficiency of the GEVD step to success-
fully sort components in order of decreasing periodicity.

Finally, to assess the consistency of the overall al-
gorithm, and because of the use of the tabu search
global optimization, it was worth assessing the per-
formance of the method over multiple runs. Fig-
ure 5 shows the box plot comparing the MAEs with
the PVM and ICA algorithms for the two challeng-
ing datasets: UBFC-RPPG/REALISTIC dataset with
subjects working on a computer under ambient light,
and the MMSE-HR dataset with subjects exhibiting
facial expressions under indoor lighting. These tests
on the datasets were performed 20 times. The PVM
method has a consistent performance, giving MAEs in
the range [4.39, 4.55] bpm and [4.10, 4.62] bpm for the
UBFC-RPPG/REALISTIC and MMSE-HR datasets
respectively. The consistency analysis for the other
baseline methods was not required because only the
PVM and ICA methods are optimization based. The
box plots for the UBFC-RPPG/SIMPLE are not shown
since they exhibit MAEs of less than 1 bpm for both
PVM and ICA methods and their comparison was
deemed inconsequential.

5. Conclusions and Future Work

A Periodic Variance Maximization algorithm was
presented which extracts the most periodic signal of an
unknown period from a mixture of temporal recordings.
The PVM algorithm is fairly generic and can be used
in any problem domain where periodicity maximization
is called for. It can also be combined with smart-ROI
selection methods to exploit the spatial and/or facial
features to enhance the resulting signal. Its vulnera-
bility, however lies with scenarios having periodic mo-
tion, e.g. fitness based rPPG signal estimation. Motion
compensation schemes, which itself is another subject
of research, can be beneficial in such cases. Future
work comprises of addressing the issue of perturbation
arising from background light flicker and extending the
algorithm to the multi-linear case using tensorial anal-
ysis to estimate rPPG signal strength across the skin
region.
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