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Figure 1: We present a system for recovering physiological information from videos using image super resolution. Our results show that

a simple preprocessing step can considerably improve the accuracy of iPPG measurements. Furthermore, a deep learning-based super

resolution model can outperform bilinear and bicubic image interpolation to provide further improvements in accuracy.

Abstract

Imaging photoplethysmography (iPPG) allows for re-

mote measurement of vital signs from the human skin. In

some applications the skin region of interest may only oc-

cupy a small number of pixels (e.g., if an individual is a

large distance from the imager.) We present a novel pipeline

for iPPG using an image super-resolution preprocessing

step that can reduce the mean absolute error in heart rate

prediction by over 30%. Furthermore, deep learning-based

image super-resolution outperforms standard interpolation

methods. Our method can be used in conjunction with any

existing iPPG algorithm to estimate physiological parame-

ters. It is particularly promising for analysis of low resolu-

tion and spatially compressed videos, where otherwise the

pulse signal would be too weak.

1. Introduction

Video-based physiological measurement methods [16]

present several advantages over traditional contact-based

sensors (e.g., ECG, contact PPG). Contact devices often re-

quire obtrusive electrodes that can become uncomfortable

with extended use and can be corrupted by body motions.

These devices are often expensive and are not ubiquitously

available. Video methods enable spatial analysis and visu-

alization of blood flow, in addition to concomitant measure-

ment of multiple people. Cameras are ubiquitous devices

and the number of imagers in the world is continually in-

creasing. Recent papers have demonstrated applications of

video-based physiological measurement in ICUs [29], de-

tecting sleep events such as apnea and tracking changes in

cognitive load [18].

Photoplethysmography (PPG) is the measurement of the

blood volume pulse (BVP) via light transmitted through, or

reflected from the skin [1]. Traditional measurement in-

volves contact sensors with dedicated light sources and cus-

tomized imagers. Imaging photoplethysmography (iPPG)

has developed as a method for capturing the BVP signal

remotely using digital cameras and ambient light. Almost

any digital camera (i.e., a webcam [21] or cellphone cam-

era [11]) is sufficiently sensitive to capture the pulse signal

when the subject is close to the device.
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There are a number of methods for video compression

that aim to reduce the bit rate of video data while retaining

important visual information. However, video compression

algorithms are not designed with the intention of preserving

photoplethysmographic data. On the contrary compression

algorithms often make assumptions that small differences

in color values between pixels (intra-frame compression) or

between frames (inter-frame compression) are not of high

visual importance and discard them, influencing the under-

lying variations on which iPPG methods rely.

Video compression severely impacts the performance of

iPPG methods [15]. McDuff et al. showed how heart rate

measurement accuracy decreased linearly with the video

compression score. However, in many situations it is im-

practical to store raw video files. Such data require enor-

mous amounts of storage; for example, each raw, uncom-

pressed 5.5-minute video file collected in this study was

11.9 GiB in size. Collecting data from many subjects

(n=25) resulted in over 250 GiB for the two hours of stan-

dard definition video. This can be restrictive for researchers

who may want to collect and distribute video data for iPPG

purposes.

It is possible for iPPG signals to be recovered over rela-

tively long-distances (up to 50 m [2].) As the subject moves

further from the camera the limiting factor will soon be-

come the number of pixels a single face, or skin region of

interest (ROI), will occupy in the image.

Can facial videos with small ROI pixel areas or spatially

compressed images be used reliably for iPPG? We system-

atically test this and show how image super-resolution can

effectively boost the signal-to-noise ratio. We believe this

is the first example of attempting to recover the iPPG signal

from small frames (41×30 pixels) in which the face/skin

occupies at most a few hundred pixels. We present an iPPG

pipeline for recovering the pulse signal. Our pipeline fea-

tures an image super-resolution preprocessing step. Fig-

ure 1 shows an overview of our approach. In the remain-

der of the paper we: 1) provide background on iPPG and

image-super resolution, 2) describe our method, 3) present

experiments and results on a corpus of videos from 25 sub-

jects, and 4) discuss implications and future work.

2. Background

2.1. Imaging Photoplethysmography

Initial work by Takano and Ohta [25] demonstrated that

the pulse could be recovered from digital video recorded

from the human face. The green color channel typically car-

ries the strongest pulse information [25, 28]. Although no

single pixel contains a strong signal, when many pixels are

spatially averaged the pulse wave can be recovered. While

the green signal can be used, in many real-world contexts

more sophisticated signal processing is required. Poh et

al. [21] proposed the use of Independent Component Anal-

ysis (ICA) to recover the pulse signal and enable a fully

automated iPPG framework with automated face segmen-

tation. HR and heart rate variability (HRV) metrics can be

recovered from videos with small head motions using this

method [22].

Methods inspired by optical models of the skin have

helped advance the state-of-the art. The CHROM [5]

method uses a linear combination of the chrominance sig-

nals and makes the assumption of a standardized skin color

profile to white-balance the video frames. The Pulse Blood

Vector (PBV) method [6] relies on characteristic blood vol-

ume changes in different regions of the frequency spectrum

to weight the color channels. Basing calibration on a more

advanced skin-tissue model offers the potential of allow-

ing more accurate recovery of the pulse wave and poten-

tially reduces the need for computationally complex algo-

rithms [20, 14]. The plane orthogonal to the skin (POS) [30]

algorithm assumes the presence of a pulsatile color space

signal and posits that this will be orthogonal to the skin

color space. Using this framework the authors were able to

demonstrate good pulse wave recovery even in the presence

of larger head motions. Normalized Least Mean Squares

(NLMS) adaptive filtering has been applied to help com-

bat the effects of motion and illumination changes [13]. A

recent approach using self-adaptive matrix completion also

found good results by selectively choosing the region of in-

terest to analyze [27]. We show that a preprocessing step

can be applied to iPPG algorithms to improve the accuracy,

and show that this benefits multiple existing approaches.

2.2. Image Super Resolution

Super resolution is a class of techniques that enables

the resolution of an image to be enhanced. Specifically,

the aim is to recover missing high-frequency spatial infor-

mation from surrounding pixels. With digital images this

can be performed algorithmically. The simplest form of

image resolution upscaling involves estimating missing in-

formation using nearest neighbor or interpolation functions

based on surrounding pixels. The most common interpo-

lation function is a bicubic that leverages the surrounding

4×4 pixel grid to infer the values of intermediate pixels and

thus enable a higher resolution output image. However, this

smoothly interpolates between pixel values and thus per-

forms poorly at recovering high frequency spatial informa-

tion.

Machine learning can be used to infer missing informa-

tion more effectively. Some methods use statistical im-

age priors to predict the values of “missing” pixels [24].

Neighbor embedding [3], sparse coding [31] and random

forests [23] have all been applied to the problem. More

recently, researchers have tended to focus on deep neural

networks for super resolution tasks yielding state-of-the-art
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Figure 2: The architecture of the deeply-recursive convolutional network (DRCN) model for image super resolution [10]. The model

features three networks, an embedding network, recursive inference network and a reconstruction network.

results [4, 12, 7]. These end-to-end networks are often more

computationally expensive than interpolation but can pro-

vide much more superior results. Most relevant to this work

would be the success of super resolution on facial images.

In our application, unlike much prior super resolution re-

search, we are both concerned with the recovery of high

frequency spatial information and the correct inference of

subtle color information pertaining to the pulse signal.

Why might super-resolution aid in iPPG methods? First,

a sharper image can lead to more accurate facial registration

and/or skin segmentation. Second, a learning-based super

resolution method may recover missing color information

more accurately than a linear or bicubic interpolation and

this will in turn improve the signal-to-noise ratio of the re-

covered pulse signal. However, to date there is no empir-

ical evidence to support these hypotheses. Therefore, we

perform a systematic analysis of image interpolation/super

resolution methods in the context of iPPG signal recovery.

3. Method

Our proposed pipeline features two stages. 1) Prepro-

cessing of the video frames to increase the spatial resolu-

tion. 2) An iPPG method to recover the pulse wave and

heart rate from the resulting videos. The interpolation/super

resolution step is added before the iPPG algorithm and

could be combined with any existing physiological mea-

surement pipeline. For this reason we believe it has wide

applicability.

3.1. Super Resolution

We compared three interpolation/super-resolution meth-

ods in this analysis.

Bilinear: The interpolation considers four pixels and fits

a linear function in two dimensions to infer the missing val-

ues. Each inferred pixel is a weighted average of the pixels

in a 2×2 neighborhood used to fit the linear function.

Bicubic: The interpolation considers 16 pixels and fits a

cubic function in two dimensions to infer the missing val-

ues. Each inferred pixel is a weighted average of the pixels

in a 4×4 neighborhood used to fit the cubic function.

Deeply-Recursive Convolutional Network: We use a

deeply-recursive convolutional network (DRCN) as pro-

posed by Kim et al. [10] as a learning-based method to in-

fer the missing values. This network consists of three sub-

networks (f (x) = f 3(f 2(f 1(x)))). Figure 2 shows the network

architecture. The embedding network (f 1) acts as a prepro-

cessing layer creating a set of features for inference. Where:

H
−1 = max(0,W

−1 ∗ x + b
−1) (1)

H0 = max(0,W0 ∗H−1 + b0) (2)

f1(x) = H0 (3)

Hn denotes the hidden layer values. The weight, W, and

bias, b, matrices are learned during training.

The inference network (f 2) solves the task of super-

resolution recursively.

Hd = max(0,W ∗Hd−1 + b) (4)

Finally, the reconstruction network (f 3) transforms the

high resolution features back into the original image space.

Where:

HD+1 = max(0,WD+1 ∗HD + bD+1) (5)

ŷ = max(0,WD+2 ∗HD+1 + bD+2) (6)

f3(H) = ŷ (7)

The network was trained on the dataset presented in [31].

It was not trained on similar data to the frames in our

video dataset and thus the generalizability of our solution

is high. The DRCN network has shown good performance

on standard image datasets used for evaluating image super-

resolution. However, in those cases the objective was to

maximize the peak signal-to-noise ratio (PSNR). As de-

scribed above, it is important that the super resolution al-

gorithm does not interfere with the subtle pixel color differ-

ences between frames.

3.2. Imaging Photoplethysmography

In our experiments the images were first upsampled

using bilinear interpolation, bicubic interpolation or the
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DRCN super resolution model. Then we applied one of two

iPPG algorithms to extract the blood volume pulse and heart

rate. We intentionally used previously published methods

for this stage of the analysis as we did not want to introduce

other sources of variance.

In both cases the images were converted from RGB to

YCRCB and skin detection was applied to segment the pix-

els of interest. A pixel was considered skin if the following

criteria were satisfied:

Y > 80

CB > 77 and CB < 127

CR > 133 and CR < 173

(8)

The resulting pixels were then spatially averaged for

each frame to give three observation signals x1, x2 and x3.

ICA Method [17]: In this case, we detrended the color

signals based on a smoothness priors approach [26] with

λ=1000. ICA was used to recover the sources from the ob-

served color signals. A 6th-order Butterworth filter was ap-

plied to the resulting signals (cut-off frequencies of 0.7 and

2.5 Hz). The BVP signal was selected as the channel with

the greatest frequency power in the range 0.7 and 2.5 Hz.

From the recovered BVP signal, inter-beat intervals (IBIs)

were detected using a peak detection algorithm [17]. The

automatically identified pulse peaks were used to extract the

heart rate and BVP signal-to-noise ratio (SNR) as explained

below. The heart rate was defined as:

HR =
60

IBI
(9)

where IBI is the average inter-beat interval in seconds for

a 30 second window.

POS Method [30]: To add additional weight to the re-

sults and demonstrate that the super-resolution preprocess-

ing can benefit different iPPG algorithms we implemented

the POS method presented by Wang et al. [30]. Our video

framerate was 120 frames-per-second (FPS) and the win-

dow length was set to 192 frames. Within each window the

spatially averaged color signals (X = [x1 x2 x3]) were each

normalized by dividing by their respective mean. Next, the

normalized color matrix, X̂, was multiplied by the projec-

tion matrix P to give Y, where:

P =

(

0 1 −1
−2 1 1

)

(10)

The window output was calculated as:

h = Y1 +
σ(Y1)

σ(Y2)
.Y2 (11)

Finally, the estimated BVP signal was constructed by

adding the overlapping window output signals together for

each 30 second segment of video. A 6th-order Butterworth

filter was applied to the model outputs (cut-off frequencies

of 0.7 and 2.5 Hz for HR). From the pulse signal we ex-

tracted the heart rate using an FFT. The HR was chosen

from the peak with the greatest power in the frequency do-

main between 0.7 and 2.5 Hz.

4. Metrics

We extracted the HR estimates from a set of 10 non-

overlapping 30 second windows for each 5.5-minute video

(we discarded the first and last 15 seconds of each video).

This resulted in 250 observation windows. We evaluate

the heart rate estimates using several performance metrics.

Mean absolute error (MAE):

MAE =

∑N

i=1
|HRi −HRi|

N
(12)

and root mean squared error (RMSE):

RMSE =

√

∑N

i=1
(HRi −HRi)2

N
(13)

Where N is the total number of observation windows

(250). We also calculate the Pearson’s Correlation Coef-

ficient, r.

Finally, to capture a measure of the BVP signal quality,

without relying on peak detection for the HR estimation, we

calculate the blood volume pulse signal-to-noise (SNR) ra-

tio. The BVP SNR was calculated according to the method

proposed by De Haan et al. [5]. The gold-standard HR fre-

quency was determined from the manually corrected ECG

peaks.

SNR = 10log10

(

∑240

f=30
((Ut(f)Ŝ(f))

2

∑240

f=30
(1− Ut(f))Ŝ(f))2)

)

(14)

Where Ŝ is the power spectrum of the BVP signal (S),

f is the frequency (in BPM) and Ut(f) is a binary tem-

plate that is 1 for the heart rate region from HR-6BPM

to HR+6BPM and its first harmonic region from 2*HR-

12BPM to 2*HR+12BPM, and 0 elsewhere.

5. Data

We used the dataset collected by Estepp et al. [8]

for testing. Videos were recorded with a Basler Scout

scA640-120gc GigE-standard, color camera, capturing 8-

bit, 658x492 pixel images, 120 FPS. For the purposes of

our experiments these videos were down-sampled (spatially

compressed) to 41×30 pixels. Examples of an input frame

at this resolution can be seen in Figure 3. The pixelation is

clear in the frame at this size. To our knowledge this is the

first work to attempt to recover the PPG signal from such a
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Figure 3: Examples of the low resolution (Lo-Res) input frames (41×30 pixels), bilinear and bicubic interpolated frames and the DRCN

output frames (164×120 pixels). The segmented skin regions for each frame are shown below.

low resolution image patch. The camera was equipped with

a 16 mm fixed focal length lens. Twenty-five participants

(17 males) were recruited to participate for the study. Nine

individuals were wearing glasses, eight had facial hair, and

four were wearing makeup on their face and/or neck. The

participants exhibited the following estimated Fitzpatrick

Sun-Reactivity Skin Types [9]: I-1, II-13, III-10, IV-2, V-

0. Gold-standard contact physiological signals were mea-

sured using a BioSemi ActiveTwo research-grade biopoten-

tial acquisition unit. The participants were recorded during

a five-minute task. The task features head motion (rotation

about the vertical axis) at a constant angular velocity of 10

degrees/sec. The five minute videos of the twenty-five par-

ticipants resulted in over two hours of recordings.

6. Results

Using our video dataset we compared the performance

of the set of image interpolation and super-resolution meth-

ods applied prior to the iPPG methods. In each case we

upsampled all the frames by a factor of four. Alongside the

deeply-recursive convolutional network (DRCN) we chose

the following baseline methods: 1) no upsampling (origi-

nal low resolution frame, 41×30 pixels), 2) bilinear inter-

polation (to 164×120 pixels), 3) bicubic interpolation (to

164×120 pixels). All the analysis was performed in MAT-

LAB (Mathworks, Inc.) and the bilinear and bicubic inter-

polation methods were those implemented in the Computer

Vision Toolbox. We present the results using each inter-

polation method and each of the two iPPG methods (ICA

and POS). Table 1 shows the correlation coefficient, MAE,

RMSE and BVP SNR for each method. The results ob-

tained using the original high resolution (Hi-Res) frames

are also shown. Figure 5 shows scatter plots of the camera

HR and gold-standard contact HR for each case. All im-

age interpolation/super-resolution methods (bilinear, bicu-

bic, DRCN) improved the heart rate estimates. The DRCN

method outperformed the bilinear and bicubic methods with

a correlation of 0.87 and MAE and RMSE of 3.1 BPM and

4.8 BPM respectively when using the ICA iPPG method.

A similar trend was observed when using the POS iPPG

method.

To help establish whether the deeply-recursive super res-

olution method improves the skin segmentation and/or the

color inference in the missing pixels leading to improved

spatially averaged color signals (x1, X2, x3) we performed

a second experiment. We used the skin segmentation mask

extracted from the DRCN output images and applied that

to the bicubic interpolated images. We call this the DRCN-

Bicubic hybrid. We compare these results with those from

the Bicubic and DRCN methods separately. A diagram

comparing the DRCN method with the DRCN-Bicubic hy-

brid is shown in Figure 4. The results are shown in Table 1.

The DRCN-Bicubic hybrid method outperformed the Bicu-

bic method showing that the DRCN super resolution does

indeed improve the skin segmentation step. The DRCN

method outperformed the DRCN-Bicubic hybrid method

showing that the skin segmentation alone was not the only

improvement, but that the pixel color values resulting from

DRCN super resolution provide more accurate spatially av-

eraged color signals.

7. Discussion

In many applications of iPPG it cannot be guaranteed

that the skin ROI will occupy a large number of pixels. Rea-

sons for this may be that the subject is a long distance from

the imager, the imager has a low pixel density, or that the

video has been spatially downsized (intra-frame compres-

sion) to reduce the storage volume required. However, to
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iPPG Method ICA POS

HR BVP HR BVP

Upsampling Corr. MAE RMSE SNR Corr. MAE RMSE SNR

Original (Hi-Res) 0.871 2.85 4.32 0.078 0.813 3.57 4.89 -0.008

None (Lo-Res) 0.753 4.41 6.79 -0.106 0.735 4.97 6.91 -0.079

Linear 0.803 3.56 5.45 0.054 0.805 3.54 5.05 -0.021

Bicubic 0.820 3.30 5.12 0.051 0.803 3.47 4.76 -0.016

DRCN-Bicubic 0.848 3.30 4.95 0.023 0.830 3.27 4.63 -0.026

DRCN 0.866 3.08 4.82 0.007 0.840 3.12 4.45 -0.013

Table 1: Summary of the overall results. Heart rate correlation (corr), mean absolute error (MAE), root mean squared error (RMSE) and

blood volume pulse signal-to-noise ratio (SNR). The gold-standard HR measurement was taken from the manually corrected ECG signals.

Figure 4: To test whether the improvements using the DRCN preprocessing were a result of improved skin segmentation or color estimation

we used the skin segmentation mask extracted from the DRCN output images and applied that to the Bicubic interpolated images (DRCN-

Bicubic hybrid). We compare this to using the Bicubic or DRCN upsampling alone. Our results showed that DRCN outperformed both the

Bicubic and DRCN-Bicubic hybrid methods illustrating that the DRCN method does improve skin segmentation and color estimation.

date most work has focused on analysis of standard or high

definition video in which the face occupies a large propor-

tion of the frame and thus there are a high number of skin

pixels (typically thousands).

Our results show that if frames are interpolated before

iPPG analysis the accuracy of the recovered physiological

measurements can be improved considerably. All the inter-

polation/super resolution methods we tried (bilinear, bicu-

bic and DRCN) reduced the MAE and RMSE of the HR

predictions compared to when using the low resolution (Lo-

Res) frames and improved the correlation with the gold-

standard contact measurements. The MAE was reduced by

19.3%, 20.6% and 30.2% using the bilinear, bicubic and

DRCN methods respectively. Thus, the deeply-recursive

convolutional network reduced error by a further 10% com-

pared to the traditional interpolation approaches. Similar

improvements were seen when using both iPPG methods

(ICA and POS) giving confidence that our preprocessing

algorithm is not limited to one iPPG approach.

Spatial upsampling of images, whether learned or not,

helps with iPPG analysis as the skin region of interest can

be segmented more accurately, reducing noise from back-

ground pixels, clothing or hair. We have shown examples

of frames generated using each method to illustrate this (see
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Figure 5: Scatter plots of the camera HR and gold-standard contact ECG HR. From left to right: Using different preprocessing

interpolation/super-resolution methods a) None, b) Bilinear, c) Bicubic, d) DRCN-Bicubic, e) DRCN, f) the original image. From top

to bottom: Using different iPPG methods i) ICA, ii) POS.

Figure 3). We questioned whether the improvement of the

DRCN method over traditional interpolation was due to bet-

ter skin segmentation alone or improved color inference in

the skin pixels resulting in more accurate spatially averaged

color signals (i.e., with a higher BVP signal-to-noise ratio).

Our results suggest that DRCN provides benefits in both

cases, even when the DRCN model was not trained on sim-

ilar images to those in our dataset.

While the DRCN super resolution network provides the

best results in terms of accuracy, the model does have a high

computational complexity relative to bilinear or bicubic in-

terpolation. Our results have shown that simple interpola-

tion methods can still improve the accuracy of iPPG mea-

surements considerably (reducing error by 20%). Bicubic

interpolation is a simple and fast preprocessing step that

could be used with any existing iPPG method and poten-

tially used in real-time applications and on resource con-

strained devices (e.g., VR/AR headsets [19] and smart-

phones [11]).

8. Conclusions

In this work we present a new pipeline for non-contact

measurement of physiological information incorporating a

deep super resolution preprocessing step. This method

presents new possibilities for extracting vital signs from

compressed or low-resolution videos. Our results show that

heart rate measurements and the BVP SNR can be improved

using our method. Input videos of 41×30 pixel resolution

were upsampled by a factor of four prior to iPPG process-

ing. The low resolution input frames gave a MAE in HR

estimates of 4.41 BPM. Adding a super resolution step re-

duced the error by over 30% to 3.08 BPM. The super res-

olution method improves both skin segmentation and color

signal recovery. We used a pretrained deeply-recursive con-

volutional network model. The model was trained on a

completely independent set of images that did not resem-

ble our data. This gives high confidence about the gener-

alizability of our result to other iPPG datasets. In addition,

we showed that preprocessing improved results using two

different iPPG algorithms. There might be the potential for

additional performance gains if the network was trained on

face images more closely resembling our data. Future work

will consider if video super-resolution can also be used to

combat the effects of inter-frame (temporal) compression

within a video. If this were successful it would be very use-

ful as inter-frame compression algorithms are particularly

problematic for iPPG methods [15].
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