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Abstract

Camera-based estimation of vital signs has made signifi-

cant progress in last few years. Despite of the significant al-

gorithmic advances, the low signal-to-background ratio in

video-based photoplethysmography continues to be a per-

formance bottleneck. One of the main challenges is that

much of the light returning to the camera from the subject

is surface reflection from the skin and other dermal layers,

and hence does not contain any pulsatile blood perfusion in-

formation to estimate photoplesthysmogram (PPG). In this

paper, we show that direct-global separation techniques de-

signed to reject much of the surface reflection photons can

improve the signal-to-background ratio in the raw captured

video signal. We study two techniques for the suppression

of direct surface reflection (a) cross-polarization and (b)

structured illumination. Using a dataset from 28 partic-

ipants, our results show an average SNR improvement in

estimating PPG from the use of structured illumination is

1.42 dB compared to the brightfield illumination. The use

of cross-polarizers leads to an average SNR increase of 1.49

dB compared to brightfield illumination. And the combined

structured illumination and polarizer method increases the

SNR on the average by 1.90 dB compared to the brightfield

illumination. The key result is that local PPG estimate SNR

can increase to more than 5.63dB, enabling very large gains

on regions with a large specular component. The RMSE de-

creased 55% and the range of error reduced by 12.9% with

the use of a polarizer and structured illumination.

1. Introduction

Vital signs offer a way to continuously monitor the health

or alertness of a person. In many controlled scenarios such

as hospitals, contact devices such as pulse oximeters and

electrocardiographs (ECG) is the de-facto standard of care.

Such contact-based devices provide accurate, robust mea-

surements.

However, there are several other application domains

wherein, it is desirable to measure vital signs in a non-

contact manner because contact with the skin should be

avoided or is infeasible. Examples include vital signs mon-

itoring on sensitive populations such as neonates and burn

victims, in which contact increases the possibility of in-

fection. Other scenarios include non-medical applications

such as entertainment or driver monitoring—applications

in which contact-based measurements are infeasible due to

practical constraints.

Over the last few years, significant improvements have

been demonstrated in algorithms for camera-based remote

photoplethysmography (rPPG) estimation [1, 2, 3, 4, 5, 6, 7,

8]. These advances have enabled non-contact measurement

of vital signs, such as heart rate (HR) and heart rate vari-

ability (HRV), with accuracy comparable to that of contact-

based devices.

In spite of these significant advances, one key challenge

remains: much of the light that is recorded at the sensor

comes from surface reflection and sub-surface reflection

components that did not interact with blood. As a conse-

quence, the pulsatile signal that is critical for estimating

PPG is buried in a large background signal which is com-

posed primarily of surface reflections. This background sig-

nal comes from light that does not penetrate deep enough

into the skin and thus does not interact with the blood ves-

sels. Furthermore, the part of the signal that contains pul-

satile information is extremely low and this problem is ex-

asperated in low lighting conditions (like in NICUs) and in

darker skin tones.

The key idea in the paper is to exploit two computational

illumination and imaging techniques: (a) cross-polarization

and (b) structured illumination, to reject much of the surface

reflection photons increasing the signal quality for PPG es-

timation. We are the first to analyze small time-signal esti-

mation from a video with cross-polarization and structured

illumination based global separation; here the small signal

is the PPG waveform that is buried in the large surface re-

flection component.

The overall system consists of a “front-end” illumina-

tion control combined with an algorithm to extract iPPG

from the video of the exposed skin surface. The front-
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end consists of either structured illumination or combined

structured illumination and polarizer to first separate direct-

global components. We have chosen direct-global separa-

tion methods that can operate on a per-frame basis, as our

objective is to extract a small-magnitude time-domain PPG

signal from the videos.

We collected data from 28 adult subjects with ground

truth PPG using a contact-based pulse oximeter. The data

was collected with structured illumination, polarizer com-

bined with structured illumination and brightfield illumina-

tion. Our key results are as follows.

1. The average SNR increase in the estimation of iPPG,

using global-separation techniques compared to the

standard brightfield illumination is 1.60 dB, with range

of improvement from 1.25 dB to 2.00 dB.

2. The average SNR improvement was almost constant as

a function of skin tone, specifically the improvement

numbers were 1.62 dB for light, 1.70 dB for medium,

and 1.50 dB for dark skin tones.

3. While the average improvement is computed over the

whole exposed region, the improvement in the SNR

of specific skin regions (with high specular compo-

nent) ranged from 3.48 dB to more than 5.63 dB. This

large local improvement can have a significant impact

on methods that aim to measure local perfusion, see

e.g.[9].

4. The increase in SNR translated into a decrease in

RMSE for heart rate estimation by using global sep-

aration. The RMSE decreased 55% from 0.3635 to

0.1680 with the use of polarizer and structured illumi-

nation. The error range reduced by 12.9%.

The rest of the paper is organized as follows. In sec-

tion 2, we discuss prior works on remote vital signs esti-

mation as well as two direct-global separation methods –

cross-polarization and structured illumination. In section 3,

we explain how direct-global separation improves the iPPG

signal quality with a signal-to-background ratio. Section

4 explains the pipeline of acquiring videos using standard

brightfield illumination, structured illumination, and cross-

polarizers. We also define the algorithm used to extract the

iPPG signal. In section 5, we describe the data acquisi-

tion protocol and experimental setup. Then in section 6, we

present our result.

2. Prior Methods

We provide a brief overview of prior methods both for

remote estimation of vital signs and for direct-global sepa-

ration.

2.1. Remote Vital Signs Estimation

Over the last decade, researchers have been trying to esti-

mate vital signs remotely using a non-contact based system

such as a camera due to its low cost and ease of use[10][11].

The main drawback with using a camera is that the strength

of pulsatile PPG signal is very low mainly because the blood

volume change is small in intensity [12]. The signal con-

taining the pulsatile information is small in contrast to the

background. In addition to the challenge of detecting the

low-intensity signal, the image capturing process contami-

nates the signal with photon shot noise, camera quantiza-

tion noise, and read noise. The skin tone of the subject

also affects the signal strength which decreases with higher

melanin content in the skin that absorbs a large amount of

incident light. Small movements of the subject like talking

and nodding can cause large changes in the skin surface re-

flectance captured by the camera, affecting the quality of

the estimated signal.

To reduce the effects of noise and motion, algorithms

have been used to filter out the unwanted artifacts [4, 13,

14, 15]. These algorithms can be classified broadly into two

categories–signal processing based and machine learning-

based approaches. It has been previously studied in [3],[16]

that the pulse rate (PR) and the breathing rate (BR) can

be estimated with the help of a color camera and ambient

illumination. Simple band-pass filtering and Fast Fourier

Transform (FFT) was used to estimate the PR and BR from

the extracted PPG signal. Independent Component Analy-

sis (ICA) have been used to decompose the red, green, and

blue channels into three independent sources [1],[17]. The

PPG signal is then extracted using the separated green chan-

nel which can yield better PPG estimates.

In a later study, Principal Component Analysis (PCA)

was used to extract PPG signal from a standard webcam.

To eliminate the effects of motion artifacts, the authors in

[2] have used a chrominance based method to reliably ex-

tract heart rate using a camera from exercising subjects, and

have shown that this method works better than ICA and

PCA for both stationary and moving people. Further, the

adaptive LMS filter was used to reduce the motion artifacts

from a corrupted PPG signal [18]. They have used FFT,

SVD, and ICA to generate a noise reference signal, then

applied an adaptive step-size least mean squares (ASLMS)

filter for estimating an artifact-reduced PPG signal. Re-

cently, a supervised learning based approach was proposed

in [19] to estimate the heart rate after extracting PPG sig-

nal obtained from an off-the-shelf webcam. A trained SVM

model is applied as a sliding window on the extracted noisy

PPG signal to filter out false beats introduced by noise. Au-

thors in [20] have used Support Vector Regression (SVR)

on chrominance based method obtained from a video cam-

era.

Almost all of the discussed methods is a post-processing
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based approach aimed at reducing the effects of artifacts

in estimating vital signs from the PPG signal. Rejecting

noise in the data-capturing and pre-processing step could

increase the performance of the algorithm as well as the

post-processing evaluation. The strength of the light con-

taining the pulsatile information that enters the camera is

small compared to the background signal. Eliminating the

direct surface reflection that does not contain pulsatile in-

formation can enhance the PPG signal strength as discussed

in the next section.

2.2. Direct­Global Separation

When a face or other exposed skin area of the human

body is lit by a source of light, and a camera image acquired,

the intensity recorded at each pixel can be viewed as hav-

ing two components, namely, direct and global. The direct

component is due to the direct illumination of the point by

the source and is typically caused due to surface reflection.

The indirect (or global) component in such a scenario is pre-

dominantly composed of the sub-surface reflection compo-

nents, i.e., the photons that penetrate the skin and interact

with deep tissue and then exit the skin after multiple scat-

tering events. In the context of remote PPG estimation, it

is these sub-surface scattered global photons that contain

information about the pulsatile component. Unfortunately,

the direct surface reflection photons are much more numer-

ous than the sub-surface scattered photons and this typically

limits the signal to background ratio in camera-based vital

signs estimation.

Over the last two decades, several computational illumi-

nation and imaging-based techniques have been developed

for separating the direct and the global components of the

image intensity. Two of the most popular and effective tech-

niques are (a) cross-polarization and (b) structured illumi-

nation; both explained next.

2.3. Cross­Polarization

When light interacts with a surface like the human skin,

the surface reflection components retain the polarization

state of incident light. In contrast, the sub-surface scatter-

ing components have, through multiple scattering interac-

tions, completely lost their polarization state and are ran-

domly polarized. This difference can be used to enhance

the sub-surface signal component. As an illustrative exam-

ple, assume that the illumination source is horizontally po-

larized. The surface reflection retains the polarization state

and so remains predominantly horizontally polarized. In

contrast, the sub-surface component has lost its polariza-

tion state and so contains equal parts horizontal and vertical

polarized light. If we add a vertical polarizer in front of the

camera sensor, then most of the horizontal polarized sur-

face reflection is rejected – thereby significantly improving

the sub-surface or global component.

Figure 1: An illustration of on how the cross polarization

works. When polarized light hits the surface of the skin

without penetrating the skin, polarization is retained. When

polarized light penetrates the skin, the light loses its polar-

ization.

There are many applications in using cross-polarizers

from synthesizing novel images to capturing hidden struc-

tures in medical imaging. Specular reflections are polar-

ized while diffuse reflections are unpolarized [21]. Ad-

ditionally, the diffuse amount of polarization depends on

the angles of incidence and reflection [21]. Using these

known properties of polarized light, images were captured

with cross-polarized cameras from multiple directions in a

controlled lighting environment to understand the skin re-

flectance property [22]. With the image collection of skin

appearance with varying polarization, the authors were able

to reconstruct realistic looking subsurface scattering repre-

sentation of skin [22].

Characterizing skin appearance with cross-polarizers has

been studied in biomedical systems as well. Polarizers have

been used with medical imaging systems such as confocal

fluorescence microscopy as well as conventional RGB cam-

eras for acquiring PPG signals [23]. The depolarization of

backscattered light that penetrates into the tissue depends

on the scattering characteristics of the tissue [24]. Studying

how polarized light interacts with different types of tissues

can help non-invasively characterize tumors [25]. The point

spread function of reflected polarized light has been stud-

ied to aid in the application of using cross-polarizers for

imaging superficial tissues [26]. Clinical studies demon-

strate that a camera with cross-polarizers could identify a

more accurate representation the size and margins of lesions

and basal cell carcinomas than a doctor could with her un-

aided eye [25]. Recent work by Sidorov et. al and Trumpp

et. al show experimentally that polarizers benefit camera-
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based photoplethysmography applications [27],[28]. Al-

though polarizers are effective in reducing specular reflec-

tions, it also decreases the intensity of light that passes

through the polarizer by half. Reducing the number of pho-

tons that reach the camera is a limitation especially in low

light scenarios. Structured illumination is an alternative to

separate the global components of light without losing the

light that reaches the camera.

2.4. Structured Illumination

Consider a simple example wherein a structured illumi-

nation pattern is projected on a surface, such as human skin,

the resulting image acquired on an image sensor. The spa-

tial pattern projected on the skin can be decomposed into its

frequency components. The surface reflection (or direct re-

flection) acts as an all-pass filter letting all spatial frequen-

cies to be reflected back towards the camera. In contrast,

the sub-surface scattering acts as a low pass filter, and only

the low spatial frequencies are retained – the higher spatial

frequencies are attenuated by the multiple scattering events.

This difference in how the low and high spatial frequencies

are attenuated by the direct surface reflection component

and the indirect sub-surface component can be utilized to

separate the direct and the global components.

Nayar et. al [29] demonstrated that capturing two images

with a dense binary illumination pattern L and its comple-

ment L̄ can separate the scene into global and direct compo-

nents of light. The irradiances Li and L̄i are compared for

a scene point Si. If Si is lit under a high-frequency pattern,

the irradiances can be written as:

Li = Li
d + γLi

g

L̄i = (1− γ)Li
g

(1)

where Li
d and Li

g are the direct and global components of

the irradiance at a scene point Si and the γ is the fraction

of activated source pixels. If we know which patch is lit

directly by the source in the first image and which is not lit

in the second image, we know the γ term and can compute

the direct and global components at each camera pixel with

the two images. Nayar et. al demonstrated several patterns,

one of which was using checkerboard illumination shifts in

which a number of images are taken with shifted checker

patterns. The maximum and minimum measured bright-

ness found at each pixel are used to compute the direct and

global estimates. High-frequency sinusoidal patterns that

vary over space and/or time can be used for direct-global

separation using three patterns. The brightness of the pro-

jector pixel for the first pattern is generated by using a uni-

form distribution between 0 and 1. Two more patterns are

generated by changing the phases of the sinusoids.

This method was later improved by allowing structured

light algorithms to work in dynamic scenes [30]. Direct-

global separation has also improved the performance of

Figure 2: An illustration of the workings of structured illu-

mination. High-frequency binary pattern is projected onto

the skin. The areas of the skin directly lighted contain only

the surface reflections whereas the areas that are not di-

rectly lighted contain both the global and direct component

of light. Direct reflection acts as an all-pass filter whereas

sub-surface scattering acts as a low pass filter.

structured light 3D reconstruction that excludes global ef-

fects [31]. In medical applications, mapping of tissue opti-

cal properties with modulated imaging has been studied to

characterize diffusive systems [32].

Single image global separation has been explored for ap-

plications where the scene is not static and would benefit

from using all frames in a video. A single-image method us-

ing high-frequency striped patterns to separate global com-

ponents was presented by Nayar et. al [29].To separate the

global component using a single image, first, assign a pixel

a maximum or minimum label in a window around it. Then,

the pixel intensity values at the maximum and minimum

values are interpolated to obtain the Lmax and Lmin at the

full resolution where Lmax is the Li and the Lmin the com-

plement L̄i. Recently, a real-time direct-global separation

method has been developed that uses the relation between

stereo geometry and light transport [33]. The integration of

global-separation into medical applications such as ours for

PPG estimation could be realized as more robust and effi-

cient techniques are developed for global light imaging.

3. Direct Global Separation for Enhancing

iPPG Signal

When light from the projector I hits the skin, a large por-

tion of it b is reflected directly off the skin surface without

penetrating the skin and interacting with the tissue under-

neath. This portion of light does not contain any pulsatile

information. A small portion of light penetrates the skin
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(a) (b)

Figure 3: Separation of a frame into (a) Global component

(b) Direct component. The direct component image shows

the specular reflections from the oils on the skin surface.

surface and gets modulated by the pulsatile blood volume

change waveform p(t). The α term represents the strength

of the modulated light. q(t) is the quantization noise.

y(t) = I(α ∗ p(t) + b) + q(t) (2)

One way to quantify the improvement of signal quality is

by looking at the ratio of the subsurface reflectance α term

and the surface reflection b. Three reflectance terms need to

be considered. When the horizontally polarized light from

the projector reaches the skin surface, it can (1) enter the

skin and reach the pulsed blood beneath, (2) bounce off the

surface of the skin into the camera, or (3) it could enter the

top layer of the skin without reaching the blood vessels.

For quantifying the method using cross-polarizers, let us

define the horizontal component of the polarized light as

having a superscript h and the vertical component of light as

having a superscript v. In the first reflectance case where the

light enters the skin (the subsurface scattering case α) the

horizontally polarized light will lose its polarization state

and will be randomly polarized into αv/2 + αh/2. In the

second case, the light does not enter the skin and will re-

tain its predominantly horizontally polarized state (specular

surface reflectance bhS). The third case is when the light en-

ters only the top portion of the skin that does not contain

pulsatile blood (sub-surface reflectance that does not have

blood interactions bvNS/2+bhNS/2). When the light reaches

the vertical polarizer at the camera side, horizontally polar-

ized components will be eliminated to yield the following:

α

bS + bNS

=
αv/2

bvNS/2
=

αv

bvNS

(3)

The light that enters the camera sensor does not contain

the horizontally polarized specular surface reflectance term

which improves the signal quality.

The structured illumination method also improves the

signal quality by removing the surface reflectance term. The

direct component which is the specular surface reflection

term bS acts as an all-pass filter, letting all high and low

spatial frequencies to be reflected back to the camera. The

sub-surface scattering allows only the low spatial frequen-

cies to be reflected back. The subsurface to surface re-

flectance ratio can be described as the following. We note

the high-frequency signals as having a superscript w and

low-frequency signals as having a superscript l.

α

bS + bNS

=
αl

bwS + blS + blNS

=
αl

blS + blNS

(4)

The global-separation eliminates the specular surface re-

flectance term, thereby increasing the ratio.

4. Video Processing and PPG Extraction

4.1. Structured illumination Direct­Global separa­
tion

The global component was extracted from each frame

of the video using single-image separation as proposed by

Nayar et. al [29]. Although there are ways to separate

the global component with other patterns mentioned ear-

lier, these patterns require more than one image, which in

turn requires us to use a camera with a higher frame rate,

an extension that we plan to study in the future. For 30fps,

the time difference between frames is 33.3 ms which re-

sults in an ambiguity of ±16.6 ms [7]. A projector was

used to project high-frequency binary green and dark pat-

tern of 2-pixel width on the face. For each pixel, we as-

signed it the maximum or minimum label if its brightness is

the maximum or minimum within the 9x1 window around

it. Then the brightness intensity values around those peaks

and valleys were interpolated to obtain the full resolution

Lmax and Lmin image. Single-image global separation

was performed on each frame of the videos. The separated

global and direct components are shown in figure 5. The di-

rect component shows the specular reflections on the face.

The supraorbital ridge (the area between the eyebrows), the

cheek region near the nose, and the eyelids show more

specularities from oils on the skin surface. After all the

frames were global-component-separated, the videos were

passed into the PPG estimation algorithm to estimate the

PPG waveform.

4.2. PPG algorithm

The PPG estimation algorithm was used to measure the

blood volume pulse, as proposed in [7] and is briefly ex-

plained as follows. For every frame, the green channel was

used, because it has been proven in [10] that the absorption

spectra of the prominent blood chromophores are maximum
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Figure 4: Videos are obtained with different illumination. The structured light videos were separated into the global-

component video before passing through the PPG estimation algorithm to yield estimated PPG waveforms. The standard

brightfield illumination and the videos using cross-polarizers were passed into the PPG estimation algorithm without post-

processing. The α, bS and bNS terms are in reference to equations 3 and 4. bS is the specular surface reflection term and the

bNS is the non-specular surface reflection term.

in the passband range of the green filters used in color cam-

eras. Thus green channels from each frame were divided

into grids of 20x20 pixels and the grids confining the face

region are the Region of Interests (ROIs). These ROIs are

then tracked across frames with the help of KLT Motion

Tracker to reduce any effects from motion artifacts. We

then averaged the pixel intensities in each of the ROIs to

reduce the effect of camera sensor noise and the reflected

signal intensity y(r, t) is obtained as:

yr(t) = Ir(αr ∗ p(t) + br) + qr(t) (5)

where yr(t) is the pixel intensity at rth ROI, br is the sur-

face reflectance from the skin surface, αrp(t) is the pulsatile

PPG signal and qr is the additive noise due to sensor noise,

changes in illumination or motion artifacts.

Each of these signals was then filtered with a bandpass

filter having cutoff frequency of (0.5Hz-5Hz). This removes

additional noise which lies beyond the specified frequency

range. The PPG signal estimate is then given by computing

the weighted average of the signals from all ROIs

p̂(t) =

N∑

i=1

G(i)ŷ(i, t) (6)

The weights G(r, t) are computed based on the idea of max-

imal ratio diversity [34]. Based on the assumption that the

pulsatile signals from the ROIs are locally coherent, these

weights are computed as a goodness metric G(r) given by:

G(r) =

∫ PR+bw

PR−bw
Y (r, f)

∫ 5

0.5
Y (r, f)−

∫ PR+bw

PR−bw

(7)

where Y (r, f) is the power spectral density of the filtered

signal ŷ from rth ROI, and PR is the pulse rate. This

estimates the power of the desired signal of interest around

the heart rate region. In our application, we have taken the

bandwidth bw to be 0.2.

5. Methodology

The main goal of the experiment is to quantify the per-

formance of a conventionally recorded video with a global-

separated video. To evaluate how well a globally sepa-

rated video performs we analyzed a video taken through a

polarizer, compared it with a video that had been global-

separated with structured illumination, and a combined

method of using a polarizer and structured illumination at

the same time.

5.1. Data acquisition

We carried out experiments on 28 human subjects (17

male, 11 female) with different skin tones from light, pale

white, to dark brown. 9 subjects from light, 9 from medium,

and 10 from dark skin tone categories were analyzed. The

participants were asked to face the camera and be static for

the duration of the video. A chin rest was provided so that

the subjects could rest on it to stay as motionless as pos-

sible for two minutes. All experiments performed in this

research were approved by the Rice University institute re-

view board (Protocal number: IRB-FY2018-120 , Approval

date: October 10th, 2017).

5.2. Experimental setup and data acquisition pro­
tocol

The experimental setup was organized as illustrated in

Figure 3. Experiments were performed when the subject

was at rest and the chin was rested on a chin rest. We used a

Blackfly USB 3.0 BFLY-U3-23S6C color camera operated

at 30 frames per second with a resolution of 1920x1200 and

8 bits per pixel. An Epson V355 LCD projector was used

as the illumination source for all of the scenarios. The light

intensities reaching the camera sensor was consistent for all
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Figure 5: Setup for imaging PPG signals acquisition from

face. The subject is resting comfortably facing the camera

as the projector illuminates the face. A pulse oximeter was

attached to the finger.

videos at 150 lux. We also used a contact pulse oximeter

BIOPAC MP150 to record contact based PPG signals for

comparison. The same illumination, camera, and ground

truth pulse oximeter were used for all participants.

For the first set of experiment, we recorded a plain video

of the subject’s face at 30 fps. Standard green brightfield

illumination was projected onto the face.

For the second set of experiments using structured illu-

mination, we used a stripe pattern of repeating black and

green lines that are each 2 pixels wide to project onto the

face of the participants.

For the third set of experiments, we used a polarizer

(Thor Labs) in front of the camera and used the standard

green brightfield illumination to record videos.

In the fourth set of experiments, we used both polar-

izer and the structured illumination to record videos. In all

these experiments, contact PPG signal was synchronously

recorded from a pulse oximeter attached to the index finger.

5.3. Performance Metric

We used a signal-to-noise ratio (SNR) of the estimate to

quantify the performance for all the 4 sets of experiments,

and the SNR is calculated as according to the equations as

follows

n(t) = p̂(t)−
〈p̂(t), z(t)〉

〈z(t), z(t)〉
z(t)

s(t) =
〈p̂(t), z(t)〉

〈z(t), z(t)〉
z(t)

SNR =
||s(t)||2

||n(t)||2

(8)

where p̂(t) is the extracted PPG signal, n(t) is the noise,

s(t) is the signal of interest coherent with the ground truth

signal, and z(t) is the PPG signal from the contact pulse

oximeter. It has been assumed that the noise contained in

pulse oximeter signal is negligible compared to that ob-

tained from a camera-based system.

6. Results

We categorized the subjects into different skin tone

categories: light, medium, and dark. The average SNR

for each of these categories and for each illumination are

shown in the table. The standard brightfield illumination

scenario had a lower SNR than the other three scenarios

that remove surface reflections from the scene.

In the light skin-tone category, the global separated video

using structured light performed better with an SNR

improvement of an average of 1.66dB for 9 subjects

(6 males, 3 females). The video using the polarizer

had an improvement of 1.24dB in SNR. The structured

illumination and polarizer combination improved the

SNR by 1.95dB. In the light skin-tone category, the com-

bined method using structured illumination and polarizer

performed best out of the three global-separated techniques.

Tone SBI SI Pol SI + Pol

(dB) (dB) (dB) (dB)

Light 3.28 4.95 4.53 5.23

Medium 3.08 4.57 4.70 5.08

Dark 2.57 3.68 4.17 4.34

Table 1: Standard brightfield illumination (SBI), Structured

illumination (SI), Polarizer (Pol), and the Structured illu-

mination and Polarizer combined method. The combined

method performs the best.

In the medium skin-tone category, 9 subjects were an-

alyzed (7 males, 2 females). The average SNR improved

1.49dB by using global-separation with structured illumi-

nation. The polarizer method improved the SNR by 1.62
dB and the structured illumination and polarizer combined

method improved the SNR the most by 2dB. In the dark

skin-tone category, 10 subjects were analyzed (6 males, 4

females). The SNR improvement using structured illumina-

tion was 1.11 dB. Polarizers increased the SNR by 1.60dB

and the combined structured light and polarizer increased

the dB by 1.76dB.

The standard brightfield illumination without global sep-

aration performed the worst. The video taken with the po-

larizer and the video taken with structured illumination im-

proved the SNR. The combined method performed the best

for the light, medium, and dark skin tones. In all illumina-

tion cases, the videos of light and medium skin tones per-

formed better than that of dark skin tones.

While the average improvement is computed over the

whole exposed region, the improvement in the SNR of spe-

cific skin regions (with high specular component) ranged

from 3.48 dB to more than 5.63 dB. The area between the

eyebrows, eyelid, and the cheek area near the nose are areas
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Figure 6: Three different categories of skin tone are rep-

resented. Four methods were analyzed shown from left to

right: Standard brightfield illumination (SBI), Structured il-

lumination (SI), Polarizer (Pol), and the Structured illumi-

nation and Polarizer combined method. The SNR increases

with global separation and the combined structured illumi-

nation and polarizer method performs the best compared to

the other methods.

with high secular reflections where this large local improve-

ment can have a significant impact.

Cases: SBI SI Pol SI + Pol

(bpm) (bpm) (bpm) (bpm)

HR RMSE : 0.3735 0.33 0.33 0.1680

Table 2: Global separated methods perform better for heart

rate estimation. The combined sturctured illumination and

polarizer method shows the lowest RMSE.

The pulse rate was also extracted from the estimated

PPG signal estimates and was compared to that obtained

from the contact PPG signal. Figure 7 shows the agreement

of the ground truth pulse rate to the estimated pulse rate

from the PPG signal for two separate cases- with standard

brightfield illumination and second, with structured illumi-

nation and polarizer combined. For the standard brightfield

illumination, the mean bias is 0.25 bpm with 95%limit of

agreement being from −0.308 to 0.8057. By using a po-

larizer and structured illumination combined, the estimated

error decreases to a bias of 0.1486 bpm with 95 limit of

agreement between - 0.007 bpm and 0.304 bpm. The root

means square error (RMSE) was also calculated for all the

four sets of experiments and is listed in Table 2. The use of

structured illumination and polarizer combined consistently

performs better than using a simple brightfield illumination.

7. Conclusion

We have presented an improvement in the remote

camera-based estimation of vital signs using direct global

(a)

(b)

Figure 7: (a) PR estimation using Simple Brightfield Illumi-

nation (b) PR estimation using Structured Illumination and

Polarizer combined. The y-axis shows the difference of the

ground truth and the estimated PPG signal. The x-axis is the

mean of the ground truth and PPG. The skin tone is color-

coded and the fair, medium and dark skin tone corresponds

to the blue, red and green respectively.

separation. We explored two techniques using cross-

polarization and structured illumination for direct-global

separation. Four experiments were performed for each of

the 28 subjects: a standard brightfield illumination used for

reference, structured illumination, cross-polarized, and the

combine structured illumination and polarizer. PPG estima-

tion was used to extract the waveforms for which we calcu-

lated the SNR. All of the global-separated results improved

the SNR. The combined polarizer and structured illumina-

tion improve the SNR most.

8. Acknowledgements

We thank Akash Kumar Maity for helping with the writ-

ing of the paper. We also thank all of the subjects that par-

ticipated in the data collection. This work was partially sup-

ported by NSF CAREER Award 1652633, NSF Expeditions

Award 1730574 and NIH grant 5R01DK113269-02.

81495



References

[1] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact,

automated cardiac pulse measurements using video imag-

ing and blind source separation,” Optics Express, vol. 18,

p. 10762, may 2010.

[2] G. de Haan and V. Jeanne, “Robust pulse rate from

chrominance-based rPPG,” IEEE Transactions on Biomed-

ical Engineering, vol. 60, pp. 2878–2886, oct 2013.

[3] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote

plethysmographic imaging using ambient light,” Optics Ex-

press, vol. 16, p. 21434, dec 2008.

[4] W. Wang, A. C. den Brinker, S. Stuijk, and G. de Haan,

“Amplitude-selective filtering for remote-PPG,” Biomedical

Optics Express, vol. 8, p. 1965, feb 2017.

[5] G. de Haan and A. van Leest, “Improved motion robustness

of remote-PPG by using the blood volume pulse signature,”

Physiological Measurement, vol. 35, pp. 1913–1926, aug

2014.

[6] M. Elgendi, “On the analysis of fingertip photoplethysmo-

gram signals,” Current Cardiology Reviews, vol. 8, pp. 14–

25, jun 2012.

[7] M. Kumar, A. Veeraraghavan, and A. Sabharwal, “Distan-

cePPG: Robust non-contact vital signs monitoring using a

camera,” Biomedical Optics Express, vol. 6, p. 1565, apr

2015.

[8] C. Zong and R. Jafari, “Robust heart rate estimation using

wrist-based PPG signals in the presence of intense physi-

cal activities,” in 2015 37th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society

(EMBC), IEEE, aug 2015.

[9] M. Kumar, J. Suliburk, A. Veeraraghavan, and A. Sabharwal,

“PulseCam: High-resolution blood perfusion imaging using

a camera and a pulse oximeter,” in 2016 38th Annual Inter-

national Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC), IEEE, aug 2016.

[10] Y. Sun and N. Thakor, “Photoplethysmography revisited:

From contact to noncontact, from point to imaging,” IEEE

Transactions on Biomedical Engineering, vol. 63, pp. 463–

477, mar 2016.

[11] F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Con-

tactless multiple wavelength photoplethysmographic imag-

ing: A first step toward “SpO2 camera” technology,” An-

nals of Biomedical Engineering, vol. 33, pp. 1034–1041, aug

2005.

[12] S. Hu, V. Azorin-Peris, and J. Zheng, “Opto-physiological

modeling applied to photoplethysmographic cardiovascular

assessment,” Journal of Healthcare Engineering, vol. 4,

pp. 505–528, dec 2013.

[13] L. Tarassenko, M. Villarroel, A. Guazzi, J. Jorge, D. A.

Clifton, and C. Pugh, “Non-contact video-based vital sign

monitoring using ambient light and auto-regressive models,”

Physiological Measurement, vol. 35, pp. 807–831, mar 2014.

[14] B. D. Holton, K. Mannapperuma, P. J. Lesniewski, and J. C.

Thomas, “Signal recovery in imaging photoplethysmogra-

phy,” Physiological Measurement, vol. 34, pp. 1499–1511,

oct 2013.

[15] Y. Sun, “Motion-compensated noncontact imaging photo-

plethysmography to monitor cardiorespiratory status during

exercise,” Journal of Biomedical Optics, vol. 16, p. 077010,

jul 2011.

[16] S. Kwon, H. Kim, and K. S. Park, “Validation of heart rate

extraction using video imaging on a built-in camera system

of a smartphone,” in 2012 Annual International Conference

of the IEEE Engineering in Medicine and Biology Society,

IEEE, aug 2012.

[17] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements

in noncontact, multiparameter physiological measurements

using a webcam,” IEEE Transactions on Biomedical Engi-

neering, vol. 58, pp. 7–11, jan 2011.

[18] M. R. Ram, K. V. Madhav, E. H. Krishna, N. R. Komalla, and

K. A. Reddy, “A novel approach for motion artifact reduc-

tion in PPG signals based on AS-LMS adaptive filter,” IEEE

Transactions on Instrumentation and Measurement, vol. 61,

pp. 1445–1457, may 2012.

[19] A. Osman, J. Turcot, and R. E. Kaliouby, “Supervised

learning approach to remote heart rate estimation from fa-

cial videos,” in 2015 11th IEEE International Conference

and Workshops on Automatic Face and Gesture Recognition

(FG), IEEE, may 2015.

[20] Y. Hsu, Y.-L. Lin, and W. Hsu, “Learning-based heart rate

detection from remote photoplethysmography features,” in

2014 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), IEEE, may 2014.

[21] L. Wolff and T. Boult, “Constraining object features using a

polarization reflectance model,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 13, pp. 635–

657, jul 1991.

[22] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin,

and M. Sagar, “Acquiring the reflectance field of a human

face,” in Proceedings of the 27th annual conference on Com-

puter graphics and interactive techniques - SIGGRAPH 00,

ACM Press, 2000.

[23] A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev,

N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new

look at the essence of the imaging photoplethysmography,”

Scientific Reports, vol. 5, may 2015.

[24] S. G. Demos and R. R. Alfano, “Optical polarization imag-

ing,” Applied Optics, vol. 36, p. 150, jan 1997.

[25] S. L. Jacques and K. Lee, “titlepolarized video imaging of

skin/title,” in Lasers in Surgery: Advanced Characterization,

Therapeutics, and Systems VIII (R. R. Anderson, K. E. Bar-

tels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S.

Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate,

S. L. Thomsen, and G. M. Watson, eds.), SPIE, jul 1998.

[26] S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging

skin pathology with polarized light,” Journal of Biomedical

Optics, vol. 7, no. 3, p. 329, 2002.

91496



[27] I. S. Sidorov, M. A. Volynsky, and A. A. Kamshilin, “In-

fluence of polarization filtration on the information readout

from pulsating blood vessels,” Biomedical Optics Express,

vol. 7, p. 2469, jun 2016.

[28] A. Trumpp, P. L. Bauer, S. Rasche, H. Malberg, and S. Za-

unseder, “The value of polarization in camera-based pho-

toplethysmography,” Biomedical Optics Express, vol. 8,

p. 2822, may 2017.

[29] S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar,

“Fast separation of direct and global components of a scene

using high frequency illumination,” ACM Trans. Graph.,

vol. 25, pp. 935–944, July 2006.

[30] S. Achar, S. T. Nuske, and S. G. Narasimhan, “Compen-

sating for motion during direct-global separation,” in 2013

IEEE International Conference on Computer Vision, IEEE,

dec 2013.

[31] M. Gupta, A. Agrawal, A. Veeraraghavan, and S. G.

Narasimhan, “A practical approach to 3d scanning in the

presence of interreflections, subsurface scattering and de-

focus,” International Journal of Computer Vision, vol. 102,

pp. 33–55, Mar 2013.

[32] D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and

B. J. Tromberg, “Quantitation and mapping of tissue optical

properties using modulated imaging,” Journal of Biomedical

Optics, vol. 14, no. 2, p. 024012, 2009.

[33] M. OToole, J. Mather, and K. N. Kutulakos, “3d shape

and indirect appearance by structured light transport,” IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol. 38, pp. 1298–1312, jul 2016.

[34] D. Brennan, “Linear diversity combining techniques,” Pro-

ceedings of the IRE, vol. 47, pp. 1075–1102, jun 1959.

101497


