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Abstract

In this paper, we present a versatile methodology to

accomplish the non-contact monitoring of heart rate sig-

nals in unconstrained environments, by combining the con-

volutional neural network (CNN) skin detection and the

camera-based remote photoplethysmography (rPPG) meth-

ods. Compared to the widely-used three-step skin detection

method (i.e., face detection, face tracking, and skin classifi-

cation), the CNN method used here could enhance the mon-

itoring robustness by achieving the skin detection in a single

step. The proposed CNN-rPPG method has been tested in

an unconstrained office environment to validate its applica-

bility. Combined with the subsequent rPPG heart rate mon-

itoring based on a low-cost camera, the method presented

here is of practical interests for the large-scale deployment

of the non-contact heart rate monitoring technologies.

1. Introduction

Due to its convenience to achieve harass-free continu-

ous monitoring of the vital signs (e.g., the heart rate), the

camera-based remote photoplethysmography (rPPG) meth-

ods have spurred intensive research interests in the past

decade. In the recent years, a lot of rPPG algorithms have

been proposed, e.g., the independent component analysis

(ICA) method [11], the principal component analysis (PCA)

[2], the sub-band rPPG method [14], etc., which are promis-

ing for the next-generation non-contact monitoring of vital

signs in various unconstrained environments, like hospitals,

homes, offices, gymnasiums, and public space, etc.

Though these camera-based rPPG algorithms achieve

the non-contact vital signs monitoring by using different

methodologies, they share a common step C the skin de-

tection. Since the heart rate signals are extracted from the

intensity of the electromagnetic waves (e.g., the visible light

during daytime, the infrared light during nights) reflected

from the skin region, a robust method to tell the skin re-

gion from the non-skin region in the video is the indispen-

sible beginning step for all non-contact rPPG algorithms.

The conventional skin detection methods typically consist

of three consecutive steps: (1) the face detection, (2) the

face tracking, and (3) the skin classification. These conven-

tional skin detection methods suffer from two main draw-

backs. Firstly, they are limited to the face skin detection.

Secondly, their final detection results hinge on the success

of each of the three steps in a consecutive manner.

These two drawbacks are noteworthy obstacles that hin-

der the potential large-scale deployment of the promising

rPPG technologies. In a lot of application scenarios, only

non-face skin regions, e.g., arms, legs, etc., are exposed to

the camera. Though these non-face skin regions display

highly valuable vital sign signals, the conventional three-

step skin detection method cannot be applied. Furthermore,

in the three-step skin detection method, the failure of the

face detection step or the face tracking step will disable the

subsequent rPPG functionality, imposing unnecessary con-

straints on the posture of the subjects being monitored.

As an early-stage attempt to remove these two inconve-

nient drawbacks, in this paper we apply the convolutional

neural network (CNN) method to detect skin regions for the

subsequent rPPG heart rate monitoring. Actually, recent

studies have shown that the CNN is capable of achieving

robust pixel-level skin detection [4, 8, 17, 19, 18],indicating

promising application scenario in the vital sign rPPG moni-

toring [5, 6, 10, 13, 15, 16, 3].For instance, Chaichulee et al.

applied multi-task CNN to accurately detect the baby skin,

and proved that the CNN is highly adaptable to different

skin tones, postures, and illumination conditions [3].

However, the multi-task CNN was tested using an expen-

sive industry-level camera. To enable large-scale deploy-

ment, it deserves research efforts to test it using more af-

fordable cameras. In addition, although it is known that the

CNN could achieve the pixel-level skin detection, the direct

combination of CNN and rPPG (CNN-rPPG) has not been

thoroughly investigated, and it is still an open question that

how well the CNN-based skin detection method could help
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improving the non-contact rPPG heart rate monitoring.

In this paper, non-contact heart rate monitoring is tested

based on the CNN-rPPG method, by using an inexpensive

commodity-level camera (about 30 US dollars). We first

use the CNN to accomplish skin detection. Then, the rPPG

technologies are used to extract the heart rate signals from

the detected skin regions. The results of the CNN-rPPG

method are validated by comparing against the heart rate

ground truth, in an unconstrained office environment.

In Section 2, the CNN-rPPG methodology is introduced.

In Section 3, the results are shown and validated by com-

paring with the ground truth of a contact-based heart rate

monitor in the office environment. In Section 4, the gener-

ality of the CNN-rPPG methodology is studied and verified.

In Section 5, a conclusion is made.

2. Methodology

As shown in the schematic flowchart in Figure1, the

CNN-rPPG methodology consists of four parts. Firstly, a

video database containing both the skin regions and the non-

skin environment is created. Secondly, the 8-layer CNN is

trained using the database to tell the skin regions from the

non-skin regions. Thirdly, the trained CNN is used to detect

the skin regions in new videos. Fourthly, from the detected

skin regions, the rPPG algorithms are applied to obtain the

heart rate.

These four parts are introduced in the Section 2.1, Sec-

tion 2.2, Section 2.3, and Section 2.4, respectively.

2.1. Video database creation

To prepare the skin region samples, a total number of

45 videos that contain the skin region are recorded, and

each video is 1 minute long. From each recorded video,

10 frames are extracted at equal intervals. From the 45

videos, 30 videos are used for training the CNN model and

15 videos are used for testing the CNN-rPPG method.

To prepare the non-skin region samples, a total number

of 407 frames are used. These frames contain non-skin in-

door environment objects like walls, desks, chairs, cups,

books, and windows, etc.

As shown in Figure 2, the video database is created in

the typical indoor environment (e.g. offices, laboratories,

and libraries, etc.) with ordinary ceiling illumination (e.g.

16 watts fluorescent lamp).10 male subjects and 5 female

subjects (about 20 to 30 years old, yellow skin) are asked to

sit still or exercise gently. The subjects are about 2 me-

ters away from a low-cost camera (ELP-USB30W04MT-

RL21 model, 640 × 480 pixels resolution, 30 frames per

second, around 30 US dollars). During the video recording,

the heart rate ground truth of these subjects is recorded by

using a contact-based heart rate monitor, as shown in Figure

1.

2.2. CNN model training

The training of the CNN model is performed using the

MatConvNet package [12]. To train the CNN model, the

skin and non-skin regions are manually segmented from the

video frames. The manually-segmented skin regions are

used as positive samples. The non-skin video frames, as

shown in the Figure 2(b), are used as negative samples.

The eight-layer CNN model structure is shown in Table

1. The first two layers of CNN are used for low-level fea-

ture extraction. The first layer is a convolution kernel with

a size of 5× 5, generating 20 feature maps. The pool layer

of the second layer performs maximum down-sampling of

2 × 2 on the basis of the output of the previous convolu-

tion layer without overlapping. In the next two alternating

layers, the convolution layer has a 10 × 10 kernel, and the

max-pooling layer has a 2 × 2 kernel, which generates 200

feature maps for detecting higher-level image features. The

next fifth convolution layer has 500 feature maps, and the

kernel size is set to 10× 10. The Relu layer follows imme-

diately after the convolution layer. The remaining convolu-

tional layer and Softmax layer implement the classification

function. During the CNN model training, each sample im-

age was normalized to a size of 64 × 64, and the learning

rate was set to 0.0005, the batch size is set to 200, and the

training time periods is 30.

Figure 1. Schematic flowchart of the proposed methodology to achieve non-contact heart rate monitoring, by combining the convolutional

neural network (CNN) skin detection and the rPPG technologies (CNN-rPPG). The CNN-rPPG results are validated by comparing against

the ground truth of a contact-based heart rate monitor.
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(a)

(b)

Figure 2. The selected positive-sample (skin) samples segmented

from the video frames (a) and the selected negative (non-skin)

video frames (b) used to train the CNN model. In the positive skin

samples, no face detection or tracking is needed. The CNN-based

skin detection is accomplished directly in the pixel-level.

CNN layer Layer type
Number of

Input size
Feature map

Layer 1 Conv. 20 64× 64
Layer 2 mPool 20 60× 60
Layer 3 Conv. 200 30× 30
Layer 4 mPool 200 21× 21
Layer 5 Conv. 500 11× 11
Layer 6 Relu 500 2× 2
Layer 7 Conv. 4 2× 2
Layer 8 Softmax 1 1× 1

Table 1. Parameters of the CNN model, where Conv. represents a

convolutional layer, mPool represents a max-pooling layer, Relu

represents an excitation layer, and softmax represents a classifica-

tion layer.

2.3. Skin detection

Using the CNN mode trained in Section 2.2, the skin

regions are detected from the 15 testing videos as mentioned

in Section 2.1.

During skin detection, the sliding window size is 20×20

without overlapping. The positive training samples are the

manually-segmented skin regions, which contain no clear

edge contour information. So, the sliding movement goes

through, without overlapping, all the 20× 20 small equally

cut windows from the full testing image. Only when both

the texture information and color feature are close enough

the ones trained by CNN models, the small window will be

retained.

Figure 3. Schematic skin detection process using the CNN-based

method.

2.4. Heart rate extraction

The cameras typically use an 8-bit integer to represent

one channel of a pixel, i.e., vi=0 to 255 where i=red, green,

blue are the three channels. Due to the low-cost require-

ments for large-scale deployment, vi is generally subject to

a ∆vi=±1 or ±2 noise introduced by the low-quality sen-

sor, lens, or peripheral electrical circuits, etc.

In the CNN-based skin detection step, this noise has

small impacts on the detection results. However, in the heart

rate extraction step, the ∆vi has considerable impacts, since

the heart beats could cause a change of only around ±2 to

±3 to the vi.

Fortunately, the ∆vi typically has different magnitudes

for different channels in a low-cost camera. Therefore,

though multi-channel-based rPPG algorithms typically out-

perform the single-channel-based rPPG algorithms while

using the expensive industry-level cameras [14], the rPPG

algorithms based on single-channel video inputs could po-

tentially offer more reliably heart rate extraction results

by selecting the least noisy channel from the low-cost

commodity-level cameras. Furthermore, the single-channel

rPPG deserves special attention for versatile large-scale ap-

plications, since it is useful for heart rate extraction from

the infrared cameras during the nights.

Therefore, here we use the green channel of the low-

cost camera as input (Section 2.1), to extract HR signals

using the well-established single-channel independent com-

ponent analysis (ICA) method [7] and single-channel prin-

cipal component analysis (PCA) method[2], in four consec-

utive steps. In the first step, the green channel of the pixels
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in the skin regions detected using the CNN model (Section

2.3) is averaged into a single-channel time-dependent sig-

nal, xt.

In the second step, by following the methodology used

in [9], the delay matrix

X =











xt xt+τ · · · xt+Nτ

xt+τ xt+2τ · · · xt+(N+1)τ
...

...
. . .

...

xt+(m−1)τ xt+mτ
· · · xt+(N+m−1)τ











(1)

is constructed from xt, where τ is the lag term which is set

as 1
fs

ms, where fs is the number of frames per second used

to record the video.

In the third step, the single-channel ICA method or the

single-channal PCA method are used, in order to process

the raw input data to enhance the quality of the following

HR extraction calculation. The single-channel ICA calcu-

lations are performed by using the FastICA package, which

is based on the Hyvarinen’s fixed-point algorithm [1]. The

ICA is applied to decompose the delay matrix, X, into a

series of independent components, si. The p (p < m) in-

dependent components with the largest signal noise ratio

(SNR)

SNR =
maxj |Fj |2
∑

j |Fj |2
(2)

is selected, to construct the embedding matrix

Bi = ais
T
i , (i = 1, 2, ..., p) (3)

in the measurement space. Here, Fj is the jth component of

the fast Fourier transform (FFT) of the independent compo-

nent in the frequency-domain; and ai is the corresponding

column of the mixing matrix. Then, the output time series

y(t) =
1

m

m
∑

k=1

Bi
k,t+k−1 (4)

could be obtained by averaging the rows of the matrix Bi.

Alternatively, the single-channel PCA method can be

used to generate the output time series, in the third step.

In the single-channel PCA calculations, the singular value

decomposition

X
T
X = WΣ̂

2
W

T (5)

is used to replace the ICA to achieve decomposition, where

W is the eigenvector matrix, and the singular values σk of

Σ and the eigenvalues λk of XX
T satisfy the relation σk =√

λk.

In the fourth step, the output time series from the single-

channel ICA/PCA calculation is used as the input, to run

the FFT calculations. The peak of the FFT spectrum corre-

sponds to the extracted HR value.

3. Results

In this section, the heart rate results are obtained. Firstly,

the video quality required by the single-channel ICA and

PCA rPPG algorithms is verified using a manually-selected

rectangular reference skin region of interests (RoI), which

is introduced in Section 3.1. Then, by combining the CNN-

based skin detection and the single-channel ICA/PCA-

based rPPG, the heart rate signals are extracted, as presented

in Section 3.2. In Section 3.3, a comparison between the

reference RoI method and the CNN-based RoI method is

presented.

3.1. Reference RoI method

As a comparison, first the skin RoI is manually selected

as shown in Figure 4 for the ICA and PCA rPPG heart rate

extraction.

The results are shown in Table 2, which are in decent

agreement with the ground truth measured by using the

contact-based monitor.

Figure 4. Schematic skin detection process using the manually-

selected reference RoI method.

3.2. CNN­based RoI method

After verifying that the video quality of the low-cost

camera could satisfy the rPPG requirement (Section 3.1),

the CNN-rPPG method is applied in this section.

As shown in Figure 5, the CNN training errors decrease

gradually. After a certain number of epochs, the training

errors approach zero, indicating the success of the training

of CNN models. Then, the trained CNN model is validated

by using the 15 testing videos as introduced in Section 2.1.

As shown in the Figure 6, the skin/non-skin pixels can be

reliably segmented based on the CNN model.

From the skin pixels segmented by the CNN model, the

ICA and PCA rPPG heart rate (HR) signals are extracted, as

shown in Table 3. It can be seen that all rPPG HR results are

within the range [R-3, R+3] beats per minute (bpm), where

R is the ground truth value of the HR measured by using the

contact-based monitor.
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subject True HR(bpm)

Reference RoI method

ICA PCA

HR err HR err

1 54 54.5 0.5 54.3 0.3

2 64 63.3 -0.7 63.1 -0.9

3 75 72.8 -2.2 72.5 -2.5

4 73 73.3 0.3 74.0 1.0

5 79 77.8 -1.2 78.5 -0.5

6 64 64.6 0.6 64.4 0.4

7 64 65.7 1.7 65.4 1.4

8 62 61.7 -0.3 61.5 -0.5

9 75 77.7 2.7 77.4 2.4

10 57 57.5 0.5 57.3 0.3

11 85 84.7 -0.3 84.4 -0.6

12 68 70.7 2.7 70.4 2.4

13 61 62.6 1.6 62.3 1.3

14 69 69.9 0.9 69.6 0.6

15 62 61.7 -0.3 62.4 0.4

Average error 1.10 1.03

Table 2. Heart rate (HR) results, in the unit of beats per minute

(bpm), computed by using the manually-selected rectangular ref-

erence RoI skin detection and the ICA and PCA heart rate extrac-

tion rPPG algorithms.

Figure 5. Error reduction process of the CNN model training pro-

cess.

3.3. Comparison and discussion

As shown in Table 2 and Table 3, both RoI selection

methods could offer reliable skin detection results for the

subsequent single-channel rPPG extraction from the low

cost camera. However, the CNN-based RoI skin detection

is the only viable choice in the real application scenarios,

since it is impractical to manually segment skin pixels from

the widely deployed rPPG monitors.

While comparing the results in Table 2 and Table 3, it

Figure 6. The skin detection results (top panel) and the binary skin

mask (bottom panel) obtained by using the trained CNN model.

worth noting that the ground truth measurement device only

has an accuracy of ±1 bpm. Therefore, one should not infer

that reference RoI method (average errors: 1.10 and 1.03)

is better than the CNN-based RoI method (average errors:

1.23 and 1.08).

As shown in Table 3, both the ICA and the PCA could

obtain accurate HR results with the help of the CNN-based

skin detection. This indicates that the CNN model is com-

patible with different single-channel rPPG methods.

It worth noting that the above-mentioned testing of

the CNN-rPPG method is done in unconstrained office

environments with different illumination (e.g., day/night,

bright/dark) and background (e.g., wall, windows, desks,

chairs, etc.) conditions. Also, the CNN-rPPG works well to

monitor subjects with various postures and true HR values.

As a continuation of the prior work of CNN-based skin

segementation [3], which is used in a simple neonate incu-

bator environment, this paper further proves the versatility

of the CNN-rPPG methodology. The robustness (compared

to the widely-used three-step skin detection), the adaptabil-

ity (in various unconstrained environments), and the low-

cost feature of the CNN-rPPG demonstrated in this paper

pave a way for next-generation large-scale deployment of

the promising camera-based rPPG technologies.

As an early-stage exploration of the CNN-rPPG appli-

caitons, this paper used the green channel camera signals

to realize the single-channel ICA/PCA HR extraction, since

the green channel is known to display strong rPPG signals.

To explore more versatile applications (e.g., the totally dark

nights), it deserve future attention to research the single-

channel CNN-rPPG based on low-cost infrared cameras.

4. General applicability

To further verify that the proposed CNN-rPPG method-

ology is generally applicable in different unconstrained en-

vironments, two additional sets of video data are recorded,
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subject True HR(bpm)

CNN-based RoI method

ICA PCA

HR err HR err

1 54 54.5 0.5 54.2 0.2

2 64 61.6 -2.4 62.2 -1.8

3 75 72.7 -2.3 72.4 -2.6

4 73 73.7 0.7 73.4 0.4

5 79 78.6 -0.4 78.4 -0.6

6 64 64.6 0.6 64.3 0.3

7 64 65.6 1.6 65.3 1.3

8 62 61.6 -0.4 61.3 -0.7

9 75 77.7 2.7 77.3 2.3

10 57 77.7 2.7 77.3 2.3

11 85 84.8 -0.2 84.4 -0.6

12 68 70.5 2.5 70.3 2.3

13 61 62.6 1.6 62.3 1.3

14 69 70.6 1.6 70.3 1.3

15 62 61.67 -0.47 62.3 0.3

Average error 1.23 1.08

Table 3. Heart rate (HR) results, in the unit of beats per minute

(bpm), computed by using the CNN-based RoI skin detection and

the ICA and PCA heart rate extraction rPPG algorithms.

besides the testing video data as introduced in Section 2.1.

Each set of additional video data sets consists of 8 different

subjects in a totally different office environment, as shown

in Figure 7 and Figure 8.

As shown in Figure 7 and Figure 8, the CNN skin de-

tection model could reliably achieve the pixel-wise skin

segmentation, which paves a way for the subsequent reli-

able rPPG HR extraction. As shown in Table 4 and Table

5, when applied on different subjects in different uncon-

strained environments, the proposed CNN-rPPG method

could obtain HR results that match well with the ground

truth HR.

Figure 7. The snapshots (top panel) and the binary skin mask (bot-

tom panel) of additional video data set #1, where the binary skin

mask is obtained by using the trained CNN model as introduced in

Section 3.2.

Figure 8. The snapshots (top panel) and the binary skin mask (bot-

tom panel) of additional video data set #2, where the binary skin

mask is obtained by using the trained CNN model as introduced in

Section 3.2.

subject True HR(bpm)

CNN-based RoI method

ICA PCA

HR err HR err

1 62 59.4 -2.6 62.3 0.3

2 76 77.6 1.6 77.5 1.5

3 62 61.4 -0.6 61.3 -0.7

4 78 81.0 3 76.2 -1.8

5 53 53.3 0.3 53.2 0.2

6 60 57.1 -2.9 57.2 -2.8

7 63 63.3 0.3 60.6 -2.4

8 59 57.5 -1.5 60.3 1.3

Average error 1.60 1.38

Table 4. Heart rate (HR) results of the additional video data set #1

computed by using the proposed CNN-rPPG method.

subject True HR(bpm)

CNN-based RoI method

ICA PCA

HR err HR err

1 79 82.7 3.7 81.3 2.3

2 56 54.4 -1.6 54.5 -1.5

3 89 90.5 1.5 91.4 2.4

4 81 79.4 -1.6 79.3 -1.7

5 85 85.4 0.4 85.4 0.4

6 60 59.5 -0.5 61.3 1.3

7 72 73.6 1.6 72.3 0.3

8 80 78.7 -1.3 79.3 -0.7

Average error 1.53 1.33

Table 5. Heart rate (HR) results of the additional video data set #2

computed by using the proposed CNN-rPPG method.

5. Conclusion

In this paper, we achieved non-contact monitoring of the

heart rate (HR) by combining the convolutional neural net-

work (CNN) skin detection and the camera-based remote
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photoplethysmography (rPPG) method. Though it is known

that the CNN could achieve skin detection reliably, this is

the first time according to our knowledge that the CNN skin

detection and the rPPG technologies are directly combined

to accomplish the non-contact HR monitoring.

The CNN-rPPG methodology presented here has several

noteworthy merits for the potential large-scale deployment

of the rPPG technologies. Firstly, due to the flexibility of

the pixel-level skin detection of the CNN method, the CNN-

rPPG method is capable of monitoring the HR in the uncon-

strained environments, by extracting the vital sign signals

from any face skin region or non-face skin region.

Secondly, it is demonstrated that the CNN-rPPG method

works well using a low-cost commodity-level camera,

which is highly desirable for affordable large-scale appli-

cations.

Thirdly, it is shown that the CNN-rPPG method could

accomplish the non-contact HR monitoring by using the

single-channel video stream input, which is promising for

applications during nights based on the gray scale infrared

video input. Compared to the existing multi-channel rPPG

algorithms, the single-channel CNN-rPPG method used

here offers additional freedom to choose the least noisy

channel of the inexpensive low-quality cameras and hard-

ware.

Due to these merits, the CNN-rPPG method, as demon-

strated in this concept-proof preliminary research, is

promising to realize low-cost large-scale application of the

next-generation non-contact vital sign monitoring.
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