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Abstract

Remote photoplethysmography (rPPG) has recently at-

tracted much attention due to its non-contact measurement

convenience and great potential in health care and com-

puter vision applications. However, almost all the exist-

ing rPPG methods are based on uncompressed video da-

ta, which greatly limits its application to the scenarios that

require long-distance video transmission. This paper pro-

poses a novel framework as a first attempt to address the

rPPG pulse extraction in presence of video compression ar-

tifacts. Based on the analysis of the impact of various com-

pression methods on rPPG measurements, the problem is

cast as single-channel signal separation. The framework

consists of three major steps to extract the pulse wavefor-

m and heart rate by exploiting frequency structure of the

rPPG signal. A benchmark dataset which contains station-

ary and motion videos has been built. The results show that

the proposed algorithm significantly improves the SNR and

heart rate precision of state-of-the-art rPPG algorithms on

stationary videos and has a positive effect on motion videos

at low bitrates.

1. Introduction

Remote photoplethysmography (rPPG), also known as

imaging photoplethysmography (iPPG), aims at detecting

human cardiac activities by means of a digital camer-

a. The periodical cardiac activities lead to fluctuations in

the amount of blood volume in the microvascular beneath

the skin tissues thereby causing skin color variations that,

though invisible to naked eyes, can be perceived by an op-

tical camera. Compared with the conventional contact PPG

measurement like the pulse oximeter, the non-contact rPPG

causes no skin irritation and imposes no constraints on body

motion. This technique has led to a variety of applications

such as heart rate (HR) [12], respiratory rate [25], and SpO2

[7] monitoring, arterial stiffness assessment [20], living-

skin detection for face anti-spoofing [13, 31], etc. It also

has a great potential in health care and computer vision ap-

plications such as fitness training [29], home care services,

sleep monitoring, driver auxiliary system, etc.

Numerous methods have been proposed during the last

few decades for robust signal extraction. The biggest chal-

lenge is the suppression of motion artifacts (MAs), i.e., the

color variation caused by body motion whose signal power

is usually larger than that of the pulse signal. The methods

can be classified into three major groups: 1) blind source

separation (BSS)-based methods, which separate rPPG sig-

nal from multiple sources using independent component

analysis (ICA) [19, 21, 16] or principal component anal-

ysis (PCA) [11]; 2) data driven methods, which extrac-

t pulse signal without physiological considerations by ex-

ploiting, for example, spatial subspace rotation [32], spatial

redundancy [30], or head motion [3]; and 3) model based

methods, which are based on the optical/physiological prin-

ciples, e.g., the skin reflection model [5, 6, 28], or the

camera-based signal acquisition model [33, 10]. For a thor-

ough review of the development of rPPG, please refer to

[18, 24, 23, 2].

There exists one question that is crucial but has not

gained much attention: the impact of video compression

on rPPG measurements (referred to as video compression

artifacts, VCAs). Nearly all the existing rPPG methods are

designed based on uncompressed video data. One of the

main issues is that video data occupy a large amount of stor-

age space, which is unsuitable for sharing databases online.

For example, a 1-minute uncompressed video file of size

640 × 480 needs approximately 1.7 GB hard disk space.

rPPG researches always require video data of duration in

hours. The most important issue is that, without compres-

sion, it is impossible to apply rPPG to the cases that need

telecommunication, e.g., remote homecare where video da-

ta need to be transmitted from remote clients to the health
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care center for analysis. The uncompressed video usual-

ly has a bitrate over 220 Mb/s, which largely exceeds the

transmission capability of current telecommunication tech-

nology. Existing rPPG algorithms can only be applied on

site rather than remotely. Another example is the mobile

apps for heart rate monitoring. The uncompressed video

has to be processed on the user’s cell phone rather than u-

ploaded to the cloud, leading to a less accurate result due

to insufficient computing resources on the mobile devices.

Therefore, to develop algorithms for reliable rPPG extrac-

tion based on the compressed videos plays a crucial role in

widening its real-world applications.

Only a few researchers have noticed this issue and done

some preliminary works. Hanfland and Paul [8] pointed out

that rPPG signals are mostly conserved by video compres-

sion but the overall quality is altered. McDuff et al. [17]

studied the effects of two sets of commonly used compres-

sion methods (x264 and x265) and a series of compression

ratios (constant factor rate). They found that compression

considerably degrades the signal to noise ratio (SNR) of ex-

tracted rPPG signals given by existing rPPG algorithms but

retains rPPG signal undestroyed. These researches only an-

alyzed the impact of compression on rPPG measurements.

To the best of our knowledge, no solution has been given

for pulse signal extraction on compressed videos, which is

exactly the main purpose of this paper.

A thorough analysis of VCAs is first conducted by com-

pressing the raw videos using 4 compression methods to a

wide range of bitrates. We formulate this problem as single-

channel pulse extraction in presence of VCAs and MAs. A

novel framework is proposed which consists of three ma-

jor steps: G-channel band-pass filtering, singular spectrum

analysis (SSA) with reconstructed component (RC) selec-

tion, and spectral masking. A benchmark dataset, in which

subjects were asked to perform stationary and motion task,

was built to evaluate the performance of the proposed algo-

rithm in comparison with several state-of-the-art algorithm-

s in terms of SNR and heart rate precision. Strength and

weakness of the proposed algorithm are discussed. The con-

tributions of this paper are summarized as follows:

1. A novel framework that employs single-channel sig-

nal processing is proposed as a preliminary attempt

to address the problem of rPPG pulse extraction on

compressed videos.

2. Analysis of the video compression artifacts is given,

which serves as a reason to explain the failure of the

existing rPPG methods and an insight to developing

new algorithms.

3. Four compression methods (x264, x265, vp8, & vp9),

2 motion types (stationary and motion), and a wide

range of target bitrates (from 100 kb/s to 20 Mb/s)

have been studied in order to cover a wider range of

rPPG applications.

2. Analysis of video compression artifacts

The raw videos are compressed using four popular com-

pression methods widely used in video compression appli-

cations. The impact of VCAs is analyzed by comparing d-

ifferences between rPPG measurements from raw and com-

pressed videos. rPPG measurements (traces) denote the

three-channelled time series representing the color varia-

tions in RGB channels of the facial skin region pixels ob-

tained according to the spatial averaging described in Sec-

tion 3.1. Three types of VCAs are observed: a) ampli-

tude deterioration; b) high-frequency structured noise; and

c) trace discontinuity. We first describe the three VCAs,

briefly point out the causes, explain the failure of the ex-

isting rPPG algorithms, and finally present the idea of the

proposed algorithm.

Amplitude deterioration means that the pulse ampli-

tude tends to be attenuated as the bitrate decreases. An ex-

ample is shown in Figure 1, where the trace in Green chan-

nel and its corresponding spectrum are plotted. A clear de-

terioration of the pulse amplitude is observed as the bitrate

decreases. Even the waveform, not only the amplitude, has

got a serious erosion at a bitrate of 100 kb/s. The deterio-

ration effect can be seen more obviously in the frequency

domain, where a dramatic drop in the power of the compo-

nents with frequency at 1.2 Hz is observed.

(a
) 

R
A

W
(b

) 
1

0
5

4
 k

b
/s

(c
) 

1
0
0

 k
b

/s

Frequency spectrumTrace in G channel

Time (s) Frequency (Hz)

Figure 1. Amplitude deterioration. G-channel trace and its fre-

quency spectrum are plotted in each row. (a) Trace extracted from

the uncompressed video; (b) Trace extracted from the compressed

video at a bitrate of 1054 kb/s; (c) Trace extracted from the com-

pressed video at a bitrate of 100 kb/s.

High-frequency structured noise is another type of V-

CAs that arises during compression. It mainly appears in

x264 compressed videos. An example is shown in Figure 2,

where the R-channel trace and its corresponding spectrum

are plotted. In comparison with the RAW video trace, 3420

kb/s video trace has an obvious high-frequency structured

noise added to the original rPPG signal, i.e., two peaks at
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around 7.5 Hz in the spectrum are observed. As the bi-

trate decreases, the power of the noise first increases to be

comparable to the pulse signal and then decreases to disap-

pear when bitrate = 100 kb/s. The noise has fixed frequen-

cy across subjects and bitrates but has different powers in

three color channels, i.e., significant in R and B but less in

G channel.
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Figure 2. High-frequency structured noise. R-channel trace and its

frequency spectrum are plotted in each row. (a) Trace extracted

from the uncompressed video; (b) Trace extracted from the com-

pressed video at a bitrate of 3420 kb/s. (c) Trace extracted from

the compressed video at a bitrate of 325 kb/s.

Trace discontinuity. The traces start to be discontin-

uous when the bitrate becomes very low, e.g., the trace is

added by impulse or step noise. Examples are shown in

Figure 3. Trace discontinuity is observed in x264, vp8, and

vp9 video in 300-100 kb/s. However, it is not observed in

x265 videos at least when bitrate is above 100 kb/s. Ta-

ble 1 summarizes the presence of VCAs in each of the four

compression methods.

(a) Impulse noise from x264 video

(b) Impulse noise from vp8 video (c) Step noise from vp9 video

Figure 3. Trace discontinuity. Sample traces containing impulse

and step noise extracted from x264, vp8, and vp9 videos.

Various steps in the video compression pipeline may

cause such detrimental effects on the rPPG measurements

Table 1. Presence of VCAs in four compression methods

x264 x265 vp8 vp9

presence of VCAs a,b,c a a,c a,c

because rPPG signals belong to the imperceptible color

variations that video compression is designed to elimi-

nate. Amplitude deterioration has a close relationship with

intra-frame compression (reduced spatial redundancy in the

region-of-interest (ROI)), chroma subsampling (reduced s-

patial redundancy in color space), and motion compres-

sion (smoothed temporal oscillation). Trace discontinuity

is probably due to the intra-frame (I-frame) compression,

where the I-frame is encoded independently without taking

any previous/subsequent frames into account.

The failure of the existing rPPG methods becomes easy

to explain, i.e., no techniques are designed for VCA sup-

pression. For example, PCA is sensitive to the outliers [34],

which is the case of trace discontinuity. The skin reflection

model has indeed a noise term but it is designed for Gaus-

sian noise rather than the high-frequency strucured noise.

Moreover, amplitude deterioration is most likely to change

the color variation directions in the skin reflection model

such that the methods based on this model would be influ-

enced.

Although VCAs have introduced corruption to the rPPG

measurements, the pulse signal can still be extracted as long

as it is not fully corrupted. We cast this problem as single-

channel pulse extraction. For each color channel, the ob-

served signal y ∈ R
l1 of length l1 can be expressed as:

y = ydc + fc(m+ p) (1)

where ydc,p,m denote the DC component, the zero-mean

pulse signal, and the motion artifact, respectively, and fc
denotes a function that introduces VCAs. The purpose is to

extract p from y.

3. The proposed framework

The overview of the proposed framework is plotted in

Figure 4. Windowed G trace signal is decomposed by S-

SA and reconstructed by an RC selection criterion. Overlap

adding concatenates windowed signals to a full length sig-

nal, based on which the instantaneous HR is calculated as a

reference to spectral masking. The final output is the refined

pulse signal and the instantaneous HR.

3.1. ROI tracking and spatial averaging

The ROI is designated as the nose and cheek regions (see

Figure 4) as they contain little motion artifacts caused by

talking or blinking. The initial ROI is selected manually

and tracked by Staple (Sum of Template And Pixel-wise

LEarners) [4]. Given the bounding box of a frame, spa-

tial averaging [19] is applied to compute the average value
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Figure 4. Framework overview.

of pixels in each color channel within the bounding box,

resulting in a 3 × 1 column vector. The rPPG traces are

obtained by concatenating the column vector of each frame

into a matrix.

3.2. Single­channel band­pass filtering

The analysis of VCAs indicates that a band-pass filter is

necessary for pulse extraction. However, the combination of

three color channels as in most existing algorithms proves

to be infeasible because R and B channels are highly pollut-

ed by VCAs. Note that the VCAs have different strengths in

three color channels. The high-frequency structured noise

and trace discontinuity mainly appear in R and B channels

and become less significant in G. G channel is mainly af-

fected by amplitude deterioration. Hence, we choose the

signal in G channel and discard R and B channels for further

processing. A band-pass filter is applied to the G channel

signal with cutoff frequency [0.8 5] Hz ([48 300] bpm).

3.3. SSA decomposition and RC selection

The benefit of single-channel pulse extraction is that the

impact of VCAs can be reduced to the minimum. Howev-

er, a new issue arises because existing rPPG methods can-

not be applied since they are based on multi-channel sig-

nal processing. Numerous methods have been proposed in

the signal processing community for the purpose of single-

channel signal separation, e.g., empirical mode decomposi-

tion (EMD) [9, 22], non-negative matrix factorization (N-

MF) [1], singular spectrum analysis (SSA) [27, 26], etc.

However, they cannot be applied directly here and have to

make some modifications. The proposed framework em-

ploys SSA and a RC selection strategy based on the fre-

quency structure of the rPPG signals.

Given the filtered G-channel signal y, SSA first reshapes

it into a matrix Y by Hankel matrix embedding, and de-

composes Y by singular value decomposition (SVD), Y =
∑r

i=1
σiuiv

T
i , where σi for i = 1, ..., r denote the singu-

lar values of Y with singular vectors ui and vi. The col-

lection (σi,ui,vi) is called an eigentriple and every eigen-

triple is transformed back to a time series called reconstruct-

ed component (RC) by diagonal averaging. As a result,

the original signal y can be denoted by the sum of RCs,

y = y1 + ...+ yr.

The RCs are sorted according to corresponding singu-

lar values in a descending order and the first 10 RCs are

retained because they preserve the most information of the

trace segment. Among them, we need to select the RCs that

are related to the pulse signals. The rPPG signal frequency

structure is utilized as the RC selection criterion. A typical

frequency structure is plotted in Figure 5, where two peaks

that associate, respectively, with HR and 2×HR (first har-

monic) are observed.

The frequency spectrum of each candidate RC is com-

puted using fast Fourier transform (FFT). The RC pairs

whose dominant frequencies (frequency with maximum

power) have the twice relationship are selected, while oth-

ers are rejected. If there are no satisfying RC pairs, all the

candidate RCs are retained in case of information loss.

3.4. Overlap adding

This step aims at concatenating the windowed trace to

the final output [5]. The procedure is illustrated in Figure 4.
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Figure 5. Example of frequency structure of a typical rPPG signal.

The heart rate and its first harmonic are highlighted in red.

Every windowed trace is multiplied by a Hanning window

of the same length as the windowed trace. The step size is

half of the window length. The multiplied windowed trace

of each step is added up to get the preliminary output.

3.5. Spectral masking

The RC selection step would not identify the pulse sig-

nal perfectly due to the presence of large compression and

motion artifacts. We propose a spectral masking algorithm

to refine the preliminary output. Note that the RC selec-

tion criterion is purely data-driven, i.e., selecting RC pairs

satisfying the frequency structure. The basic idea of spec-

tral masking is that the output should be more precise if a

reference heart rate is involved as a priori. We take the in-

stantaneous HR of the preliminary output as the reference,

set it as the central frequency of a spectral mask, and select

RCs from the filtered G trace that overlap with the mask.

First, to obtain the instantaneous HR of the preliminary

output, a sliding window of length l2 = 10 s and step size

1 s is applied to locate a windowed trace. The windowed

trace is transformed to frequency domain using FFT. The

dominant frequency is set to be the HR of this time instan-

t. The instantaneous HR is updated every 1 second and the

values between successive updating instants are equal to the

previous instant. Then, the same procedure in the SSA de-

composition step is repeated to obtain the spectrum of RCs.

Meanwhile, a reference HR is computed by averaging the

instantaneous HR within the same interval located by the s-

liding window of length l1. Let the reference HR be fr and

the set of dominant frequencies of RCs be F = {fi}
10

i=1
, the

spectral masking algorithm determines the following index

function,

1F (i) =

{

1, fr −
ω1

2
≤ fi ≤ fr +

ω1

2

0, otherwise
(2)

where ω1 denotes the window length of the spectral mask.

The RCs are selected by this indexing function for recon-

structing the output signal. The final pulse waveform is then

obtained by overlap adding.

3.6. Discussion

The design of single-channel pulse extraction is main-

ly because R and B channels are highly contaminated by

VCAs. A combination of all three channels will not fully

remove VCAs. However, single-channel processing meth-

ods usually suffer from MAs. The RC selection and spectral

masking in the proposed framework are especially designed

to deal with this problem.

4. Assessment details

4.1. Compression methods

x264: an open source library for encoding video stream-

s into the H.264/AVC compression format. H.264/AVC

is a current generation video compression standard that

has been widely adopted in Blu-ray Discs, internet source

streaming, web software, etc.

x265: an open source library for encoding video stream-

s into the H.265/HEVC compression format, and one of

the several potential successors to H.264/AVC. It keep-

s the same video quality with about half the bitrate of

H.264/AVC.

vp8: an open source and royalty free video compression

format owned by Google and created by On2 Technologies,

primarily designed for webpage videos.

vp9: a successor to vp8 and competes mainly with

H.265/HEVC, widely supported by browsers on PC and

mobile devices.

4.2. Dataset

This research has been approved by the Research Com-

mittee of National Chung Hsing University. The informed

consent was obtained from each subject. 18 healthy sub-

jects (14 males and 4 females, aged 21-35, averaged HR

79.75 bpm, East Asian skin tone) were recruited. A to-

tal number of 55 videos of duration 1 min were recorded

using a regular webcam1 and stored in uncompressed AVI

format (640x480 pixels, 24 bit/pixel, 30 fps). Two motion

types are considered: stationary and motion. The subject-

s were asked sitting still in front of the camera (with dis-

tance 0.5 m) while recording the first video and then mov-

ing left and right (with speed about 1 Hz) while record-

ing the second video. The PPG signal measured by a fin-

gertip pulse oximeter2 was simultaneously recorded as the

ground-truth for reference. The PPG signals were synchro-

nized with the videos by setting a same timer. The videos

were then compressed to 10 target bitrates evenly selected

in the range [100, 20000] kb/s in log scale. Compression

was performed using the latest FFmpeg, an integrated video

processing library which includes libx264 for x264, libx265

1Model HD pro webcam c920, Logitech.
2Model CMS50E, Contec Medical.
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for x265, and libvpx for vp8 and vp9. The compressed file

size ranges from 157 MB (20000 kb/s) to 846 KB (100 k-

b/s) per file. The raw video information in the benchmark

dataset is summarized in Table 2. Figure 6 plots the aver-

aged compressed file size as a function of bitrate. It can be

seen that the file size of the compressed videos has been sig-

nificantly reduced compared with the uncompressed ones.

Table 2. Raw video information
status stationary motion

# of videos 30 25

total duration (min) 33.75 28.36

frame rate (fps) 30 30

average file size (GB) 1.73 1.73

bitrate (kb/s)

F
il

e
 s

iz
e
 (

M
B

)

Figure 6. Averaged compressed file size as a function of bitrate.

4.3. Evaluation metrics

Signal to noise ratio (SNR) is widely adopted by ex-

isting rPPG methods [28, 17] to evaluate the quality of the

rPPG signal in the extracted pulse waveform. A template

window is first defined,

U(f) =







1, fc −
ω2

2
≤ f ≤ fc +

ω2

2

1, 2fc −
ω2

2
≤ f ≤ 2fc +

ω2

2

0, otherwise

(3)

where fc denotes the reference HR computed from the con-

tact PPG signal using the same instantaneous HR calcula-

tion algorithm described in Subsection 3.5, and ω2 denotes

the spectral window length. SNR is defined as the ratio of

the power in the template window to that outside the win-

dow.

SNR = 10 log
10

(

∑

5

f=0.8 U(f)S2(f)
∑

5

f=0.8(1− U(f))S2(f)

)

(4)

where S(f) denotes the spectrum of the extracted pulse

waveform.

Precision is used to evaluate the accuracy of the heart

rate HR obtained from the extracted pulse waveform com-

pared to the ground-truth heart rate HRr from the contact

PPG signal. Precision with a given threshold T is defined

as:

pT =
# of {t|abs(HR(t)−HRr(t)) ≤ T}

total # of t in HR
(5)

where abs(·) returns the absolute value. The final Precision

is the averaged result over four thresholds T = {0, 1, 2, 3}
bpm.

4.4. Compared methods

CHROM [5]: a chrominance-based method that builds

upon the skin reflection model and the standardized skin-

tone assumption.

CorDiff [6]: a color difference method that utilizes

strength difference of pulse signal in color channels to e-

liminate motion artifacts.

POS [28]: a model-based method that projects the rPPG

measurements to the ‘plane orthogonal to skin’ (POS) for

pulse extraction.

In order to examine the performance of each step in the

proposed framework, the following three combinations are

considered.

filter: consists of only G-channel band-pass filtering and

overlap adding.

filter+SSA: a combination of G-channel band-pass fil-

tering, SSA RC selection, and overlap adding.

filter+SSA+refine: the proposed algorithm that consists

of all the steps.

5. Results

The results for stationary and motion videos are shown,

respectively, in Figures 7 and 8. Each figure contains SNR

and Precision results as a function of bitrate with the com-

pared methods for each compression method. The results

on the raw videos are also plotted at the last column in each

subfigure.

5.1. Performances on the stationary case

Figure 7 shows that the extracted signal quality of ex-

isting algorithms is getting worse as the bitrate decreases,

which is in agreement with previous researches [8, 17], ver-

ifying that video compression has a detrimental effect on

rPPG measurements and current techniques are ineffective.

For example, the signal quality has a sharp drop at 2 Mb/s

for x264 and vp9. x265 preserves the best pulsatile infor-

mation among other compression methods. There is a linear

relationship between bitrate and SNR for vp8.

The proposed algorithm (filter+SSA+refine) achieves a

significant improvement in SNR and Precision when com-

pared with existing algorithms. For x264, x265, and vp8,

the Precision curve does not decrease until 320 kb/s, sug-

gesting that the videos can be compressed to the bitrate as

low as 320 kb/s to obtain the performance equivalent to that

on the raw video. The Precision is above 60% at the low-

est considered bitrate 100 kb/s whereas existing algorithms

have Precision below 20% (increased by over 40%). Note

that, Precision is the averaged results over four thresholds.
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Figure 7. SNR and Precision results as a function of bitrate on stationary videos.
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Figure 8. SNR and Precision results as a function of bitrate on motion videos.

The scores should be higher if only T = 3 is considered.

The results also demonstrate that all the rPPG algorithms

are not effective on vp9 compressed videos, which implies

that vp9 poses a serious threat to the physiological signals

that there is little pulse signal remaining.

5.2. Performances on the motion case

Similar results can be observed from Figure 8 that a

decrease in SNR and Precision of existing algorithms a-

long with the decrease of bitrate, and that x265(vp9) pre-

serves the best(worst) signal quality among other compres-

sion methods. The proposed algorithm improves the SNR

and Precision results at low bitrates. The performances at

high bitrates are outperformed by CHROM and POS. This

comes at no surprise as CHROM and POS employ multi-

channel pulse extraction while the proposed algorithm em-

ploys single channel. At high bitrates, the VCAs become

less significant and the MAs dominate the problem. The pri-

mary concern turns out to be the MA suppression, which is

the main purpose of existing algorithms. The performance
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Figure 9. Comparison of three steps in the proposed framework. The first three columns plot the spectrum of output by each step. Red

region denotes the HR and its first harmonic of the ground-truth pulse waveform measured by a fingertip pulse oximeter.

inferiority of the proposed method at high bitrates implies a

weak MAs suppression ability by just exploiting rPPG fre-

quency structure compared with existing methods. Never-

theless, one can still observe a performance improvement at

low bitrates on x264, vp8, and vp9, demonstrating a VCAs

suppression strength of the proposed algorithm over exist-

ing methods.

5.3. Effect of each step

Figure 9 depicts two examples illustrating the effect of

each step in the proposed framework. For the stationary

case (Figure 9, first row), the first step filters out signal-

s with frequencies outside the considered region (Figure

9(a)). The second step (Figure 9(b)) highlights two peaks

related to rPPG signals by removing low-frequency MAs.

The last step retains the two peaks and removes more noise

(Figure 9(c)). Figure 9(d) shows clearly the Precision in-

crease step by step, in which the result given by the entire

algorithm (blue line) is the closest to the ground-truth HR.

For the motion case (Figure 9, second row), there is an

obvious peak to the left of the HR peaks (Figure 9(e)),

which is associated with the MA. Its power has been re-

duced after the second step (Figure 9(f)). It almost disap-

pears in the last step (Figure 9(g)) and the HR peaks become

more obvious. The instantaneous HR comparison (Figure

9(h)) verifies this effect as the resulting HR curve goes from

the motion frequency to the ground-truth HR.

6. Conclusion and discussion

The issue of pulse extraction on compressed videos is

highlighted in this paper as a key factor for applying rPPG

techniques into cases that need long-distance video trans-

mission. Three types of video compression artifacts are ob-

served, i.e., amplitude deterioration, high-frequency struc-

tured noise, and trace discontinuity. A novel framework

based on single-channel signal separation is proposed as a

preliminary attempt to address this problem. Three major

steps constitute the proposed framework: 1) single-channel

band-pass filtering to reduce the impact of VCAs; 2) SSA

decomposition and RC selection to separate pulse signal

from MAs; and 3) spectral masking to refine the output.

Extensive experiments with four popular compression

methods and two motion types are conducted. The result-

s show that the proposed approach significantly improves

the performance of existing algorithms on stationary videos

and has a positive effect on motion videos at low bitrates.

The extracted pulse signal quality degrades along with the

decrease of bitrates. x265 preserves the best signal quality

and vp9 is the least effective. For stationary videos by x264,

x265, and vp8, the proposed algorithm achieves equivalent

result to the raw videos when the bitrate is as low as 320

kb/s. The proposed algorithm achieves more than 3 times

improvement over existing algorithms at 100 kb/s.

Compared with existing rPPG algorithms which com-

bine multi-channel signals, the single-channel signal pro-

cessing usually suffers from motion artifact, as is reflected

in the motion case. Future work will focus on algorithmic

design for motion robustness. Moreover, the performance

can be improved using ROI-based rate control [15, 14].

Acknowledgement

This research was sponsored by National Natural Sci-

ence Foundation of China under Grand No. 61620106012,

61573048, 61603020, 61773042.

81419



References

[1] R. Aihara, T. Takiguchi, and Y. Ariki. Activity-mapping

non-negative matrix factorization for exemplar-based voice

conversion. In Proceedings of the IEEE International Con-

ference on Acoustics, Speech and Signal Processing, pages

4899–4903, 2015.

[2] A. Al-Naji, K. Gibson, S. H. Lee, and J. Chahl. Monitoring

of cardiorespiratory signal: Principles of remote measure-

ments and review of methods. IEEE Access, 5(99):15776–

15790, 2017.

[3] G. Balakrishnan, F. Durand, and J. Guttag. Detecting pulse

from head motions in video. In Proceedings of the IEEE

International Conference on Computer Vision and Pattern

Recognition, pages 3430–3437, 2013.

[4] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and

P. H. S. Torr. Staple: Complementary learners for real-time

tracking. In Proceedings of the IEEE International Con-

ference on Computer Vision and Pattern Recognition, June

2016.

[5] G. de Haan and V. Jeanne. Robust pulse rate from

chrominance-based rppg. IEEE Transactions on Biomedical

Engineering, 60(10):2878–2886, 2013.

[6] L. Feng, L. M. Po, X. Xu, Y. Li, and R. Ma. Motion-resistant

remote imaging photoplethysmography based on the optical

properties of skin. IEEE Transactions on Circuits and Sys-

tems for Video Technology, 25(5):879–891, 2015.

[7] A. R. Guazzi, M. Villarroel, J. Jorge, J. Daly, M. C. Frise,

P. A. Robbins, and L. Tarassenko. Non-contact measurement

of oxygen saturation with an rgb camera. Biomedical Optics

Express, 6(9):3320–3338, 2015.

[8] S. Hanfland and M. Paul. Video format dependency of ppgi

signals. In Proceedings of the International Conference on

Electrical Engineering, 2016.

[9] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih,

Q. Zheng, N. C. Yen, C. T. Chi, and H. H. Liu. The empirical

mode decomposition and the hilbert spectrum for nonlinear

and non-stationary time series analysis. Proceedings Math-

ematical Physical & Engineering Sciences, 454(1971):903–

995, 1998.

[10] A. Lam and Y. Kuno. Robust heart rate measurement from

video using select random patches. In Proceedings of the

IEEE International Conference on Computer Vision, pages

3640–3648, 2015.
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