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Abstract

Monitoring of the marine environment requires large

amounts of data, simply due to its vast size. Therefore,

underwater autonomous vehicles and drones are increas-

ingly deployed to acquire numerous photographs. How-

ever, ecological conclusions from them are lagging as the

data requires expert annotation and thus realistically can-

not be manually processed. This calls for developing au-

tomatic classification algorithms dedicated for this type of

data. Current out-of-the-box solutions struggle to provide

optimal results in these scenarios as the marine data is very

different from everyday data. Images taken under water dis-

play low contrast levels and reduced visibility range thus

making objects harder to localize and classify. Scale varies

dramatically because of the complex 3 dimensionality of the

scenes. In addition, the scarcity of labeled marine data pre-

vents training these dedicated networks from scratch. In

this work, we demonstrate how transfer learning can be uti-

lized to achieve high quality results for both detection and

classification in the marine environment. We also demon-

strate tracking in videos that enables counting and measur-

ing the organisms. We demonstrate the suggested method

on two very different marine datasets, an aerial dataset and

an underwater one.

1. Introduction

Obtaining ecologically meaningful data on highly mo-

bile species in the marine environment is challenging due

to their spatiotemporal heterogeneity and occurrence at low

densities. Commercial catch records provide some of the

most spatially and temporally extensive points of reference

that are available for stock assessment. However, fishery-

dependent methods are considerably biased as they depend

on catchability and an incentive to report [4, 29]. Several

non-extractive approaches have been used or are currently

Figure 1. Example results of our method. [Left] Underwater de-

tection of fish. [Right] Detection and classification into 3 classes

(shark, ray, diver) of marine aerial photographs. The same net-

work architecture works well for both datasets, with dataset spe-

cific training.

emerging to replace fishery-dependent methods. These are

considerably low-cost relative to their coverage of large wa-

ter volumes and may inform about the abundance of marine
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organisms. However, they necessitate further technological

innovation considering the elusive nature of these species

and the spatiotemporal dimensions of their ecology [29].

For example, aerial surveys, which usually employ pi-

loted, qualified observers, are a recognized technique for

abundance estimates in large marine areas [29, 46]. How-

ever, they are characterized by a number of drawbacks

such as human risk, high costs, missed sightings, low res-

olution of location data, and the requirement to fly on

airstrips [18]. Recent advances in the development of un-

manned aerial vehicles (UAVs) have enabled research to

compensate for these constraints and, by means of image

analysis and photogrammetry, provided a tool to account

for the number and size of individual animals within ob-

served groups, thus yielding more reliable, quantitative es-

timates (e.g., [9, 14, 25]). Similarly, image analysis could

benefit other fishery-independent methods at smaller spatial

scales; underwater visual censuses (UVCs) are employed

for the computation of relative abundance in a quick, re-

peatable, and cost-effective setup, yet may be affected by

human presence impacts [16, 24]. However, image analysis

in both aerial surveys and UVCs are performed post hoc and

are labor-intensive to the point of impracticality. Thus, au-

tomatic object identification algorithms are required to pro-

duce a comprehensive, effortless technique for monitoring

a variety of species using different technologies.

Object detection in the marine environment is different

from object detection in natural, real world images, and

is characterized by several prominent challenges, demon-

strated in Fig. 2. First, the marine environment has a com-

plex structure. This, combined with the organisms’ ten-

dency to move and hide creates many occlusion scenarios as

well as a large variety of organism poses. Second, marine

images are heavily affected by light attenuation and scat-

tering, where the effect varies with object distance and thus

changes across the scene. Third, surface caustics may cause

spatial and temporal changes in lighting, which in turn re-

duce the classifier accuracy and make tracking the object

harder. Fourth, the objects’ scale can change dramatically.

Scale changes are very prominent also in images ac-

quired by UAVs, where the UAV can fly in variable heights

above the water. Additionally, UAV images may differ in

the color of water, existence of stones, ripples, streams and

light rays reflectance, all of which may impair classification

results. In our work we also used several different meth-

ods for aerial data collection, where the viewing angle var-

ied from vertical to side view, making the task even more

challenging (examples in Fig. 3). Last, and maybe most im-

portant, to yield significant scientific value, marine images

(both under and above water) have to be annotated by ex-

pert scientists. Thus, citizen science labeling tools cannot

be used on them to aid in the labeling effort. This results

in small amounts of data that are not sufficient for training

Figure 2. Examples of the underwater fish detection challenges.

Examples from [7] and the AFSC dataset from this workshop’s

challenge. Data was manually annotated by us. The dataset images

exhibit several detection challenges such as low visibility, various

scales, cluttered background, and light attenuation.

Deep Convolutional Neural Networks (CNNs).

CNNs [28] have recently exhibited remarkable perfor-

mance in the tasks of image classification [26] and object

detection [12, 13, 45]. This impressive performance builds

on the availability of large amounts of annotated data [8], as

well as parallel computational resources such as GPUs, and

regularization techniques [15, 50, 55]. Nevertheless, CNNs,

as well as other visual classification algorithms, struggle

when dealing with challenging data such as partially oc-

cluded objects, lighting variations, inter and intra class vari-

ations and deformations [39, 41], that are common in the

marine environment.

Here we demonstrate a method that is based on state-of-

the-art CNN detector and an object tracker for detection and

classification in marine videos. The method achieves high

precision and recall despite the very small datasets used to

train it (only hundreds of images) and works well on both

our datasets – above and under water. Thus, it can be used

by marine scientists to efficiently analyze the multitude of

survey data that is being collected around the world.

2. Related Work

Current state-of-the-art solutions for underwater detec-

tion of marine species rely on either acoustic or optical mea-

surements.

Acoustic methods vary from counting the echoes of

sonar beams [2, 56] to more complex methods using only

acoustic images [19]. Optical methods range from more

traditional methods such as edge-based classifiers [47], to a

fish detector and tracker [48] which combines an Adaptive

Gaussian Mixture Model [59] detector and Continuously

Adaptive Mean Shift Algorithm [11] tracker.

More recent works utilize Convolutional Neural Net-

works (CNNs) object detectors for this task. Marbug et

al. [37] use a series of CNNs to create an underwater detec-
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Figure 3. Examples of the marine aerial dataset acquired by

us. As the UAV is flown in various heights above sea level, ob-

ject scale becomes a serious challenge for detection. Labels are

color-coded according to the legend. Note the various detection

challenges such as scale difference, ripples, water color, underwa-

ter rocks, streams and viewing angle.

tor and classifier for benthic macrofauna, Li et al. [30] em-

ployed a Fast R-CNN [12] detector for fish detection while

Sung et al. [51] used the YOLO detector [42].

Several works aimed at underwater fish tracking rather

than detection. Some methods used statistical approaches

such as Bayesian filtering [38] and maximum likelihood

function for detection, covariance based tracker [49] with

manually initialization. Zhou et al. [58] suggested to use a

series of filters, such as Gabor filters, combined with projec-

tion segmentation, in order to segment and track a particular

species of fish.

UAVs are increasingly used for 3D mapping of the ma-

rine environment [6, 54]. Automatic detection of marine

organisms was demonstrated in a commercial product by

Westpac Little Ripper Lifesaver [52], who claim to detect

sharks with high accuracy in real-time.

3. Review of Relevant CNN Methods

CNNs which are multi-layer neural networks, with

shared weights and local receptive fields are the current goto

algorithm for object detection. These networks comprise of

millions of parameters and are able to represent higher level

semantic cues in the data, allowing a very accurate lower

dimension embedding of the input data. This desirable at-

tribute comes at a heavy price, requiring vast amounts of la-

beled training data in order to avoid overfitting of the train-

ing set. As large amount of labeled training data is usually

hard to acquire, a possible solution, which we harnessed in

this work, is to pre-train the network with available labeled

data [8] and later fine tune the network to our specific task.

Since the first part of the network layers extracts features

such as edges, blobs, colors and textures, which usually

generalize well to the domain of natural images [57], the

fine tunning is usually done on the later layers of the net-

work, which represent the non-linear combinations of the

extracted features.

The depth of the network increases with the complexity

level of the semantic cues the network can extract. This in-

teresting attribute makes the training process harder, since

training very deep networks tends to result in overfitting. In

this work we chose to use Residual network topology [17],

which is a deep convolutional network that uses identity

mapping between the layers in order to avoid overfitting.

Residual network provides better gradient flow through the

network layers, making the training of deep networks pos-

sible and with small generalization error. Residual network

is also characterized by another desired attribute, low num-

ber of parameters, which make the training process more

robust to overfitting. This attribute is achieved by using

only convolution layers with no fully connected layers at

all. This topology is known as Fully Convolutional Net-

work FCN [36]. Last, the FCN allows the use of varying

input size, which is desirable in the task of object detection.

3.1. Object Detection using CNNs

State-of-the-art solutions for object detection using

CNNs usually belong to one of two categories: one-stage

detectors and two-stage detectors. Two-stage detectors, as

the name suggests, split the detection problem into two con-

secutive stages where each is independent of the other. The

first stage generates a sparse set of candidate object loca-

tions. This stage can be performed using either basic al-

gorithms for region proposals [13] or using a dedicated re-

gion proposal CNN [45]. The second stage of the detector

consists of a CNN that classifies each location candidate as

one of the classes or as a background class. Those detec-

tors achieve state-of-the-art accuracy scores on the COCO

benchmark [33].

A major disadvantage of the two-stage detectors is their

run-time execution, which is limiting in real-time applica-

tions. This encouraged the development of the one-stage

detectors. These detectors classify all image regions at

once as opposed to the two-stage detectors which classify

a sparse set of location candidates. Current state-of-the-art

one-stage detectors include YOLO [43] and SSD [35].

Despite the promising run-time performance achieved

by one-stage classifiers, they generally lag behind the two-

stage classifiers in terms of accuracy. Since one-stage detec-

tors process a dense set of candidates, they inherently suffer

from class imbalance, i.e., most of the candidates in both

training and testing, belong to the background and only a

small number of candidates contain recognizable objects.

To solve this Lin et al. introduced RetinaNet [32] in

2017. RetinaNet is a one-stage CNN detector that achieves
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Figure 4. RetinaNet architecture. Feature pyramid net (FPN) on

top of a residual network generates a feature map, which is then

fed to two fully convolutional sub-networks, Class subnet for clas-

sification and Box subnet for regression (bounding box).

near state-of-the-art performance in terms of accuracy, com-

parable to the accuracy of state-of-the-art two-stage detec-

tors. RetinaNet is comprised of a feature pyramid network

(FPN) [31] on top of a residual network [17]. This part is

then concatenated to two additional fully convolutional sub-

networks [36], one for classifying anchor boxes and one for

regressing from anchor boxes to ground-truth object boxes,

as illustrated in Fig. 4.

Another novelty of the RetinaNet is the formulation of

a unique loss function termed focal loss. This loss func-

tion is designed to handle the class imbalance problem by

re-weighting easy examples with a lower weight allowing

the training process to focus on harder examples, i.e. exam-

ples with low classification probability. This is controlled

by a non-negative parameter γ, where the re-weighting is

exponential with γ.

3.2. Object Tracking

The field of multiple object tracking (MOT) has devel-

oped in recent years. These algorithms usually focus on

both high accuracy and low run-time. Several studies ad-

dressed this problem using Multiple Hypothesis Tracking

(MHT) [22, 44], which provide high accuracy tracking but

fails to achieve real-time performance.

The Simple Online Realtime Tracker (SORT) [5], is an

MOT tracker based on a combination of Kalman filter [21]

and the Hungarian algorithm [27]. We chose this algorithm

since it achieved both high tracking accuracy and real-time

performance. An important parameter of SORT is Tlost, the

number of consecutive frames an object can be undetected

before the tracking on it stops. The default is Tlost = 1.

4. Our Proposed Method

In this work, we chose to use the RetinaNet [32] as the

object detector for the reasons detailed above. Our imple-

mentation was based on Keras-RetinaNet [34]. Note that

this object detector receives still images as input, while

some of the input data in our case is video streams. In this

case having independent detections on each frame is not de-

sirable for several reasons – detections can contradict, and

it is not clear how to count the organisms even if the detec-

tions agree. Therefore, we use tracking in order to make the

detections coherent, and to connect detections of the same

object. This enables more accurate counting, and also gath-

ering more comprehensive statistics about each organism,

such as length. Recurrent neural networks can perform de-

tection directly on videos [53]. However, they are computa-

tionally expensive and can sometimes converge to bad local

minima, resulting in reduced detection accuracy. Therefore,

we use the detection results on the still images as an input

to an object tracker, that requires less computational effort

than a recurrent neural network approach and provides more

accuracy than a weight decay time window.

4.1. Detection Algorithm

As discussed earlier, a key advantage of RetinaNet com-

pared to other one-stage detectors is the use of the focal loss

function which handles both class imbalance and scale in-

variance, both are significant issues in marine datasets due

to the low density of the marine organisms of interest. As

we show in the results, RetinaNet can cope well with these

issues even in the challenging marine data, both under and

above water.

All image detection datasets that are used for training

CNNs are composed of everyday scenes containing com-

mon objects and do not suit the unique distribution of ma-

rine images. Existing marine datasets usually contain a very

small number of labeled images and thus cannot be used to

train the network from scratch. We solved this issue us-

ing transfer learning [40]. In this process, we used a pre-

trained residual network [17] trained with the ILSVRC12

(imagenet) dataset [8], and then continued to train the two

detection subnets using the COCO dataset [33]. This al-

lowed us to use relatively low number of labeled training

images during the training process. In the case of aerial

point-of-view, we used roughly 300 manually annotated im-

ages of sharks and rays. For the underwater network, we

used roughly 500 manually annotated images of fish.

The training process included two stages. In both stages

the loss function of the network is an average between focal-

loss (with γ=2), classification loss (see Sec. 3.1), and a

smooth L1 for the bounding box regression. The first stage

of the training enabled the update of the two detection sub-

networks only (Fig. 4). The learning rate determined by

ADAM [23] optimization algorithm, in order to maintain

convergence. The network was trained in this manner for

40 epochs. Then during the second stage, we enabled the

update of all the network weights, providing slightly bet-

ter feature extraction in the earlier layers. The second stage

took place for additional 40 epochs. This dual stage training

process converged to higher accuracy than either of the two

stages alone. We found images of 800×1333 resolution1 to

provide good balance between accuracy and training time.

1The original resolution of the fish images was in this order, whereas

the original shark images were at 3000× 4000.
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Figure 5. Comparison with an aerial shark detection network based on YOLO topology. [Left] Results of YOLO. [Right] Our results.

Generally our algorithm provides better recall rate with less false positives.

In order to handle the small amounts of labeled images,

we used vertical and horizontal flipping in both datasets.

4.2. Tracking

For tracking we used the SORT algorithm [5], fed with

detections from the CNN in each frame. To overcome tem-

porary mis-detections we changed Tlost to be 5 instead of

the default value of 1.

5. Experiments and Analysis

5.1. Datasets

To demonstrate robustness of the proposed algorithm, we

present results on two marine datasets which are of eco-

logical importance. The same algorithm was used for both

datasets but the networks were trained separately for each

one. In both datasets, for detection, each object is labeled

with both its class name and its bounding box coordinates.

The first is an underwater dataset which contains mostly

images from labeled fishes in the wild [7] image dataset.

The annotation in the original dataset is somewhat problem-

atic as not all the fish instances in each frame are labeled.

Needless to mention, such errors can impair the training

process and induce errors during test. We addressed this

issue by using only a subset of 463 images out of the entire

dataset, which we manually re-annotated. To comprise a

more heterogeneous dataset, we added 45 images from the

AFSC dataset, which is provided in this workshop’s chal-

lenge. The images were split into groups of 448 and 60

images for training and validation sets respectively (keep-

ing the same training-validation relation in both datasets).

Note that the dataset contains only fish labels with no re-

gard to the fish species. The dataset contains challenging

images with low visibility, different scales, and cluttered

background (examples in Figs. 1,2).

Our second dataset was aerial footage collected at the

coast of the Mediterranean sea in Israel using a vertical take-

off and landing UAV (DJI Phantom IV) at a shallow-water

aggregation of sharks and rays. The UAV was either oper-

ated from the shore or deployed from a boat, constantly re-

maining within line-of-sight; see Fig. 5. Images were cap-

tured from a range of altitudes up to 50 meters above the

survey area in different environmental conditions, i.e., sea-

state, sun glare, cloud coverage and seawater turbidity (the

latter dictated by runoff and discharge waters of a coastal

stream and an electric power station nearby, respectively).

The photographed objects were then labeled as Shark, Ray

or Diver by expert scientists. The images were split into

groups of 232 and 40 images for training and validation sets

respectively.

5.2. Results

Figs. 2, 3 depict several example results of our method

on challenging images. To evaluate them we compare our

algorithm results to a YOLO network topology [43], also a

one-stage detector. For the comparison on our aerial image
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Figure 6. Comparison with an underwater fish detection net-

work based on YOLO topology. [Left] Results of YOLO. [Right]

Our results. Generally our algorithm provides better recall rate

with less false positives.

Figure 7. The effect of the γ parameter on the results. A higher

value of γ provides better detections on aerial images that were

taken from a very high altitude of 50m (top row). However, higher

value of γ harmed the classification in lower altitudes, as seen in

the bottom row (altitude of 28.5m).

detection network, we trained YOLO in the same way we

trained RetinaNet with the same dataset. Our network had

more accurate detections and classifications (Fig. 5). The

comparison on the underwater fish detection was done with

respect to the results published in [51] on the labeled fishes

in the wild dataset [7]. Note that in [51] the training set was

much larger than ours (∼ 2000 images), but still we achieve

higher accuracy (Fig. 6). Examining our results, we noticed

that aerial images that were taken by the drone in higher

altitudes, which results in images where the marine organ-

isms are represented by a small amount of pixels, have bad

detections or do not have detections at all. This is because

these images are suffering from severe class imbalance, i.e.,

the ratio between background pixels and class object pixels

differs with the altitude, where higher altitude images have

significantly more background pixels (see Sec. 3.1). The

proportion between We tried to solve this by increasing γ in

the focal loss function, in order to reduce the influence of

Figure 8. Example of challenges in labeling. A scene with man-

ual annotations (green) and our detections (blue). Some fish were

detected (in blue) but not annotated (no green frame). These cases

lower the precision as they were counted as a false positive though

the detection was actually correct.

the background pixels. Indeed, the detections in the high al-

titude images improved, but the classification accuracy de-

creased. Results can be seen in Fig. 7.

To evaluate the results quantitatively, we calculated the

average precision for each class. The average precision

(AP) was calculated as the area under the precision-recall

curve in the operating point, defined by the non-maximal

suppression, i.e., the detection with the highest confidence.

In order to have an independent test set, we manually anno-

tated 41 additional images from the aerial videos and 42 im-

ages from the fish dataset. These images did not participate

in the training (neither in the validation set) and were not

taken from videos of which frames were taken to the train-

ing set. In the evaluation we consider only detections that

have a confidence level above 0.4. We measure a success-

ful detection where the classification label is correct and the

intersection-over-union ratio is above 0.4. The average pre-

cision for each of the three classes in the aerial videos was

0.75 for the Shark class, 0.4 for Ray , and 0.25 for Diver.

For the Fish class in the fish dataset it was 0.74. Note that

these numbers were calculated on a small number of im-

ages because of the scarcity of the data and might not be

fully representative. In addition, the annotations are not al-

ways ideal; see for example, Fig. 8, where some fish were

detected but not annotated. This lowers the precision as it

was counted as a false positive though the detection was ac-

tually correct. Moreover, there is a difference in the number

of images per class in the aerial training set, where there are

not as many divers and rays instances as opposed to sharks,

which results in higher AP rate for the sharks.

Tracking results are demonstrated in Fig. 9. In many

cases the tracker was able to estimate the location of organ-
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Figure 9. The benefit of the tracking stage. [Top] Objects that were detected in single consecutive frames. [Bottom] Tracking results on

the same frames. The detection results on the single frames are the input to the object tracker. Objects that were tracked across frames

are assigned the same color of the bounding box. The tracker was able to estimate the location of organisms that were not detected in the

single images, increasing overall detection precision (see red arrows). In addition, the tracking enables discrimination between individuals

of the same specie, which is extremely significant for extracting meaningful ecological measures.

Figure 10. Generalization of our algorithm on a different dataset than the training set. [Left] The aerial test examples were taken in a

different geographical location [10], exhibiting variations in shark species, water color and scale. Our network was still able to detect most

sharks. [Right] The underwater test examples are different than the training images by several factors: fish species, water color, lighting

conditions and scale. Though there are some false detections (e.g. in the bottom right scene), it seems that our network can rapidly yield

initial detection results on various fish images.

isms that were not detected in the single images, increasing

overall detection precision (pointed to by red arrows). In

addition, the tracking enables discrimination between indi-

viduals of the same specie, which is extremely significant

for extracting meaningful ecological measures. This tracker

heavily depends on the detection accuracy and thus provides

excellent results where the detections are correct.

Video results are available at the following playlist

https://www.youtube.com/playlist?list=

PLdv3FXVDfbcxzE3q5gMqXJ2Sd5vNCHOQn.

5.3. Generalization of the Detection Network

CNNs are known for their good generalization capabil-

ity, where a network which was trained on a specific im-

age and class distribution can sometime generalize well and

provide descent accuracy for test images drawn from differ-

ent image and class distribution. In this section we show

examples of how well did the algorithm generalize to other

distributions of data. The underwater dataset contains im-

ages taken with artificial illumination assistance, variations

in depth, and different species of fish than training set. Most

of the images are from the bottom of the ocean, where one
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can see the ground, which may introduce different image

characteristics. As we wanted to examine our detection net-

work ability to cope with images of different characteristics,

such as natural illumination, different water color and dis-

tinctively different species of fish (like size and colors).

Likewise, all of our marine aerial dataset were taken in

the same geographic location. In order to check generaliza-

tion, we fed the network with a video that was taken in New

South Wales, Australia [10]. The conditions in this video

are vastly different from those in our training data in many

aspects such as: shark species, water color and scale. Nev-

ertheless the algorithm demonstrated good generalization;

see Fig. 10 for both networks results.

6. Discussion

We demonstrated that transfer learning on state-of-the-

art trained networks can yield excellent results on marine

datasets that contain a very small amount of annotated data.

This can become a very useful tool for automatic annota-

tion, as marine researchers are only required to manually

label a small number of photographs in order to initiate the

automatic classification. We showed that this method is ro-

bust and can handle different types of data, and copes well

with the unique challenges of marine images.

As for further directions, first we aim to test whether

preprocessing using underwater image restoration meth-

ods such as [1, 3] can help improve the results. Second,

we aim to test the performance of a tracker that requires

only a single initial detection rather than detections in each

frame [20]. The tracker in [20] operates only on single ob-

jects and therefore requires extension for multiple objects.

Last, currently it is difficult to perform extensive evaluation

of methods as there is no standard dataset available that is

annotated well. Therefore we plan to release our aerial and

underwater test sets for future comparison and evaluation.
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