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Abstract

Forecasting the motion of surrounding vehicles is a crit-

ical ability for an autonomous vehicle deployed in complex

traffic. Motion of all vehicles in a scene is governed by the

traffic context, i.e., the motion and relative spatial config-

uration of neighboring vehicles. In this paper we propose

an LSTM encoder-decoder model that uses convolutional

social pooling as an improvement to social pooling lay-

ers for robustly learning interdependencies in vehicle mo-

tion. Additionally, our model outputs a multi-modal predic-

tive distribution over future trajectories based on maneuver

classes. We evaluate our model using the publicly available

NGSIM US-101 and I-80 datasets. Our results show im-

provement over the state of the art in terms of RMS values

of prediction error and negative log-likelihoods of true fu-

ture trajectories under the model’s predictive distribution.

We also present a qualitative analysis of the model’s pre-

dicted distributions for various traffic scenarios.

1. Introduction

In order to safely and efficiently navigate through com-

plex traffic comprised by human drivers, an autonomous ve-

hicle needs to have the ability to take initiative, such as de-

ciding when to change lanes, overtake another vehicle, or

slowing down to allow other vehicles to merge. This re-

quires the autonomous vehicle to have some ability to rea-

son about the future motion of surrounding vehicles. This

can be seen in existing tactical path planning algorithms

[17, 22, 24], which depend on reliable estimation of future

trajectories of surrounding vehicles.

Prediction of future motion of surrounding vehicles is a

challenging problem due to the high number of latent vari-

ables involved, such as, the end goals of all drivers in the

scene and variability in driving style across different drivers.

Vehicle trajectories tend to be highly non-linear over longer

time horizons due to decisions made by the driver. Addi-

tionally, driver behavior tends to be inherently multi-modal,

where a driver could make one of many decisions under the

Figure 1. Imagine the blue vehicle is an autonomous vehicle in

the traffic scenario shown. Our proposed model allows it to make

multi-modal predictions of future motion of it’s surrounding ve-

hicles, along with prediction uncertainty shown here for the red

vehicle

same traffic circumstances. Finally, interaction between ve-

hicles tends to affect their motion. The large number of

possible configurations of all vehicles in a scene can make

this difficult to model.

In spite of these challenges, there is structure to vehicle

motion that can be exploited:

• Vehicle motion can be binned into maneuvers, which

can account for the multi-modal nature of future mo-

tion. For example, a vehicle approaching its leading

vehicle at a much faster speed would either brake and

slow down, or change lane to overtake.

• There is a well defined lane structure and a direction

of motion on freeways. This can be exploited to model

interaction between vehicles

Following the success of long-short term memory

(LSTM) networks in modeling non-linear temporal depen-

dencies in sequence learning and generation tasks [1, 3, 7],

we propose an LSTM encoder-decoder based model for ve-

hicle motion prediction for the case of freeway traffic. In

particular, our model can be characterized by:
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1. Convolutional social pooling: We propose a novel

social pooling layer as an alternative to that proposed

in [1]. We apply convolutional and max-pooling layers

instead of a fully connected layer to social-tensors of

LSTM states that encode the past motion of neighbor-

ing vehicles.

2. Maneuver based decoder: Our LSTM decoder gener-

ates the probability distribution over future motion for

six maneuver classes and assigns a probability to each

maneuver class. This accounts for the multi-modal na-

ture of vehicle motion.

2. Related Research

An extensive survey on vehicle motion prediction mod-

els has been presented by Lefevre et al. [16], where the the

models are categorized into physics based, maneuver based

and interaction aware models. Close to our approach are

the maneuver based models and interaction aware models.

Maneuver based models: Classification of vehicle

motion into semantically interpretable maneuver classes

has been extensively addressed in both advanced driver

assistance systems as well as naturalistic drive studies.

Of particular interest are works that use the recognized

maneuvers to make better predictions of future trajecto-

ries [6, 8, 14, 20, 21, 23]. These approaches usually involve

a maneuver recognition module for classifying maneuvers

and maneuver specific trajectory prediction modules. Ma-

neuver recognition modules are typically classifiers that use

past positions and motion states of the vehicles and context

cues as features. Heuristic based classifiers [8], Bayesian

networks [21], hidden Markov models [6, 14], random

forest classifiers [20] and recurrent neural networks have

been used for maneuver recognition. Trajectory prediction

modules output the future locations of the vehicle given its

maneuver class. Polynomial fitting [8], maneuver specific

motion models [21], Gaussian processes [14, 23], and

Gaussian mixture models [6] have been used for trajectory

prediction.

Interaction aware models: Interaction aware models for

motion prediction take into account the effect of inter-

vehicle interaction on the motion of vehicles. Two different

approaches can be found for incorporating inter-vehicle

interaction. The first set of approaches [2, 6] use hand

crafted cost functions based on the relative configuration

of vehicles and make optimal predictions of future mo-

tion with respect to these cost functions. Cost function

based approaches do not depend on training data and

can generalize to new traffic configurations. However,

they can be limited by how well the hand-crafted cost

function is designed. The second approach to incorporate

inter-vehicle interaction is to implicitly learn it from

trajectory data of real traffic. However, due to the large

variation in traffic configurations, this approach requires a

large dataset for generalization. This approach has been

used in prior works for the case of two vehicles approach-

ing an intersection [9], and lateral motion prediction on

highways [20]. We use the data-driven approach for inter-

vehicle interaction in this paper, since it it not limited by

the design of a hand-crafted cost function, and also due to

the availability of large datasets of real freeway traffic [4,5].

Recurrent networks for motion prediction: Since mo-

tion prediction can be viewed as a sequence classification

or sequence generation task, a number of recurrent neural

network (RNN) based approaches have been proposed in

recent times for maneuver classification and trajectory pre-

diction. Khosroshahi et al. [10] and Phillips et al. [19] use

LSTMs to classify vehicle maneuvers at intersections. Kim

et al. [11] propose an LSTM that predicts the location of

vehicles in an occupancy grid at intervals of 0.5 s, 1 s and

2 s into the future. Contrary to this approach, our model

outputs a continuous, multi-modal probability distribution

of future locations of the vehicles up to a prediction hori-

zon of 5 s. Lee at al. [15] propose a model that combines

conditional variational auto-encoders (CVAE) with RNN

encoder-decoders for trajectory prediction. While this al-

lows for multi-modal predictions by sampling the CVAE,

the model can only provide samples from the predictive dis-

tribution rather than an estimate of the distribution itself. In

their seminal work, Alahi et al. [1] propose social LSTMs,

which jointly model and predict the motion of pedestrians in

dense crowds through the use of a social pooling layer. We

improve upon this approach by using convolutional social

pooling. We also incorporate the lane structure of freeways

into our social pooling layer. Finally, Kuefler et al. [13]

use a gated recurrent unit (GRU) based policy using the be-

havior cloning and generative adversarial imitation learning

paradigms to generate the acceleration and yaw-rate values

of a bicycle model of vehicle motion. We compare our tra-

jectory prediction results with those reported in [13].

3. Problem Formulation

We formulate motion prediction as estimating the proba-

bility distribution of the future positions of a vehicle condi-

tioned on its track history and the track histories of vehicles

around it, at each time instant t.

3.1. Frame of reference

We use a stationary frame of reference, with the origin

fixed at the vehicle being predicted at time t as shown in

Fig. 2. The y-axis points in the direction of motion of

the freeway, and the x-axis is the direction perpendicular

to it. This makes our model independent of how the vehi-

cle tracks were obtained, and in particular, can be applied

1582



Figure 2. Top: The co-ordinate system used for trajectory predic-

tion. The vehicle being predicted is shown in black, neighboring

vehicles considered are shown in blue. Bottom: Lateral and lon-

gitudinal maneuver classes

to the case of on-board sensors on an autonomous vehicle.

This also makes the model independent of the curvature of

the road, and can be applied anywhere on a freeway as long

as an on-board lane estimation algorithm is available.

3.2. Inputs and outputs

The input to our model are track histories

X = [x(t−th), ...,x(t−1),x(t)] (1)

where,

x(t) = [x
(t)
0 , y

(t)
0 , x

(t)
1 , y

(t)
1 , ..., x(t)

n , y(t)n ] (2)

are the x and y co-ordinates at time t of the vehicle being

predicted and all vehicles within ±90 feet in the longitudi-

nal direction and within the two adjacent lanes of the vehicle

being predicted, as shown in Fig. 2.

The output of the model is a probability distribution over

Y = [y(t+1), ...,y(t+tf )] (3)

where,

y(t) = [x
(t)
0 , y

(t)
0 ] (4)

are the future co-ordinates of the vehicle being predicted

3.3. Probabilistic motion prediction

Our model estimates the conditional distribution

P(Y|X). In order to have the model produce multi-modal

distributions, we expand it in terms of maneuvers mi, giv-

ing:

P(Y|X) =
∑

i

PΘ(Y|mi,X)P(mi|X) (5)

where,

Θ = [Θ(t+1), ...,Θ(t+tf )] (6)

are the parameters of a bivariate Gaussian distribution at

each time step in the future, corresponding to the means

and variances of future locations.

3.4. Maneuver classes

We consider three lateral and two longitudinal maneuver

classes as shown in Fig. 2. The lateral maneuvers consist

of left and right lane changes and a lane keeping maneuver.

Since lane changes involve preparation and stabilization, we

define a vehicle to be in a lane changing state for ± 4s w.r.t.

the actual cross-over. The longitudinal maneuvers are split

into normal driving and braking. We define a vehicle to be

performing a braking maneuver if it’s average speed over

the prediction horizon is less than 0.8 times its speed at the

time of prediction. We define our maneuvers in this manner

since these maneuver classes are communicated by vehicles

to each other through turn signals and brake lights, which

will be included as a cue in future work.

4. Model

Fig. 3 shows our proposed model. It consists of an

LSTM encoder, convolutional social pooling layers and a

maneuver based LSTM decoder.

4.1. LSTM Encoder

We use an LSTM encoder for learning the dynamics of

vehicle motion. For each instant, snippets of the most recent

th frames of track history are passed through the LSTM en-

coder for the vehicle being predicted, and all the vehicles

surrounding it. The LSTM states for each vehicle are up-

dated frame by frame over the th past frames. The final

LSTM state for each vehicle can be expected to encode the

state of motion of that vehicle. The LSTMs used for each

vehicle have shared weights. This allows for a direct corre-

spondence between the components of the LSTM states for

all the vehicles.

4.2. Convolutional Social Pooling

While the LSTM encoder captures the vehicle motion

dynamics, it fails to capture the interdependencies of the

motion of all vehicles in the scene. Social pooling, pro-

posed in [1], addresses this by pooling the LSTM states of

all the agents around the agent being predicted into a social

tensor. This is done by defining a spatial grid around the

agent being predicted and populating the grid with LSTM

states based on the spatial configuration of the agents in the

scene. Fig. 3 shows an example of a social tensor. Using

this social tensor as the input to the model in addition to the

LSTM state of the agent being predicted, has been shown

to improve the accuracy of future motion prediction [1,15].

This makes sense since the model now gets access to the

motion states of surrounding agents and their spatial con-

figuration.

However, all previous instances of social pooling [1, 15]

apply a fully connected layer to the social tensor. This is in-

efficient since it breaks up the spatial structure of the social
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Figure 3. Proposed Model: The encoder is an LSTM with shared weights that learns vehicle dynamics based on track histories. The

convolutional social pooling layers learn the spatial interdependencies of of the tracks. Finally, the maneuver based decoder outputs a

multi-modal predictive distribution for the future motion of the vehicle being predicted

tensor. Cells adjacent to each other in space become equiva-

lent to cells far away from each other in the fully connected

layer. This can lead to problems in generalization to a test

set especially if the agents can be in various different spatial

configurations. For example, let’s suppose the training set

doesn’t have a single instance of an LSTM state at spatial

location (m,n) of the social tensor. When such an instance

is now encountered in the test set, the model will fail to gen-

eralize. In particular, this will hold even if there are training

instances of LSTM states at spatial grid locations (m+1, n)
and (m,n+1), say, in spite of these instances clearly being

helpful due to spatial locality.

As a remedy, we propose the use of convolutional and

pooling layers over the social tensor, termed convolutional

social pooling. The equivariance of the convolutional layers

can be expected to help learn locally useful features within

the spatial grid of the social tensor, and the max-pooling

layer can be expected to add local translational invariance,

both of which help address the problem described above.

This phenomenon has been further explored in section 5.5.

We set up our social tensor by defining a grid based on

the lanes. A 13 × 3 spatial grid is defined around the ve-

hicle being predicted, where each column corresponds to a

single lane, and the rows are separated by a distance of 15

feet which approximately equals one car length. The social

tensor is formed by populating this grid with surrounding

car locations. We then apply two convolutional layers and

a pooling layer to the social tensor as shown in Fig. 3 to

obtain the social context encoding. Additionally, the LSTM

state of the predicted vehicle is passed through a fully con-

nected layer to obtain the vehicle dynamics encoding. The

two encodings are concatenated to form the complete tra-

jectory encoding, which is then passed to the decoder.

4.3. Maneuver based LSTM decoder

We use an LSTM based decoder for generating the

predictive distribution for future motion over the next tf
frames. We address the inherent multi-modality of driver

behavior by predicting the distribution for each of the six

maneuver classes described in section 3.4 along with the

probability for each maneuver class. The decoder has two

softmax layers that output the lateral and longitudinal ma-

neuver probabilities. These can be multiplied to give the

values of P(mi|X) from Eqn. 5. Additionally, an LSTM is

used to generate the parameters of a bivariate Gaussian dis-

tribution over tf frames to give the predictive distribution

for vehicle motion. In order to obtain maneuver specific

distributions PΘ(Y|mi,X) from Eqn, 5, we concatenate the

trajectory encoding with a one-hot vector corresponding to

the lateral maneuver class and a one-hot vector correspond-

ing to the longitudinal maneuver class.

4.4. Training and Implementation details

We train the model end to end. Ideally, we would like to

minimize the negative log likelihood

− log

(

∑

i

PΘ(Y|mi,X)P(mi|X)

)

(7)

of the term from from Eqn. 5 over all the training data

points. However, each training instance only provides the

realization of one maneuver class that was actually per-

formed. Thus we minimize the negative log likelihood

− log (PΘ(Y|mtrue,X)P(mtrue|X)) (8)

over all training instances, instead.

We train the model using Adam [12] with learning rate

0.001. The encoder LSTM has 64 dimensional state while
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Evaluation

Metric

Prediction

horizon (s)
CV

C-VGMM

+ VIM [6]

GAIL-GRU

[13]
V-LSTM S-LSTM CS-LSTM CS-LSTM(M)

RMSE

(m)

1 0.73 0.66 0.69 0.68 0.65 0.61 0.62

2 1.78 1.56 1.51 1.65 1.31 1.27 1.29

3 3.13 2.75 2.55 2.91 2.16 2.09 2.13

4 4.78 4.24 3.65 4.46 3.25 3.10 3.20

5 6.68 5.99 4.71 6.27 4.55 4.37 4.52

NLL

1 3.72 2.02 - 1.17 1.01 0.89 0.58

2 5.37 3.63 - 2.85 2.49 2.43 2.14

3 6.40 4.62 - 3.80 3.36 3.30 3.03

4 7.16 5.35 - 4.48 4.01 3.97 3.68

5 7.76 5.93 - 4.99 4.54 4.51 4.22

Table 1. Results: Root mean squared prediction error (RMSE) and negative log-likelihood (NLL) values over a 5 second prediction horizon

for the models being compared. The proposed models outperform the baselines in terms of both RMSE and NLL. Convolutional social

pooling leads to lower RMSE values compared to Fully connected social pooling. Using the maneuver based decoder leads to lower NLL

values compared to a uni-modal prediction

the decoder has a 128 dimensional state. The sizes of the

convolutional social pooling layers are as shown in Fig. 3.

The fully connected layer for obtaining the vehicle dynam-

ics encoding has size 32. We use the leaky-ReLU activation

with α=0.1 for all layers. The model is implemented using

PyTorch [18].

5. Experimental Evaluation

5.1. Dataset

We use the publicly available NGSIM US-101 [4] and

I-80 [5] datasets for our experiments. Each dataset con-

sists of trajectories of real freeway traffic captured at 10 Hz

over a time span of 45 minutes. Each dataset consists of

15 min segments of mild, moderate and congested traffic

conditions. The dataset provides the co-ordinates of vehi-

cles projected to a local co-ordinate system, as defined in

section 3.1. We split the complete dataset into train and

test sets. The test set consists of a fourth of the trajectories

from each of the 3 subsets of the US-101 and I-80 datasets.

We split the trajectories into segments of 8 s, where we use

3 s of track history and a 5 s prediction horizon. These 8

s segments are sampled at the dataset sampling rate of 10

Hz. However we downsample each segment by a factor of

2 before feeding them to the LSTMs, to reduce the model

complexity.

5.2. Evaluation metrics

We report results in terms of the root of the mean squared

error (RMSE) of the predicted trajectories with respect to

the true future trajectories, over a prediction horizon of 5

seconds, as done in [13]. For the LSTM models generat-

ing bivariate Gaussian distributions, the means of the Gaus-

sian components are used for RMSE calculation. For mod-

els generating multi-modal predictive distributions, we use

the mode with the highest probability for calculating the

RMSE.

While RMSE provides a tangible measure for the predic-

tive accuracy of models, it has limitations while evaluating

multi-modal predictions. RMSE is skewed in favor of mod-

els that average the modes. In particular, this average may

not represent a good prediction. For example, a driver in-

tending to overtake another vehicle may do so by switching

to the immediate left or the immediate right lane, while at

the same time accelerating. The average of these two modes

would be to accelerate while maintaining lane.

To address this limitation, we additionally report the neg-

ative log-likelihood (NLL) of the true trajectories under the

predictive distributions generated by the models. While

the NLL values cannot be directly interpreted as a physi-

cal quantity, they allow us to compare uni-modal and multi-

modal predictive distributions.

5.3. Compared models

We compare the following baselines and system settings:

Baselines:

• Constant Velocity (CV): We use a constant velocity

Kalman filter as our simplest baseline

• C-VGMM + VIM: We use maneuver based variational

Gaussian mixture models with a Markov random field

based vehicle interaction module described in [6] as

our second baseline. We modify the model to use the

maneuver classes described in this work to allow for a

fair comparison

• GAIL-GRU: We consider the generative adversarial

imitation learning model described in [13]. Since the

same datasets have been used in both works, we use
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the results reported by the authors in the original arti-

cle. There is a caveat that the GAIL-GRU trajectories

were generated by running the policy one vehicle at a

time, while all surrounding vehicles move according

to the ground-truth of the NGSIM dataset. Thus, the

model has access to the true trajectories of adjacent

vehicles over the prediction horizon.

System settings:

• Vanilla LSTM (V-LSTM): This simply uses the track

history of the predicted vehicle in the encoder LSTM

and generates a unimodal output distribution with the

LSTM decoder

• LSTM with fully connected social pooling (S-LSTM):

This uses the fully connected social pooling described

in [1] and generates a unimodal output distribution

• LSTM with convolutional social pooling (CS-LSTM):

This uses convolutional social pooling and generates a

unimodal output distribution

• LSTM with convolutional social pooling and maneu-

vers (CS-LSTM(M)): This is the complete model de-

scribed in this paper, including the maneuver based de-

coder generating a multi-modal predictive distribution

5.4. Results

Table 1 shows the RMSE and NLL values for the models

being compared. S-LSTM, CS-LSTM, and CS-LSTM(M)

outperform the baselines [6,13] in terms of RMSE and NLL

values, showing the effectiveness of the proposed model.

We note that the vanilla LSTM and CV models produce

higher RMSE values compared to the other models. Each

of the other models use some information about the motion

of neighboring vehicles. This shows that inter-vehicle inter-

action is a useful cue for motion prediction, consistent with

the results reported in [1, 6, 15].

We also note that CS-LSTM outperforms the S-LSTM

in terms of both RMSE and NLL values. This suggests that

convolutional social pooling better models the interdepen-

dencies of vehicle motion compared to a fully connected

social pooling layer. We further analyze this in the follow-

ing section.

Finally, we note that CS-LSTM(M) leads to higher

RMSE values compared to CS-LSTM. This could, in part,

be due to misclassified maneuvers, since the RMSE values

for CS-LSTM(M) are calculated using the trajectory cor-

responding to the maneuver with the highest probability.

However we note that CS-LSTM(M) achieves significantly

lower NLL values compared to CS-LSTM. Thus the predic-

tive distribution generated by CS-LSTM(M) better fits the

true trajectories compared to that generated by CS-LSTM.

This points to the multi-modal nature of the task.

Figure 4. Experiment comparing fully connected and convolu-

tional social pooling. Top: All training instances with vehicles at

odd locations in ego lane of social tensor removed from train set;

all instances with vehicles even locations removed from test set.

Bottom: RMS values of prediction error for FC social pooling

and convolutional social pooling for original datasets and datasets

from experiment. Convolutional social pooling is more robust to

missing spatial patterns in the social tensor

5.5. Fully connected vs. convolutional social pooling

We conjectured in section 4.2 that fully connected social

pooling as described in [1] would poorly generalize to a test

set with even slight differences in spatial patterns of agents

in the scene as collected in the social tensor, and that con-

volutional social pooling would remedy this. The reduced

prediction error from section 5.4 seems to suggest that this

is true. However to further analyze this, we set up the fol-

lowing experiment. We remove all instances from the train

set corresponding to the odd grid locations of vehicles from

the ego lane, and remove all instances from the test set cor-

responding to even grid locations as shown in Fig. 4. Thus,

we have a train and test set with zero overlap in terms of spa-

tial configurations of the social tensors. However, we have

plenty of spatially similar but not identical configurations

common to both. We plot the RMS values of prediction er-

ror for this new train and test set, for fully connected social

pooling and convolutional social pooling models. We see

that the performance of the fully connected social pooling

model drastically drops, almost to the point of the vanilla

LSTM shown in section 5.4. The performance drop with

convolutional social pooling is less severe in comparison.

This suggests that using convolutional and pooling layers

to aggregate social context is a much more robust approach

compared to using a fully connected layer.
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Figure 5. Comparison of uni-modal and multi-modal predictions: The figure shows the true trajectory (top, black), CS-LSTM pre-

dictive distributions (middle, blue) and CS-LSTM(M) predictive distributions (bottom, red) for three consecutive frames of a lane change

maneuver. The heat maps are generated by plotting the Gaussian components for each maneuver at each time step in the prediction horizon

5.6. Qualitative analysis of predictions

In this section we qualitatively analyze the predictions

made by our model to gain insights into its behavior in

various traffic configurations.

Uni-modal vs. multi-modal predictions: Figure 5 shows

a comparison of the unimodal predictive distribution

generated by CS-LSTM and the multi-modal distribution

generated by CS-LSTM(M). The plots show three con-

secutive frames during a lane change maneuver from left

to right. The top row shows the track history and the true

future trajectory. The middle row shows the predictive dis-

tribution generated by CS-LSTM and the bottom row shows

the predictive distribution generated by CS-LSTM(M). We

can clearly observe two modes in the predictive distribution

of CS-LSTM(M). The mode corresponding to the lane

change becomes more and more prominent further into

the maneuver while the mode corresponding to the keep

lane maneuver fades away. We further note that for all

three cases, the mode corresponding to the lane change

closely matches the true future trajectory. However, the

unimodal distribution generated by CS-LSTM shows an

average of the two modes and also has greater variance.

This illustrates why the CS-LSTM achieves lower RMSE

values while leading to higher NLL values as compared to

CS-LSTM(M).

Effect of surrounding vehicles on predictiions: Figure 6

shows six different scenarios of traffic. Each figure shows a

plot of track histories over the past 3 seconds and the mean

predicted trajectories over the next 5 seconds for each ma-

neuver class. The thickness of the plots of the predicted tra-

jectories is proportional to the probabilities assigned to each

maneuver class. Additionally, each figure shows a heat map

of the complete predicted distribution.

Fig 6(a) shows the effect of the leading vehicle on the

predictions made by the model. The first example (top-

left) shows an example of free flowing traffic, where the

predicted vehicle and the leading vehicle are moving at ap-

proximately the same speed. In the second example (top-

middle), we note from the track histories that the leading

vehicles are slowing down compared to the predicted vehi-

cle. We see that the model predicts the vehicle to brake, al-

though it’s current motion suggests otherwise. Conversely,

in the third example (top-right), we see that the vehicle be-

ing predicted is almost stationary, while the leading vehi-

cles are beginning to move. The model predicts the vehicle

to accelerate, as is expected in stop-and-go traffic.

Fig 6(b) shows the effect of vehicles in the adjacent lane

on the model’s predictions. The three examples show the

same scenario separated by 0.5 s. We note that the vehicle

being predicted is in a congested lane, with its leading ve-

hicle slowing down. We also note that the adjacent left lane

is congested. On the other hand, the adjacent right lane is

moving at a much faster speed. Based on this, the model

assigns a high probability to the predicted vehicle staying

in lane and braking, as expected. However, it also assigns a

small probability to an overtake by moving to the right lane.

We can observe that the model assigns a greater probability

to the overtake as the adjacent vehicle moves further away,

clearing up the lane.

6. Conclusions and Future Work

We have presented an LSTM encoder-decoder based

model for vehicle trajectory prediction for reasoning about

the interdependencies neighboring vehicles’ motion. Our

model uses an improved social pooling layer using convo-

lutional connections as opposed to fully connected layers

that more robustly models and better generalizes the various

spatial configurations of interacting agents in a scene. We
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Figure 6. Surrounding vehicles affect predictions: This figure shows the effect of surrounding vehicles on predictive distribution

generated by the model. The heat maps are generated by plotting the Gaussian components for each maneuver at each time step in the

prediction horizon

term this convolutional social pooling. Our proposed model

outperforms the reported state of the art on two large pub-

licly available datasets of vehicle trajectories. Our model

outputs multi-modal distributions for future motion of vehi-

cles based on maneuver classes. We have presented a qual-

itative analysis of the predicted distributions.

One limitation of the current approach is that it relies

purely on vehicle tracks to infer maneuver classes and fu-

ture trajectories. A lot of complementary information can

be captured using visual and map based cues. These could

be used to improve the accuracy of maneuver classifica-

tion and thus, that of future motion prediction. Future work

would focus on incorporation of these cues into the model
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