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Abstract

Most multiple object tracking methods rely on object

detection methods in order to initialize new tracks and to

update existing tracks. Although strongly interconnected,

tracking and detection are usually addressed as separate

building blocks. However both parts can benefit from each

other, e.g. the affinity model from the tracking method can

reuse appearance features already calculated by the detec-

tor, and the detector can use object information from past

in order to avoid missed detection.

Towards this end, we propose a multiple object tracking

method that jointly performs detection and tracking in a sin-

gle neural network architecture. By training both parts to-

gether, we can use optimized parameters instead of heuris-

tic decisions over the track lifetime. We adapt the Single

Shot MultiBox Detector (SSD)[14] to serve single frame

detection to a recurrent neural network (RNN), which com-

bines detections into tracks. We show initial prove of con-

cept on the DETRAC[26] benchmark with competitive re-

sults, illustrating the feasibility of learnable track manage-

ment. We conclude with a discussion of open problems on

the MOT16[15] benchmark.

1. Introduction

The main challenge in tracking multiple objects in a

video sequence stems from its open world nature. Specifi-

cally, the unknown number of present objects as well as un-

certainties and ambiguities in assigning tracks to detection

(data association) make it difficult to decide if a detection is

a false positive or a new track, or when a track should be es-

tablished or terminated. Even more challenging is tracking

objects in an online setting, where a globally optimal solu-

tion cannot be achieved. Locality in time means that once

an error is made it can hardly be corrected in the future, e.g.,

confusing a false positive detection on a background struc-

ture with a new track could result in a false track, which will

constantly be confirmed by the background structure.

Multiple object tracking methods typical consist of the fol-

lowing components: a detection method, a detection-track

affinity metric, and a track management. The detection

method is an object detector finding bounding boxes enclos-

ing instances specific object categories. The affinity metric

based on the track representation is used to combine de-

tections into tracks. The track management includes deci-

sions of when to create new tracks and when to terminate

old tracks. Further, it decides how to update a track, e.g. if

an associated detection can be trusted.

Leal-Taixe et al. [13] conclude that a strong affinity model,

often based on appearance cues, is important for good track-

ing performance and that deeply learned models show the

most potential. Many current approaches for tracking mul-

tiple objects view the detection method and the affinity met-

ric as completely independent components. However, it can

be assumed that both components are strongly related, and

that utilizing this relation can lead to an improved system

performance [11]. Further, can the detection method bene-

fit from information of the tracking components. So could

the non-maximum suppression of the detector benefit from

knowing the last position of the tracks, preventing the gen-

eration of false negative errors.

The track management is responsible for keeping the bal-

ance between connecting detections to tracks and discard-

ing unlikely matches. Its parameters are dependent on de-

tector and affinity metric performance and are often set by

hand-tuned heuristics, e.g. splitting detections into strong

and weak ones [20, 11], or the number of frames until a

lost track is terminated [27, 11, 7]. Tuning these parameters

manually for a given setting is tedious task, which in most

cases leads to sub-optimal solutions.

Towards this end, we propose an online multiple object

tracking method that integrates all components in a single

neural network. We use a recursive neural network (RNN)

to associate the tracks with the detections and update the

track representation in each frame. We propose a track-

detection affinity metric based on spatial distance, object

appearance, detection score and track score. Our appear-

ance clues are built on features that are used by the detec-

tor. Since it is easier to create a comprehensive training set

for detection than for tracking, we train our method in two

phases. First, we train the detector with a large detection
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Figure 1: This figure depicts the unrolled RNN and shows

the integrations of the SSD.

training set, than we add the RNN and train on a signifi-

cantly smaller amount of tracking sequences.

2. Related Work

In general, one can differentiate between offline

methods, which globally optimize the tracks, and online

methods, which base their decisions on previous observed

data. Many offline methods are formulated as a graph

optimization problem, e.g. minimax path[21], or minimum

cost multicut[24, 25], with the detection as the nodes and

the affinity or distance metric for the weights of the edges.

Online methods are using an affinity metric to connect

tracks and detections in each frame. Often the Hungarian

algorithm is applied to find optimal associations[18, 5, 29].

Recently several multiple object tracking methods include

deeply learned features in their affinity metric[2, 7, 18, 21],

in which the features are calculated independent of the

object detector. In [16] Milan et al. present an end-to-end

trained recurrent neural network for online tracking.

Similar to our proposed method it combines detections

into tracks over time using an RNN, but contrary to our

proposed method, it does not utilized appearance features

and does not include the detection method in to their

network.

Another set of methods focus on detection of multiple ob-

ject categories in videos[23, 10] by utilizing deep learning.

But the goal of these methods is to increase the detection

performance and not to preserve a consistent instance ID

over multiple frames.

3. Joint Detection and Multiple Object Track-

ing Approach

Our method builds onto the Single Shot MultiBox De-

tector (SSD)[14] pipeline. The SSD detector processes an

image along a fixed set of bounding boxes (”prior boxes”).

For each prior box, classification scores are calculated and

a regressor is used to calculate a refined object localization.

We adapt the network to additionally output appearance fea-

tures At for each prior box by adding an additional convo-

lution layer to every output layer of the SSD. This is the

input for the recurrent neural network (RNN) (see figure

1), which is responsible for combining the tracks from the

last frame with the current detections. Therefore, it calcu-

lates an association metric (section 3.2) between the tracks

and the detections. This metric is used to guide a modi-

fied non-maximum suppression (NMS), which replaces the

NMS used in the SSD. The NMS is integrated in the net-

work as a selection layer (section 3.3). The association

metric is further used to associate detections to tracks by

solving a bipartite graph matching with the Hungarian al-

gorithm (section 3.4), which is integrated as a permutation

layer. Further, a track score is calculated (section 3.5) based

on the old track confidence, detection confidence, and as-

sociation confidence. We use a fixed number of tracks St,

where old tracks are replaced with new ones based on their

track score (see section 3.6). Each track consist of a track

ID ψ, a track score l and a history of ∆max matched detec-

tions q1, . . . , q∆max
with a flag ξ1, . . . , ξ∆max

that indicates

if a matched detection is valid. See figure 2 for an overview

of the recurrent network.

3.1. Detection

In each frame t we use the SSD to generate a set of

detections DSSD
t =

{(

c
bg
t , c

1
t , . . . , c

max
t , x′t, y

′

t, w
′

t, h
′

t

)}

,

with cit the classification scores and (x′t, y
′

t, w
′

t, h
′

t) the

bounding box regression. For each detection we calcu-

late a single detection score cdt based on the class pre-

dictions: cdt = maxi c
i
t − cbg . The detection center po-

sition (xdt , y
d
t ) and size (wd

t , h
d
t ) are calculated from the

prior box xp, yp, wp, hp and the estimated box regression:

xdt = xp + x′t etc. In combination with the appearance

features Ad
t for each detection this yields the input detec-

tion set Dt =
{

qdt
}

for the recurrent network, with qdt =
(

cdt , x
d
t , y

d
t , w

d
t , h

d
t ,A

d
t

)

. Since no non-maximum suppres-

sion has taken place yet, the number of detections |Dt| in

each frame is fixed depending on the number of prior-boxes

used in the SSD architecture.

3.2. Affinity Measure

Before filtering detections with a low score by the non-

maximum suppression, we calculate an affinity score be-

tween each detection in the input detection set Dt and each

track of the previous frame St−1. For that we observe the

history of associations between detection and tracks for the

last ∆max frames. We keep the history, because a track

could not be visible in the last frame, or could have a non-

representative appearance, when it is half occluded. There-

fore, for each time step ∆ in the track history we calcu-

late the euclidean distance as,d,∆ between the appearance
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Figure 2: Overview of RNN operations. From detections Dt and tracks St−1 to updated tracks St.

of the detection Ad
t and the appearance of the track given by

the associated detections As
∆. Further the position distance

is given by the euclidean distance bs,d,∆ between bound-

ing box centers
(

xdt , y
d
t

)

and (xs∆, y
s
∆) and the euclidean

distance fs,d,∆ between bounding box size
(

wd
t , h

d
t

)

and

(ws
∆, h

s
∆). The position distances are adapted to include a

scale factor depending on the size of the detection, i.e. the

same distance for a small detection should result in a greater

error than for a large detection: b′s,d,∆ = rdt · rs∆ · bs,d,∆
and f ′s,d,∆ = rdt · rs∆ · fs,d,∆, with rdt = R

(

wd
t , h

d
t

)

and

rs∆ = R (ws
∆, h

s
∆). R(·) is calculated with a small mul-

tilayer perceptron with one hidden layer. From these dis-

tances we calculate the affinity metric between each detec-

tion d and each time step ∆ in the history of each track s:

ms,d,∆ =M∆

(

as,d,∆, b
′

s,d,∆, f
′

s,d,∆, c
d
t

)

,

with M∆(·) being a multilayer perceptron with two hidden

layers and cdt the detection score. The affinity between a

detection and a track is then given by the maximum of all

valid detections of the track history:

ms,d =

{

max∆ {ms,d,∆ | ξs∆ = 1} , if
∑

∆
ξs∆ > 0

mτ , otherwise
.

If the track has no valid associated detection, the track itself

is regarded as invalid and a dummy value mτ is used as

affinity measure.

3.3. Non­Maximum Suppression

We use a greedy non-maximum suppression method,

which first filters detections with small confidence and then

removes all detections that are overlapped by another de-

tection with a higher confidence. Because we do not use

a position prediction for the tracks, the tracks depend on

an associated detection in order to be updated. To avoid

that detections that belong to a track with low detection

scores are filtered out by the rough non-maximum suppres-

sion, the detection scores are re-weighted using the max-

imum similarity md = maxs (ms,d) to the tracks. The

new detection score is given by c′dt = C(cdt ,md), with

C(·) being a multilayer perceptron with two hidden lay-

ers. The non-maximum suppression is implemented as a

selection layer, which yields a subset of detections D∗

t =
NMS

({(

c′dt , x
d
t , y

d
t , w

d
t , h

d
t

)})

⊂ Dt. The size of the sub-

set |D∗

t | depends on the non-maximum suppression, but is

limited by the NMS parameter D∗.

3.4. Track­Detection Association

We calculate the association between the tracks St−1

and the filtered detections D∗

t by solving a bipartite graph

matching using the Hungarian algorithm. Besides the affin-

ity measure ms,d∗ , we use the track lst−1 and the detection

score cd
∗

t for the association metric:

os,d∗ = O
(

lst−1, c
d∗

t ,ms,d∗

)

.

This gives the method the ability to prefer high scoring

tracks to lower scoring ones, if a conflict occurs. O(·) is

a multilayer perceptron with two hidden layers. In most

cases, there are more detection than tracks to associate. In

addition, if a pair has an association value smaller than

zero, the association is discarded. Further qst is the de-

tection matched to track s and qst = τ if the track has no

match. The set of detections without an associated track q̂

is D̂t = D∗

t \ {q
s
t |s} .

3.5. Track Score

The next step is to calculate a new track score lst for all

existing tracks and for all potentially new tracks, consist-

ing of detections without an associated track D̂t. The track

score is based on the last track score lst−1, the detection

score of the associated detection cd
s

t , and the association

measure ms,ds :

lst = L
(

lst−1, c
ds

t ,ms,ds , as,ds

)

,

with L(·) being a small multilayer perceptron with two hid-

den layers. If a track has no association, dummy values are
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learned for the missing detection score cτ and association

measure mτ . Similar a dummy value lτ is learned for de-

tection without associated tracks.

3.6. Track Management

The last step is to manage the track life cycle, i.e. to

start new tracks, to conclude old ones and to update ex-

isting tracks. We do not explicitly terminate tracks but

keep a limited number of tracks in the set. Therefore we

rank the new and old tracks by their track score lst and

keep the highest scoring tracks. For updating the tracks,

the associated detection is included in the history of each

track: q′s∆max

= qs∆max−1, . . . , q
′s
2 = qs1 and ξ′s∆max

=
ξs∆max−1, . . . , ξ

′s
2 = ξs1 , with

q′s1 =











qst , if s matched

qs2, if no match: qst = τ

q̂, if new track

,

being the matched detection,

ξ′s1 =











1, if s matched

0, if no match: qst = τ

1, if new track

,

being the updated valid flag, and

ψ′s =

{

ψmax + 1, if new track

ψs, otherwise
,

the updated ID.

3.7. Training

We train our network in two phases. First, we train the

original SDD on a detection dataset. In the second phase,

we add the RNN and train on sequences of 16 frame min-

imizing the additional tracking losses. The tracking objec-

tive consist of two goals: find each object in the scene and

keep the ID for each track constant. Therefore we use a

combination of multiple loss functions consisting of the loss

for the affinity metric Lm, the loss for the new detection

score Lc, the loss for the association metric Lo, and the loss

for the track score Ll. For the affinity metric and association

metric we use the sigmoid cross entropy loss, independently

normalized for positive and negative samples:

Lx = −
1

|N+
x |

∑

n∈N
+
x

pxn log p̂
x
n

−
1

|N−
x |

∑

n∈N
−

x

(1− pxn) log (1− p̂xn) ,

with N+
x the set of matching sample pairs, N−

x the set

of negative sample pairs, and pxn ground truth. For the

affinity metric the estimation is the sigmoid of the affin-

ity measure: p̂m
s,d,∆ = σ(ms,d,∆), and likewise for the as-

sociation metric: p̂o
s,d∗ = σ(os,d∗). Input sample triplets

((s, d,∆) for Lm), sample pairs ((s, d∗) for Lo) and their

respective ground truth (pm
s,d,∆ and po

s,d∗), are generated

from a selected random set of ground truth tracks Sgt. In ev-

ery frame we sample all triplets (s, d,∆) with s ∈ [1, |Sgt|],
d ∈ [1, |D|], and ∆ ∈ [1,∆max]. A sample triplet is posi-

tive, (s, d,∆) ∈ N+
m and pm

s,d,∆ = 1, if the overlap between

the detection box qdbox = (xdt , y
d
t , w

d
t , h

d
t ) with the ground

truth track bounding box qsbox = (xst , y
s
t , w

s
t , h

s
t ) is suffi-

ciently high, i.e.:

qdbox ∩ q
s
box

qdbox ∪ q
s
box

> 0.85,

and if the track was visible in frame t−∆, with t being the

current frame. If the overlap is lower than 0.5 the sample is

regarded as negative, i.e. (s, d,∆) ∈ N−

m and pm
s,d,∆ = 0,

given that the track s was visible in frame t−∆.

The ground truth for the association metric is collected in

similar way. We sample track detection pairs (s, d∗) from

the current frame, with s ∈ [1, |Sgt|], d∗ ∈ [1, |D∗|]. D∗ is

the set of filtered detections generated by the NMS. Again a

pair is regarded as positive if the overlap between the track

ground truth bounding box and the detection bounding box

is high and negative when the overlap is low.

For the loss of the re-weighted detection score Lc and the

loss for the track score Ll we use the sigmoid cross entropy

loss

Lx =
−1

|Nx|

∑

n∈Nx

[pxn log p̂
x
n + (1− pxn) log (1− p̂xn)] ,

where Nc is a set of detections Nc ⊂ D, p̂cd = σ(c′d) is

the sigmoid of the re-weighted detection score with their

respective ground truth pcd. Nl = Sgt is the set of sampled

ground truth tracks, p̂ls = σ(ls) is the sigmoid of the track

score with their ground truth pls. Similar to the other losses

the ground truth is positive, pcd = 1, if the detection has

a high overlap with any annotated track bounding box and

negative, pcd = 0, if the overlap is low. Analog for pls with

the restriction that pls = 1 only if the ID of the track is cor-

rect.

For a faster convergence, we correct wrong associations be-

fore continuing with the next frame and tracks are only ini-

tialized from the ground truth set.

4. Evaluation

We test our method on the DETRAC[26] and on the

MOT16[15] benchmarks. The DETRAC benchmark in-

cludes 10 hours of videos in traffic surveillance with an-

notated vehicle tracks. From the DETRAC training set we
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MOTA IDs Rcll Prcn MT ML FM MOTP

∆max = 6 69.3 443 76.0 92.6 61.0% 4.8% 675 82.8

∆max = 4 72.5 346 79.2 92.7 68.1% 3.6% 547 81.7

∆max = 2 68.1 311 73.1 94.1 55.2% 5.7% 781 83.5

∆max = 1 70.0 474 75.9 93.5 59.2% 4.8% 686 83.1

∆max = 1, no app 71.7 116 77.5 93.2 62.5% 4.2% 783 82.7

CEM[1] 15.7 65 25.9 72.0 4.8% 57.8% 100 74.8

GOG[17] 49.1 328 70.1 77.3 44.9% 9.6% 472 66.0

IHTLS[8] 62.6 205 78.3 83.5 63.4% 3.8% 563 82.2

RMOT[28] 62.6 132 69.4 91.4 42.1% 6.5% 174 75.7

Table 1: Results on our DETRAC validation set. Best result indicated in bold.

use 52 sequences for training and eight for testing1. We first

train the SSD for detecting vehicles. Some sequences con-

tain regions that are ignored in the benchmark. We included

these regions into the training so that bounding box results

that overlap with these regions do not influence the train-

ing losses. We set the input size of the detector to 480x270

pixel and train for 140000 iterations with a batch size of

16 and a learn rate of 0.001, using SGD for optimization.

In the second phase we add appearance features (A, with

|A| = 32) and the association RNN and train on sequences

of 16 frames for 35000 iterations. Because of memory lim-

itations, we select a set of eight ground truth tracks for each

sequence.

For testing we set the maximum number of tracks |S| to 35

and evaluated different sizes of track history ∆max. Fur-

ther we test the method by omitting the appearance features

with ∆max = 1, so that only the distance to the last track

position is used. We compare our method to the bench-

mark provided implementation of other tracking by detec-

tion methods. As detector for the other methods, we use our

trained SSD after the first phase without the RNN but with

the original non-maximum suppression included. Since the

other methods are depended on the detection score, we eval-

uated each method 10 times with a different threshold to

filter low scoring detections and report the best result. For

our method, we filter tracking bounding boxes with a track-

ing score lower than zero. We use the evaluation tool pro-

vided from the DETRAC benchmark[26] and report the fol-

lowing metrics: multi-object tracking accuracy (MOTA)[4],

the number of ID switches (IDs), recall (Rcll) and precision

(Prcn) of the tracking bounding boxes, percentage of mostly

tracked (MT) and mostly lost (ML) of the tracks, the num-

ber of fragments (FM) and the multi-object tracking preci-

sion (MOTP)[4]. Results are summarized in table 1.

The results show that the MOTA of our method is stable

most of the time, but larger than the MOTA of the compared

methods. Further, the number of ID switches is significant

1Validation set sequence numbers: 39781, 40152, 40181, 40752,

41063, 41073, 63521, and 63525

lower when not using appearance features. We attribute this

to the fact that the association metric md,s,∆ is more dif-

ficult to train for positive pairs when using the appearance

features. In future, we plan to replace the fixed threshold for

the association by a learned parameter. Overall, the num-

ber of fragments is smaller for our method when using ap-

pearance features, even with varied recall. This shows that

the appearance features help to associate detection when the

position difference becomes too high. For our ∆max = 4
setting the runtime of the whole method for each frame is

62ms (16.2 frames per second). Using only the SSD net-

work part the runtime is 37.2ms (26.9 frames per second).

The MOT16[15] benchmark consists of pedestrian track-

ing sequences. They differ in image resolution and cam-

era movement. In the first phase we train the SSD to detect

pedestrians on the training sets of MOT15[12], MOT16[15],

Caltech Pedestrian[9] and CityPersons[30]. We set the de-

tector input size to 480x270 pixel and train for 250000 iter-

ations with a batch size of 16 and a learn rate of 0.001, using

SGD for optimization. In the second phase we train on the

MOT15 and MOT16 training set on sequences of 16 frames

for 45000 iterations with eight ground truth tracks for each

sequence. For testing we set the maximum number of tracks

|S| to 55 and the size of the track history to ∆max = 4. We

filter tracking bounding boxes if the tracking score is lower

than zero.

We compare our method with published state of the art on-

line tracking methods on the MOT16 test set (see table 2).

For a fair comparison between methods, the annotations for

the test set are not public. Instead, each author submits

the tracking results to the benchmark website to get results.

Different to the DETRAC benchmark, we report the abso-

lute number of false positive (FP) and false negative (FN)

instead of precision and recall. The results show, that our

method does not reach top performance but can best several

other methods. Because of the increased number of tracks,

our runtime increases to 222ms per frame (4.5 frames per

second) for the complete detection and tracking method.
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MOTA IDs FP FN MT ML Runtime

POI[29] 66.1 805 5,061 55,914 34.0% 20.8% 9.9 Hz

SORTwHPD16[5] 59.8 1,423 8,698 63,245 25.4% 22.7% 59.5 Hz

EAMTT[19] 52.5 910 4,407 81,223 19.0% 34.9% 12.2 Hz

AMIR[18] 47.2 774 2,681 92,856 14.0% 41.6% 1.0 Hz

STAM16[7] 46.0 473 6,895 91,117 14.6% 43.6% 0.2 Hz

CDA DDALv2[2] 43.9 676 6,450 95,175 10.7% 44.4% 0.5 Hz

oICF[11] 43.2 381 6,651 96,515 11.3% 48.5% 0.4 Hz

∆max = 4 39.1 1,906 9,411 99,727 11.1% 41.1% 4.5* Hz

EAMTT pub[19] 38.8 965 8,114 102,452 7.9% 49.1% 11.8 Hz

JCmin MOT[6] 36.7 667 2,936 111,890 7.5% 54.4% 14.8 Hz

HISP T[3] 35.9 2,594 6,412 107,918 7.8% 50.1% 4.8 Hz

GMPHD HDA[22] 30.5 539 5,169 120,970 4.6% 59.7% 13.6 Hz

Table 2: Results on MOT16 test set from published online methods. Best result indicated in bold. *Contrary to other methods,

our runtime includes the detection phase.

Frame 394 Frame 395 Frame 396 Frame 397

Frame 398 Frame 399 Frame 400 Frame 401

Figure 3: Tracking through partial occlusion on DETRAC sequence 40152.

5. Conclusion

We presented a joint detection and online multi-object

tracking method, which expands the SSD with appearance

features and a recurrent network for track-detection associa-

tion. We showed initial results on the DETRAC and MOT16

benchmark. On the DETRAC benchmark we archive com-

petitive results. On the MOT16 benchmark, our method

reports a high number of false positives and ID switches.

Partly both numbers can be explained by the high sensitiv-

ity of our detection method, but also by the fix threshold

for the association metric md,s,∆ yielding too few associa-

tions. Further currently the method has no technique to pre-

dict movements of a track during occlusion or to re-identify

an object when it is occluded for more than ∆max frames.

Nevertheless, we believe that the overall framework shows

potential in the cooperation between detection and tracking

method.

In future work we want to expand the idea of a fully in-

tegrated multi-object tracking network. For that, we plan

to further decrease the impact of the non-maximum sup-

pression and to include a method to re-identify objects after

occlusions.
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