
Re-identification for Online Person Tracking by Modeling Space-Time

Continuum

Neeti Narayan, Nishant Sankaran, Srirangaraj Setlur and Venu Govindaraju

University at Buffalo, SUNY
{neetinar, n6, setlur, govind}@buffalo.edu

Abstract

We present a novel approach to multi-person multi-

camera tracking based on learning the space-time contin-

uum of a camera network. Some challenges involved in

tracking multiple people in real scenarios include a) ensur-

ing reliable continuous association of all persons, and b)

accounting for presence of blind-spots or entry/exit points.

Most of the existing methods design sophisticated models

that require heavy tuning of parameters and it is a non-

trivial task for deep learning approaches as they cannot be

applied directly to address the above challenges. Here, we

deal with the above points in a coherent way by propos-

ing a discriminative spatio-temporal learning approach for

tracking based on person re-identification using LSTM net-

works. This approach is more robust when no a-priori in-

formation about the aspect of an individual or the number

of individuals is known. The idea is to identify detections

as belonging to the same individual by continuous associ-

ation and recovering from past errors in associating dif-

ferent individuals to a particular trajectory. We exploit

LSTM’s ability to infuse temporal information to predict the

likelihood that new detections belong to the same tracked

entity by jointly incorporating visual appearance features

and location information. The proposed approach gives a

50% improvement in the error rate compared to the pre-

vious state-of-the-art method on the CamNeT dataset and

18% improvement as compared to the baseline approach

on DukeMTMC dataset.

1. Introduction

Tracking and monitoring of human activity and behavior

characterization in a scene are increasingly useful but chal-

lenging tasks given the vast numbers of deployed surveil-

lance cameras. Automated systems for analyzing and un-

derstanding massive streams of video data have become a

necessity. Reliable automatic re-identification and tracking

of people in dense crowds will enable continuous monitor-

ing and analysis of events without the need for human su-

pervision.

Figure 1: Camera sequences from the DukeMTMC dataset

with person trajectories highlighted.

However, tracking multiple people across multiple cam-

eras is not a trivial task, especially in complex and crowded

scenarios with different scene illuminations, camera proper-

ties, frequent occlusions and interaction of individuals. Fig-

ure 1 illustrates this problem. Given a sequence of frames

as input, with possibly several simultaneous observations

across cameras at a given time instance, the output of a

tracking system is the trajectory of each individual. Much of

the work on multi-target multi-camera tracking involve two

tasks: employing a motion based tracking within cameras

and a separate process of re-identification or data associa-

tion for targets exiting a camera boundary and re-entering

the same/ different camera view [33, 10]. The main idea is

to link two short tracklets into longer tracks by optimizing

probabilities between tracklets globally. Existing tracking

systems can follow and predict the location of known tar-

gets for long times [31, 16, 8]. However, when targets are

not known, extracting the track of each individual is a dif-

ficult problem. The reason is that when two or more indi-

viduals overlap or cross or re-enter a camera view, it can

be difficult to assign correct identities. An identity switch

will propagate to the rest of the video and result in assigning

random labels to all individuals after some time.

Owing to the recent rise of deep learning with the avail-

ability of large annotated data, we adapt the Convolutional

Neural Networks (CNN) learning methodology to multi-

camera tracking [28]. In addition, taking advantage of the
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spatial and temporal information in videos, we study the ro-

bustness of high-level appearance features produced by con-

volutional networks and prediction efficacy of LSTM net-

works in the temporal domain for understanding and asso-

ciating detections. Our proposed trajectory tracking method

can deal with local temporal difficulties generated by multi-

person interaction and occlusion. It is capable of recovering

from past errors or misassociations and handling entry/exit

scenarios more accurately. Moreover, the approach unifies

the two disjoint acts of tracking within and across cameras

and can thus handle time-based sparseness in video data.

Our main contributions include:

1. Learning the space-time continuum for the camera net-

work to effectively capture the variation in the features

as a function of time and space. Our approach ex-

tends the neural network learning methodology into

the spatial and temporal domain for efficient multi-

person multi-camera tracking.

2. Our tracking algorithm is completely automatic, giving

reliably correct identities even for multi-camera sce-

narios with complex indoor and outdoor movements,

and varying number of persons. It is also capable of

handling temporal gaps in the input video.

2. Related Work

Tracking-by-detection approaches [14, 3, 17], owing to

the progress in object detection [30, 20], have emerged as a

useful and popular tracking strategy. All of them handle the

data association problem, some taking advantage of social

factors to improve tracking [2, 21]. The system is usually

composed of several modules, with the feature extractor be-

ing the most important module of a tracker [29]. Thus, the

performance of a tracking system significantly depends on

the feature used.

In a discrete Hidden Markov Model (HMM) model, the

trajectory tracking problem can be solved using the Viterbi

algorithm [22], which is a dynamic programming algorithm

that keeps all best sequences ending at all possible states

in current frame. A well-known early work in trajectory

tracking is the multiple hypothesis tracking (MHT) algo-

rithm developed by Reid [23]. In MHT, the multi-target

tracking problem is decomposed into the state estimation

and data association components. Some methods are pre-

sented to model data association as random variables which

are estimated jointly with state estimation by EM iterations

[6, 27]. Most of these methods are in the small target track-

ing community where object representation is simple.

A. Alahi et al. in [1], predict trajectories of people

based on their past positions using Long-Short Term Mem-

ory networks (LSTM). For every person trajectory, a sep-

arate LSTM network is used. Based on the observed po-

sitions and information shared between LSTMs through a

novel Social pooling (S-pooling) layer, their model tries to

predict future paths. In [26], an online method for track-

ing is proposed by using multiple cues such as appearance,

motion, and interaction. LSTM networks are used to learn

motion and interactions of humans. However, this solution

is for single camera person tracking and there is no evi-

dence of how well the system scales for multi-camera envi-

ronment. A cross domain knowledge transfer scheme [32]

is explored for deep learning based person re-identification

by transferring knowledge of mid-level attribute features

and high-level classification features. Also, the LSTM

based model is extended by a special gate for use in the

re-identification method. However, this work is similar to

other re-identification approaches that use a pair of images

over a set of non-overlapping camera views and do not

model real-world multi-camera tracking scenarios.

Recently, Narayan et al. in [19] presented an associ-

ation based approach for person tracking. Even though

their framework overcomes the weakness of prior research

in terms of tracking by re-identification, it does not propa-

gate associations nor learn from past associations. A more

coherent approach is required in order to have an effective

multi-person multi-camera tracking system. We draw moti-

vation from this work and extend it significantly to address

its shortcomings.

3. Our Approach

This section presents a detailed description of the track-

ing approach. It is organized as follows: first, we describe

the general overview of the approach. The following sub-

sections present in detail each of the steps of the tracking

algorithm - feature computation, training LSTM network

and tracking using the trained model.

3.1. Overview

At each time-instant t, every active person in the scene

is represented by the person bounding-box coordinates i.e.

(xt,yt,wt,ht). We then extract appearance-based features

for a person using a deep CNN, described in the next sec-

tion. The pairwise matching probability/score sij of ev-

ery previously tracked person i with every detected person

j across consecutive time instances is computed based on

the appearance features. These match scores sij are en-

coded along with location information pertaining to the cor-

responding observations being matched and forms a feature

input ztij at time-instant t for the LSTM. We observe and ac-

cumulate these features for upto a fixed time period for ev-

ery person tracked and the entire sequence/track of features

Zi are provided to the LSTM network for predicting associ-

ations. Since at any time instance, there can be multiple de-

tected persons to associate to a previously tracked identity,

we accumulate the features arising out of each possible as-

sociation to the tracked identity’s feature vector and utilize

the LSTM to predict its match probability. The association

1552



Figure 2: Proposed system overview

with the highest match probability is chosen as belonging

to the tracked identity and we use this new feature vector

as that identity’s track for the next time instance’s associ-

ations. Since no constraint is placed on the feature vector

sequences being of consecutive timesteps, this formulation

can effectively handle temporal gaps in multi-camera envi-

ronments. When the feature vector for an identity is not

long enough for the LSTM, our method defaults to using

attribute-based inference for predicting the association.

Our model is spatially and temporally deep in that it ex-

ploits robust appearance features and location information

of past frames. The intuition behind the method is to model

the evolution of an identity’s match scores (being a func-

tion of the features) across time (over a fixed time period)

and space (across multi-camera and within camera location

transitions), thereby uncovering the space-time continuum

manifested in the camera network. We conjecture that by

being able to capture how the match performance varies

temporally and spatially, we can make more informed asso-

ciations. The overview of our tracking system is unfolded

and shown in Figure 2.

3.2. Appearance Feature Cues

We use AlexNet model [13] and DenseNet model [11]

for extracting features from person detections. These

appearance-based features represent traits and characteris-

tics of an individual.

3.3. Long Short Term Memory Networks

We consider LSTM networks [9] as they are capable of

learning temporal dependencies. The key to LSTM units is

the embedded representation of the cell state c that acts as

a memory. The presence of structures called gates controls

how much of the previous state information should be kept

or replaced by the new input. An LSTM has three gates,

each consists of a sigmoid layer and an element-wise mul-

tiplication operation. More formally, the input it, output ot
and forget ft gates are all functions of the hidden represen-

tation ht−1 and current input xt. Using a sigmoid layer,

a separate weight matrix Wg and bias bg for each gate, the

memory update that decides the flow of information is mod-

eled as:

it, ot, ft = σ[Wg(ht−1, xt) + bg] (1)

The old cell state, ct−1, is updated to the new cell state

ct as ct = ft ∗ ct−1 + it ∗ c̃t and the hidden representations

are computed as ht = ot ∗ tanh(ct), where ∗ represents

element-wise multiplication and c̃t is a vector of new can-

didate values created by a tanh layer.

3.4. LSTM Input Generation

At every time instant, we model the current observation j
with previously seen observation i together for the purpose

of continuous entity association. A single association com-

prises one time-step input for the LSTM which is formed

with a pairwise-distance feature vector (FV) by combining

information of subject idi with subject idj as shown below:

< sij , cami, camj , xi, yi, wi, hi, xj , yj , wj , hj > (2)

where idi and idj are the ith and jth person’s ID respec-

tively, sij is the cosine distance of appearance features com-

puted between the two observations, cami and camj are

the IDs of the cameras where subject idi and subject idj are
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Feature Seq Label

GGG GGG GGG G 1

GGG GGG GGG I 0

III III III G 1

III III III I 0

Table 1: Case 1

Feature Seq Label

GGG GGG III G 1

GGG GGG III I 0

III III GGG G 1

III III GGG I 0

Table 2: Case 2

Feature Seq Label

GGG III GII G 1

GGG III GIG I 0

III GIG IIII G 1

III GIG III I 0

Table 3: Case 3

Table 4: Association samples

seen respectively, < xi, yi, wi, hi > is the person bound-

ing box of subject idi and < xj , yj , wj , hj > is the person

bounding box of subject idj .

We generate 10-frame long sequences by extracting the

pairwise-distance feature vector for 10 time instances, each

feature vector of size 11. The entire 10-frame long sequence

of feature vectors is fed to the LSTM network to obtain the

network’s final association prediction.

3.5. Learning the Association

The association of two entities is based on the pairwise-

distance feature vector generated. The feature vector is at-

tributed to being “genuine” (G) if idi = idj and an “im-

poster” (I) otherwise. Our objective is to predict the asso-

ciation for the current sample, having observed the last 9
associations for a particular identity. This method of look-

ing back in time by keeping few past observations to find

the most likely association for a future observation helps

recover from misassociations.

Below, we discuss the different cases that are likely to

occur in real situations. Table 4 shows label prediction for

the 10th instance given 10-frame long feature sequences.

Case 1: Here, we assume that the last 9 associations are

all G or all I. If a G feature vector is observed at the 10th

instance, our model should predict label 1 with high con-

fidence; else predict label 0 meaning an association should

not be made, as shown in Table 1.

Case 2: In this scenario, we introduce noise in 7th, 8th and

9th instances. This is to model more realistic scenarios such

as recovery from past incorrect associations. Table 2 depicts

Case 2 scenario.

Case 3: Here, we introduce noise at any time instance. This

is to model situations when our system recovers from misas-

sociations but makes an association error again. Few sample

situations are shown in Table 3.

Sequences of feature vectors are generated from a dataset

according to the above mentioned scenarios and used to

train the LSTM model so that it learns to capture the inher-

ent geographic constraints in the multi-camera environment

and how the genuine association scores should evolve with

these constraints.

3.6. LSTM­based Space­Time Tracker

We describe the general outline of how a space-time

tracker based on the LSTM network trained as described

in the previous section can be utilized. All persons de-

tected are represented by their corresponding appearance

features and their location information. When a previously

unseen person appears, the system would store the appear-

ance features to match within the next timestep. Once

the system has registered a match, it saves the history of

matches/associations along with the location information

corresponding to the match. The system accumulates the

history of associations for 9 timesteps. In the 10th timestep

for the tracked individual, for n currently detected persons,

we make n copies of the individual’s association history and

populate each with the association to one of the n detected

persons. If m represents every individual tracked by the

system for longer than 9 time steps, we obtain an m×n as-

sociation matrix with each cell containing the accumulated

history of the individual.

Using the LSTM network we obtain a rectified predic-

tion for the probability of a cell’s association given it’s his-

tory. With the LSTM predictions, we can apply a greedy

technique of selecting associations based on decreasing

probability of association. Figure 3 depicts how the pro-

posed tracker works on the association probability matrix

P , where each row represents a previously tracked person

and the columns hold currently detected persons.

Once the associations are decided, the system stores the

corresponding history of associations for each individual

and uses it for subsequent predictions and any detections

not associated to a previous individual are initialized for

tracking. Some key improvements of the inference-based

association algorithm include the following:

Entropy-based association: With the LSTM predictions,

we can apply a greedy technique of selecting associations

based on decreasing probability of association. However,

this method would suffer during situations where the LSTM

predictions for a particular individual are extremely similar.

To address this issue, we perform entropy based greedy as-

sociations where each of the m individuals are associated

to one of the n detected persons according to increasing en-

tropy of the individuals association probabilities computed

as Hi = −

∑n

j pij log pij . Clearly, this policy would pri-
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Figure 3: Illustration of LSTM-based tracking. The example above shows an association matrix in a 2 camera network.

Et
i represents the ith entity at timestep t, PLSTM/PAttr is the association probability based on LSTM prediction or cosine

similarity based on pairwise appearance attributes (best viewed in color).

oritize associations about which the LSTM network is most

confident.

Re-association of tracklets: Tracks are created and up-

dated based on the association at every timestamp. When an

association error occurs, a new track is created even though

the ground-truth is otherwise. To avoid propagating associ-

ation errors, we re-associate tracklets once every 10 times-

tamps. The overall number of tracks is hence reduced and

we have a more coherent tracking system now.

Subsampling: We subsample real-time footage to achieve

real-time performance of the system. We take 1 in every

60 frames of footage. The LSTM network is trained on

the subsampled data and the tracking model is evaluated on

the subsampled set showcasing the ability of the tracking

algorithm to effectively handle temporal discontinuities in

multi-camera environments. The scalability of the model

is also demonstrated by showing that it can learn to track

people with fewer data from a dataset.

4. Experiments and Results

We now describe the dataset, training specifics, evalu-

ation protocols, and specifics of the parameters used for

preliminary experimental evaluation. Figure 4 shows the

architecture of our proposed tracking by re-identification

method. Specifically, each sample is of size (k, 11), where

k = 10 for our experiments.

4.1. Dataset

The availability of video data for the purpose of tracking

in multi-camera environment is limited. Many commonly

evaluated public datasets such as VIPeR [7] and UCY [15]

are not suitable as they do not exhibit the characteristics

that we are trying to demonstrate, and lack time and mo-

tion information. Hence, we use the CamNeT [34] and

DukeMTMC [24] datasets for our experiments with the pro-

posed approach.

CamNeT: CamNeT is a non-overlapping camera network

tracking dataset in a university campus, covering both in-

door and outdoor scenes. It has over 1600 frames, each

of resolution 640 by 480 pixels, 20-30fps video, observing

more than 25 identities and includes surveillance footage

from 5 to 8 cameras. The dataset has six scenarios, each

video sequence lasting at least 5 minutes. We use Scenario

1 for our experiments.

DukeMTMC: DukeMTMC is a large multi-camera track-

ing dataset recorded outdoors on the Duke University cam-

pus with 8 synchronized cameras. It consists of more than

2, 000 identities, with over 2 million frames of 1080p, 60fps

video, approximately 85 minutes of video for each camera.

We report results across all 8 cameras to demonstrate the ef-

ficiency of our approach for the multi-person multi-camera

tracking problem. We use the ground-truth available for the

training set (called trainval) of DukeMTMC for evaluation.

Only 25% of this set (we call this the ‘net-set’) is used for

CNN and LSTM training.

Training Data: Deep networks need large amounts of train-

ing data to avoid overfitting the network. For the purpose of

multi-person multi-camera tracking, we synthetically gen-

erate samples from real data. We use appearance-based

feature scores and location information from CamNeT data
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Figure 4: Continuous tracking by re-identification model

to generate sequences of feature vectors. This simple ap-

proach of sampling realistic data generates 84, 858 samples

for Case 1; 3, 900, 565 samples for Case 2 and 18, 540, 639
samples for Case 3. We split the data into training set (67%:

net-train) and test set (33%: net-test) for our LSTM ex-

periments. Similar approach is followed for DukeMTMC

dataset, where 318, 769 samples are generated for Case 1;

4, 264, 625 samples for Case 2.

4.2. Training

For extracting appearance features from CamNeT, we

use AlexNet model that is pre-trained on ImageNet [25].

Features are extracted from the last fully connected layer

(each feature is of length 4096). For DukeMTMC dataset,

we use DenseNet trained on net-set. Features of length 1024
are extracted from the last dense layer. The DenseNet used

has 4 blocks with a depth of 121, compression/reduction

of 0.5 and growth rate of 32. We run for 15 epochs with

a learning rate starting at 0.1 and we train using stochastic

gradient descent with batch size 96 and momentum 0.9. As

the number of remaining epochs halves, we drop learning

rate by a factor of 10 and drop by a factor of 2 at epoch 14.

The LSTM architecture employed to learn the associa-

tions from history of location and visual features consists of

three layers with 512, 256 and 32 units respectively. We use

Adam [12] to minimize the loss and choose a learning rate

of 0.001. The network is trained for 10 epochs with binary

cross-entropy as the objective function. The data is divided

into batches of 32 samples and normalized to the range [−1,

1].

4.3. Test Results

We evaluate the performance of our LSTM model in

computing the probability of two detections belonging to

the same track by means of the ROC curve.

We observe the prediction on the net-test set for three

result groups: first, network trained on Case 1 sequences,

second, network trained on Case 2 sequences, and third, net-

work trained on Case 3 sequences. Table 5 shows the model

prediction for the three different result groups on CamNeT

Scenario Test Accuracy(%) TAR@10−5FAR(%)

Case 1 99.31 97.11

Case 2 99.99 99.99

Case 3 99.99 99.99

Table 5: Training scenarios and model prediction on the

net-test set for CamNeT

Scenario Test Accuracy(%) TAR@10−5FAR(%)

Case 1 99.90 96.26

Case 2 99.98 98.44

Table 6: Training scenarios and model prediction on the

net-test set for DukeMTMC

and table 6 shows Case 1 and Case 2 results on DukeMTMC

dataset; where TAR is the True Acceptance Rate and FAR
is the False Acceptance Rate.

4.4. Evaluation Metric

Since the problem under consideration is similar to [19],

existing tracking evaluation metrics such as Multiple Object

Tracking Accuracy is not suitable. Here, we use the below

metric for continuous re-identification evaluation:

E =
1

T

T∑

t=1

number of misclassified detections at time t

total number detections at time t

(3)

Existing Measures: Traditional biometric measures [18]

such as FMR (False Match Rate), FNMR (False Non-match

Rate) assume that the occurrence of an error is a static event

which cannot impact future associations. However, in a re-

identification system, the reference gallery is dynamically

evolving, as new tracks are created (following “no associ-

ation” outcomes) or existing tracks are updated (following

“association” outcomes). MOTA (Multiple Object Track-

ing Accuracy) is typically used to measure single-camera,

multi-target tracking performance. It is calculated as:

MOTA = 1− (FN + FP + φ)/T (4)

However, MOTA penalizes detection errors and has limi-

tations if extended to multi-camera use [4]. In this paper, we
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Approach Error(%)

Attribute-based [19] 2.9

Ours 1.37

Table 7: Inference error rate on CamNeT

Approach Error(%)

Baseline (BIPCC [24]) 4.4

Ours 3.6

Table 8: Inference error rate on DukeMTMC

Figure 5: ROC for prediction performance on CamNeT

do not use a private person detector and we would like our

tracker’s performance evaluated based on association error.

For multi-camera multi-object tracking, the recent

measures proposed [24] include Identification F-measure

(IDF1), Identificatin Precision (IDP) and Identification Re-

call (IDR). This evaluation scheme is accountable for how

often a target is correctly identified. However, the inference

error is a real-time evaluation paradigm which measures

how often a target is incorrectly associated. In [5], sim-

ilar metrics such as false dynamic match (FDM) and false

dynamic non-match (FDNM) are proposed for biometric re-

identification systems. We do not claim that one measure is

better than the other, but only suggest that different error

metrics are suited for different applications.

4.5. Inference Results

Table 7 and table 8 show the inference error rate for

multi-person multi-camera tracking. Our results are for real

CamNeT sequences using the LSTM network trained on

Case 3 sequences, and for real DukeMTMC sequences (re-

maining 75% of trainval) using LSTM trained on Case 2
sequences. The results show that our learning approach is

better than the attribute-based approach [19] and baseline
method [24] for CamNeT and DukeMTMC respectively.

Figure 5 depicts the prediction performance evaluated

using the ROC curve for CamNeT. We observe that,

TAR@0.01FAR = 87.99% using attribute-based infer-

ence algorithm, and TAR@0.01FAR = 99.39% using the

proposed algorithm. We also observe that, out of 4, 111
entry/exit scenarios, only 261 instances have been misasso-

ciated using the proposed LSTM tracker compared to 609
misassociations using method [19]. This reflects the effi-

ciency of our LSTM-based association approach for person

tracking.

4.6. Validation

We further tested that the system maintains its perfor-

mance in cases where people disappeared from one view

because they were occluded by objects or because they left

the camera’s field of view. Our tracker kept the correct iden-

tities and we validated that identities obtained in one camera

could be used for re-identifying individuals across cameras.

For these capabilities, our system outperformed state-of-the

art method. The visual tracking results for real-time se-

quences from CamNeT dataset are shown in Figure 6. The

results show that our approach is invariant to illumination

changes and can track people reliably for extended duration.

Every surveillance dataset has different spatial and tempo-

ral dynamics. Our model inherently learns this by using the

person’s appearance features (spatial) and the transforma-

tion of these features with time (temporal). Tracklets (or

continuous single detections initially) are merged to form

trajectories. Thus the term “continuum”, because we know

that adjacent detections have important commonalities, al-

though the extremes may differ.

5. Conclusion

We needed three technical elements to obtain an effec-

tive tracking system. One is the transformation of the de-

tection of each person into a space in which individuals can

be easily identified, even for individuals who change posi-

tion and posture. Our appearance attributes are one way to

do this. A second necessity is an automated procedure to

extract features and form trajectories without having to ob-

tain a reference set of frames of the same individual that

prevents confusion with other individuals. This makes our

tracker more robust and realistic compared to other systems

which require a separate video or image of each individ-

ual to learn the representation. The third technical element

is a LSTM-based system to incorporate the evolution of

the frame-by-frame spatial representation with the tempo-

ral dependencies. Such a trajectory tracking method can

deal with temporally local difficulties generated by cluttered

background, multi-object interaction and occlusion. It is ca-

pable of recovering from errors (misassociations) and han-

dling entry/exit scenarios. This proves that the estimated
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(a) Track of ID #600 and #448

(b) Track of ID #1619

(c) Track of ID #105, #1442 and #1434

Figure 6: Tracking results for real-time CamNeT sequences. Red rectangles are the person detection bounding boxes. The

ID on top of each person is the label generated for that individual, reliably maintained across all cameras.

frame-by-frame identity is a good indicator of the correct

identity.

Thus, our analysis confirms our intuition regarding the

need to propagate past associations. An interesting future

research direction is to train our pipeline end-to-end. This

has the potential of improving the performance further by

producing more discriminative features and consequently,

better associations.
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