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Abstract

Large scale surveillance video analysis is one of the most

important components in the future artificial intelligent city.

It is a very challenging but practical system, consists of

multiple functionalities such as object detection, tracking,

identification and behavior analysis. In this paper, we try

to address three tasks hosted in NVIDIA AI City Challenge

contest. First, a system that transforming the image coordi-

nate to world coordinate has been proposed, which is useful

to estimate the vehicle speed on the road. Second, anoma-

lies like car crash event and stalled vehicles can be found

by the proposed anomaly detector framework . Third, mul-

tiple camera vehicle re-identification problem has been in-

vestigated and a matching algorithm is explained. All these

tasks are based on our proposed online single camera multi-

ple object tracking (MOT) system, which has been evaluated

on the widely used MOT16 challenge benchmark. We show

that it achieves the best performance compared to the state-

of-the-art methods. Besides of MOT, we evaluate the pro-

posed vehicle re-identification model on VeRi-776 dataset

and it outperforms all other methods with a large margin.

1. Introduction

Nowadays, with the development of computer vision

technologies, large scale surveillance video analysis for AI

city draws more and more attention in the real world appli-

cations. It is a very powerful but challenging system that

can identify the person-of-interest, locate the suspicious ve-

hicle and detect the anomaly event. In order to achieve

those tasks, several important components need to be prop-

erly addressed, such as multiple object tracking, object re-

identification.

The multiple object tracking (MOT) technique predicts

locations of multiple objects and maintains their identities

to yield their individual motion trajectories throughout a

video sequence. Existing MOT solutions can be categorized

into two classes: 1) global optimization methods and 2) on-

line methods. Global optimization methods [4, 8, 15, 29]

minimize the total energy cost from all target trajectories.

They examine all detection results of each frame and link

fragmented trajectories due to occlusion. To build a more

accurate energy affinity measure, a “tracklet” is defined

across multiple consecutive frames and exploited to extract

the spatial and temporal features of the target. The major

drawback of global optimization is that it is not suitable for

real-time applications.

In contrast, In contrast, online MOT methods are de-

signed for real-time applications. Online MOT solutions

have been studied in [1, 3, 19, 21]. The trajectory of each

target is constructed frame by frame fashion, where the

location and identity of one target are determined by the

information of the current frame without accessing future

frames. The most challenging task in online MOT is to find

an appropriate target matching model that correctly con-

nects detection results of the current frame to tracks ob-

tained from previous frames.

For vehicle re-identification problem, the goal is to iden-

tify all the images of the same vehicle from a large gallery

dataset. Such task is particularly useful when the car li-

cense plate is occluded. Vehicle reID methods can be used

in these scenarios to effectively locate vehicles of interest

from surveillance datasets. Compared with the problem of

person reID, vehicle reID is a recently proposed research

topic with several challenging factors: (1) the number of the

different vehicle makes and models is small and the appear-

ance information can be very similar, while face or clothing

information can be a very distinguishable feature for person

reID; (2) usually vehicle moves along a fixed direction with-

out rotation, which results in invisible key information for

re-identification, while the human behavior is much more

social so that the key features like face show time to time.

In this work, we focus on solving some real world

problems presented in NVIDIA AI City Challenge like

multiple object tracking, speed estimation and vehicle re-

identification. The rest of this paper is organized as fol-

lows. Section 2 briefly reviews the existing work of multiple
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object tracking and vehicle re-identification. Our proposed

methods for each task are explained in Section 3. Experi-

mental results are shown in Section 4. Finally, we conclude

the work and show the future direction in Section 5.

2. Related Work

Global optimization MOT. With the advancement of

object detection techniques [6, 7], tracking-by-detection be-

comes popular for multiple objects tracking. In order to

find the trajectory of each target from detection results in

all frames, data association is an essential task. It is usu-

ally conducted in a discrete space using the linear program-

ming or graph-based methods. Various optimization algo-

rithms such as the network flow [16, 32], the continuous

energy minimization [15] and the subgraph multi-cut [24]

have been proposed. Several energy cues were introduced

and optimized using the standard conjugate gradient method

in [15]. In [5], each target trajectory is generated one by one

in the optimization process from the best clique to the next.

Online methods. Several online MOT methods [1, 28]

have been proposed recently to tackle with the practical

real-time tracking applications. Under the ”online” require-

ment, the ID association problem is more challenging since

there are occlusions and interactions among objects. The

focus has been on developing an online matching model

that has an accurate feature representation so as to associate

the current target location with previously detected trajec-

tory. The part-based feature tracking was exploited in [19]

to handle partial occlusion. The recurrent neural networks

(RNNs) were used in [14] and [17] to manage the spatial

and temporal consistency of different targets.

Vehicle re-identification. This is a relatively new pro-

posed research topic that has not received much attention.

Recent works on it mainly concentrate on building retrieval

pipelines and benchmarks. [11] built a high-quality multi-

viewed vehicle reID dataset (VeRi-776) with 776 vehicle

identities. Another large surveillance vehicle reID dataset

(VehicleID) is proposed by [10], which contains more than

20,000 identities. And Coupled Clusters Loss (CCL) is pro-

posed for performance evaluation on it. There are also some

pioneering works [18, 26] on vehicle reID problems that

achieve promising results.

3. Proposed Solutions

3.1. Multiple object detection and tracking

We track the vehicles in a tracking-by-detection manner

and follow the online tracking protocal. We first build a de-

tection model by which most vehicles can be detected, then

we do detection during each frame, and associate bound-

ing boxes between frames. Finally, we divide all detected

bounding boxes into several sets, one denotes one ID.

3.1.1 Detection model

A DenseNet architecture is used in our detection model. We

did not make any advanced optimization on the network ar-

chitecture nor make any big difference about training meth-

ods. We just fine-tune the model using a large self-labelled

vehicles dataset in addition to academical public datasets

that currently exist.

3.1.2 Bounding box association

Consider two frames nearby, the part which consists of

tracked targets and the other part of detected objects to

be tracked in new frame form a bi-party graph. For each

two objects i and j, where i is one of the tracked targets

and j is a new detection, there is an edge weighted Wij

between them. Here we set Wij as 1 − IoU(i, j), func-

tion IoU(·) calculates the Intersection of Union between a

pair of bounding boxes. In this way, we can work out the

best matching pairs using Minimum-cost-maximum-flow

(MCMF) by setting edge capacity to 1 (unit flow). For better

accuracy, we set wθ = 0.7 as a weight threshold to dismiss

invalid edges and avoid bad matching pairs, i.e., only edges

weighted smaller than wθ will be considered.

After matching, the ones in tracked targets that does

not match any detection for a few frames will be regarded

as disappeared items. Correspondingly, detections without

matching will be insert into tracked set as a new target. For

each matching pair, box position will be updated according

to the new detection box.

The association steps are described as algorithm 1.

3.2. Traffic flow analysis

We aim to calculate the speed of vehicles in videos by

our MOT result. Naturally, we try to transform points from

image coordinate system to world coordinate system. On

the condition that both extrinsic and intrinsic camera param-

eters are unknown, we assume the road is a plane, then lane

width and stripes length can be used to work out a plane-to-

plane transform.

Consider the transform between a 3D point M =
[x, y, z] and its image projection m = [u, v]:

sm̃ = A[R t]M̃

m̃ = [u, v, 1]T

M̃ = [x, y, z, 1]T

where s is an arbitrary scale factor, [R t] is the rotation and

translation matrix which relates the world coordinate sys-

tem to the camera coordinate system, A is camera intrinsic

matrix, which relates the camera coordinate system to the

image coordinate system.

As [R t] denote the conversion between world coordi-

nate system and camera coordinate system, [R t]M̃ is point
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Algorithm 1 MOT association

Input: Set of tracked targets at frame t Γt and detection

set in frame t+ 1 Dt+1

Output: Set of tracked targets at frame t+ 1 Γt+1

1: procedure ASSOCIATEBBOX(Γt, Dt+1)

2: Initialize weight matrix Wij with value INFINITY

3: for each target γi
t in Γt do

4: for each detection d
j
t+1 in Dt+1 do

5: if 1− IoU(γi
t , d

j
t+1) < wθ then

6: Set Wij to 1− IoU(γi
t , d

j
t+1)

7: end if

8: end for

9: end for

10: Find best matchings of matrix Wij using MCMF

11: Set Γt+1 to empty

12: for each target γi
t in Γt do

13: if γi
t is matched then

14: Update position of γi
t

15: Add γi
t to Γt+1

16: else if γi
t not been matched for T frames then

17: Delete γi
t

18: end if

19: end for

20: for each detection d
j
t+1 in Dt+1 do

21: if d
j
t+1 is NOT matched then

22: Add d
j
t+1 to Γt+1

23: end if

24: end for

25: Return Γt+1

26: end procedure

M ’s coordinates in camera coordinate system. We denote

[R t]M̃ as [Px, Py, Pz]. Then we set s = Pz .

Additionally, We set road plane as X − Y plane in the

world coordinate system. The relationship between a 2D

point N = [x, y] which is on the road and its image projec-

tion n = [u, v] is as the following:

Pzñ = HÑ

where ñ = [u, v, 1]T , Ñ = [x, y, 1]T , H = A[R t] is a

3 × 2 Matrix. For each plane, We can work out the above

transform parameters through Gaussian Elimination using

4 reference point-pairs. Using bounding box information

given by MOT, we can get all object’s world locations. We

also use some other technique to avoid large errors: divide

the road into two planes on account of road’s convexity, use

multiple points’ reconversion precision to supervise the se-

lection of reference points. As the results from MOT are

sometimes trembling, we apply Kalman Filter to make the

trajectory smoother.

All candidate reference points (image coordinates) are

detected by lane line detection algorithm which aims to find

all stripe area with equal width, and then these points are

classified to different class according to U.S. standard and

rewritten as reference point-pairs.

For more details, after all vehicles’ world locations are

calculated, we assume that one’s speed is stable during a

short time window [t−ǫ, t+ǫ] and output the average speed

of the time window as one’s speed at time t. Here we set ǫ

as 1/6 s, i.e., 5 frames at 30 fps video.

3.3. Anomaly detection

Vehicle anomaly detection is a very practical task in

surveillance video. The anomalies are defined as car crashes

and stalled vehicles. In this section, we introduce the pro-

posed framework on this task.

The system consists of four stages: vehicle detection and

tracking, data cleaning, track merging and anomaly detec-

tion:

• Vehicle detection and tracking: we apply the proposed

multiple object detection and tracking system for each

video to get all the vehicle tracks. The detection area

threshold is set to be 5x5 pixels.

• Data cleaning: due to the low video quality in the task,

we observe some false positive detections in the pre-

vious step. Most of them locate in the texture back-

ground region outside of the road. If the system keeps

receiving the information from those detections, the

anomaly detector will be triggered. Therefore, we pro-

pose a way to find the road region, illustrated in Figure

1. All the non-static vehicle tracks have been recorded

to generate a heat-map and the area of the road can be

inferred by this heat-map. Then the detections out of

the road will be removed.

• Track merging: in order to generate a full trajectory of

a vehicle for the future anomaly detection, it is nec-

essary to remove the fragment situation. We define a

shallow neural network for this merging mission using

vehicle reID feature, position, speed and size informa-

tion. The reID appearance feature is a 256-dimension

vector generated by our proposed method explained in

Section 3.4.1. Tracks with high network score will be

merged together.

• Anomaly detection: to detect the anomalous track, we

measure the time duration of the vehicle existence.

The anomalies are defined as car crashes and stalled

vehicles, which usually last for a long time period in

the video. Therefore, if the duration of a vehicle is

much longer than the average duration of all the ve-

hicles in the video, we claim it as an anomaly. This

also shows the necessity of our data cleaning step to

remove the false positive detections.
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Figure 1. Road detection: all the non-static tracks are recorded

to generate a heat-map (yellow), which indicates the road area.

According to this information, the false positive detections (FP 1

and FP 2) out of the road can be removed.

3.4. Multi­camera vehicle re­identification

3.4.1 Appearance reID feature

The reID feature extraction branch is built upon on

GoogLeNet [23] architecture, which is proposed for han-

dling muti-scale objects simultaneously, as well as compu-

tational efficiency and practicality. The main component of

GoogLeNet is the ”Inception Layer”, which convolves the

input image on different scales, from the fine-grained level

(reID) to the coarse one(5*5). Table 1 indicates the struc-

ture of our network. The output of our feature extraction

branch is a 256-dimension feature vector, which not only

includes the semantic feature for the object but also the spa-

tial detailed information for object parts. We include the ex-

perimental results for this feature extraction branch to show

the vehicle re-identification performance in Section 4.

Table 1. The proposed feature extraction network for vehicle reID

type patch size/stride output size depth

convolution 3*3/1 192*192*32 1

convolution 3*3/2 96*96*32 1

convolution 3*3/1 96*96*64 1

max pool 2*2/2 48*48*64 0

inception(4a) 48*48*256 3

inception(4b) 24*24*384 3

inception(4d) 24*24*512 3

inception(4e) 12*12*768 3

inception(4f) 12*12*1024 3

inception(4g) 6*6*1536 3

ave pool 6*6/1 1*1*256 0

dropout(0.7) 1*1*256 0

linear 1*1*256 1

triplet loss 1*1*256 0

To train the network for re-identification task, the triplet

loss is adopted in our work. The main idea of triplet loss

is to minimize the distance between an anchor and a posi-

tive sample (same identity), and maximizes the distance be-

tween the anchor and a negative sample (different identity).

A triplet unit consists of an anchor xi with its correspond-

ing positive sample x
p
i and negative sample xn

i . The loss

function is defined as:

L =

N
∑

i=1

[‖f(xi)− f(xp
i )‖

2
2 + α− ‖f(xi)− f(xn

i )‖22]+

where f(x) is the appearance feature extraction network,

[·]+ = max{·, 0} and α is a parameter which defines the

minimum margin between matched and mismatched pairs.

3.4.2 Spatio-temporal cue

Appearance feature is a very powerful cue to identify object

instants, especially for pedestrian reID scenarios because of

personalized decorations. However, it is may not be ade-

quate enough to distinguish one vehicle from others when

the vehicles are of the same model and the plate information

is not accessible. Therefore, in order to refine the search

results, we integrate the spatio-temporal cue into consider-

ation.

Specifically, the spatio-temporal cue is a probability

model of the relationship between location and time infor-

mation when vehicle passing through different cameras. It

measures how likely that a vehicle spends time duration τ

from one specific camera to another. Similar to the idea in

[26], we treat the vehicle transition interval between pairs

of cameras as a random variable following the logarithmic

normal distribution:

p(τ | µ, σ) = lnN (τ ;µ, σ) =
1

τσ
√
2π

exp

[

− (lnτ − µ)2

2σ2

]

where µ and σ are the parameters to be estimated for each

camera pair. From each camera pair, we can collect all the

time transition interval samples τn from the training set. By

maximizing the log-likelihood function:

L(τ | µ, σ) =
N
∏

n=1

(

1

τn

)

N (lnτn;µ, σ)

we have the estimated parameters as:

µ̂ =

∑N

n=1 lnτi

N

σ̂2 =

∑N

n=1(lnτi − µ̂)2

N

Therefore, besides of the calculated appearance distance

Da, we can measure the spatio-temporal similarity distance
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between two vehicles based on the above probability model

as:

Ds =
1

1 + eαp(τ)

Finally, the similarity distance between two vehicles is de-

fined as the weighted summation of those two cues: Da and

Ds.

3.4.3 Re-ranking

Object re-identification problem can be also treated as a re-

trieval process and therefore, we apply the re-ranking tech-

nique to improve the object search accuracy. The general

idea is that after ranking the initial similarity distance matrix

of the probe and gallery sets, the subsequent re-ranking is

adopted within the k nearest neighbors of each probe. Then

the final distance is computed as the combination of the ini-

tial distance and the re-ranked distance. Following the idea

in [34], we also use the k-reciprocal encoding method to re-

rank the initial result and find the true match of the target.

Through this process, we achieve around 6% improvement

on mAP score during the evaluation. Refer to [34] for de-

tails as we use the same formulation and parameters.

3.4.4 Multi-camera multi-target (MCMT) tracking

In this part, we explain the overall tracking algorithm for the

challenge Track 3 based on the components explained above

including multiple object tracking, appearance and spatio-

temporal feature extraction, re-ranking and ID matching

process. Here are the detailed steps:

• Step 1: Generate all the individual tracks in all the sin-

gle videos in the set with the multiple object tracking

pipeline.

• Step 2: For each track in previous step, calculate the

mean appearance feature from all the images and then

generate the appearance distance matrix.

• Step 3: For each pair of tracks in Step 1, use the mid-

dle timestamp of each track to calculate the transition

interval and evaluate the spatio-temporal distance ma-

trix.

• Step 4: Combine the two distance matrices and per-

form the multi-camera multi-target matching follow-

ing the Algorithm 2.

4. Experimental Results

In this section, we include the performance evalua-

tion of two individual components: multiple object track-

ing and vehicle re-identification, on two public available

Algorithm 2 MTMC matching

Input: Distance matrix G

Output: Trajectory result list R

1: procedure MATCHTRACK(G)

2: Trajectory candidate list Rc

3: for each row gi in G do

4: List T = []
5: Sort gi to select 4 smallest ones from each video

6: for each element i in selected set do

7: if Rerank(i) < Thre then T.append(i)
8: end if

9: end for

10: if In4Loc(T ) is True then Rc.append(T )
11: end if

12: end for

13: Calculate in-group correlation for each row in Rc

14: Sort Rc and select top N trajectories into R

15: Return R

16: end procedure

datasets: MOTchallenge16 [13] and VeRi-776 [11], respec-

tively. Also, we show our AICity challenge contest results

here.

4.1. Multiple object tracking

MOTchallenge [13] benchmark is a widely used dataset

for evaluating the performance of multiple object tracking.

There are seven training and seven testing sequences. The

target object is pedestrian and the detection results of all

frames are available for reference. However, in order to pro-

vide a high detection rate, we adopted one of the most pow-

erful detectors (private) from our own side. For evaluation,

we follow the CLEAR metrics [22], including the multi-

ple objects tracking accuracy (MOTA), the multiple objects

tracking precision (MOTP), the false positives (FP), the

false negatives (FN), most tracked (MT), most lost (ML),

the identity switch error (IDs) and the total fragments of all

the trajectories (Frag).

We compare the proposed multiple object tracking sys-

tem with several the state-of-the-art methods on testing se-

quences of MOT2016. Similar to others, we use the pri-

vate pedestrian detectors to get a high detection rate. Table

2 shows the performance result. Among all the published

online methods, our proposed method (FLOW4) achieves

the best performance in MOTA (67.7), MT (35.0%) and FN

(49178). The MOTA score is also competitive among all

the listed offline methods.

In the AICity Challenge contest, we use our vehicle de-

tector and multiple object tracking system to generate the

track for each vehicle in each video. All challenge tasks are

based on this detection and tracking module.
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Table 2. MOT16 tracking performance with private detector. In each mode (online/offline), the best performance is marked in bold text.

MOT16 - Test Set

Tracker Mode MOTA MT ML FP FN IDs Frag Hz

SORTwHPD16 [2] Online 59.8 25.4% 22.7% 8698 63245 1423 1835 59.5

DeepSORT2 [27] Online 61.4 32.8% 18.2% 12852 56668 781 2008 17.4

POI [31] Online 66.1 34.0% 20.8% 5061 55914 805 3093 9.9

Ours Online 67.7 35.0% 18.4% 8225 49178 1568 3153 24.7

MCMOTHDM [9] Offline 62.4 31.5% 24.2% 9855 57257 1394 1318 34.9

KDNT [31] Offline 68.2 41.0% 19.0% 11479 45605 933 1093 0.7

LMPp [25] Offline 71.0 46.9% 21.9% 7880 44564 434 587 0.5

HTSJTUZTE Offline 71.3 46.5% 19.5% 9238 42521 617 743 29

4.2. Vehicle re­identification

In order to train our appearance model, we collect the

data from multiple datasets, including VeRi-776 [11], Ve-

hicleID [10], BoxCars21k [20], CompCars [30] and some

self-labelled datas. In total, the training set contains more

than 300,000 images of around 40,000 identities. For test-

ing, we use the test set of VeRi-776 to evaluate our ve-

hicle reID model. VeRi-776 [11] dataset is a large-scale

benchmark dataset for vehicle Re-Id in the real-world ur-

ban surveillance scenario. It contains over 50,000 images

of 776 vehicles captured by 20 cameras from different loca-

tions.

We follow the same evaluation metrics in VeRi-776,

including mean average precision (mAP) and cumulative

match curve (CMC). For each identity, one image is random

selected from all the gallery images to generate the gallery

set, while the probe set remains unchanged. The random

selection procedure was repeated for 100 times to obtain an

average CMC result.

In Table 3, we compare our method with different com-

ponents, to several the state-of-the-art models, including

BOW-CN [33], KEPLER [12], PROVID [11] and OIF

[26]. In baseline method, we only use the appearance fea-

ture without re-ranking. We can see that our baseline al-

ready outperforms other listed methods. Our full version

is consisted of appearance feature, spatio-temporal cue and

reranking, which achieves 71.2 mAP score. We have shown

that our proposed vehicle re-identification method improves

the performance with 40% gain in mAP from OIF [26].

Besides of the standard evaluation setup in VeRi-776

dataset, we also use the training set to mimic a similar ex-

perimental environment compared to the challenge contest.

In the new setup, the appearance feature of each image can

be represented as the feature of one track from a video cam-

era. The proposed MTMC tracking system groups images

together to generate multiple trajectories. Therefore, we

evaluate the performance and achieve around 0.6 tracking

detection rate in VeRi-776 training set.

Table 3. VeRi-776 performance evaluation

Method mAP CMC1 CMC5

BOW-CN [33] 12.2 - -

PROVID [11] 27.8 - -

KEPLER [12] 33.5 48.2 64.3

OIF [26] 51.4 68.3 89.7

baseline 61.3 86.1 94.2

baseline + re-ranking 67.4 87.6 93.1

baseline + ST 68.1 88.2 95.1

full version 71.2 89.3 93.8

Table 4. Performance evaluation of challenge contest

Track #1 Track #3

Rank ID S1 ID S3

1 48 1.0000 48 0.7106

2 79 0.9162 37 0.2861

3 78 0.8892 79 0.0785

4 24 0.8813 18 0.0074

4.3. AICity challenge contest

Here we (team ID 79) report our challenge contest per-

formance of the two tracks: traffic flow analysis and multi-

camera vehicle detection and re-identification.

In track #1, our global score is 0.9162, which ranks num-

ber 2 in the overall evaluation. In track #3, we rank number

3 among all the teams. It is amazing that team48 perfor-

mances so well in both track #1 and #3, and we will keep

working on these tasks to improve our methods. Please

check the following Table 4 for more details.

5. Conclusion and Future Work

In this paper, we introduce several very challenging but

practical tasks in large scale surveillance video analysis

hosted in NVIDIA AICity Challenge and explain the pro-

posed methods to approach them. In this contest, one of

the most fundamental components is multiple vehicle de-

tection and tracking. We first propose a powerful online

detection and tracking system in single camera as our start-

ing point. Then, two main tasks: traffic flow analysis and
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multi-camera vehicle re-identification have been addressed

properly. This is a very good opportunity for us to under-

stand the difficulty of the real-world problems. In the fu-

ture, we believe we will keep working on the related key

problems, such as multiple object tracking and vehicle re-

identification, to improve the large scale surveillance video

analysis.
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