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Abstract

Large scale surveillance video analysis is one of the most
important components in the future artificial intelligent city.
It is a very challenging but practical system, consists of
multiple functionalities such as object detection, tracking,
identification and behavior analysis. In this paper, we try
to address three tasks hosted in NVIDIA Al City Challenge
contest. First, a system that transforming the image coordi-
nate to world coordinate has been proposed, which is useful
to estimate the vehicle speed on the road. Second, anoma-
lies like car crash event and stalled vehicles can be found
by the proposed anomaly detector framework . Third, mul-
tiple camera vehicle re-identification problem has been in-
vestigated and a matching algorithm is explained. All these
tasks are based on our proposed online single camera multi-
ple object tracking (MOT) system, which has been evaluated
on the widely used MOT16 challenge benchmark. We show
that it achieves the best performance compared to the state-
of-the-art methods. Besides of MOT, we evaluate the pro-
posed vehicle re-identification model on VeRi-776 dataset
and it outperforms all other methods with a large margin.

1. Introduction

Nowadays, with the development of computer vision
technologies, large scale surveillance video analysis for Al
city draws more and more attention in the real world appli-
cations. It is a very powerful but challenging system that
can identify the person-of-interest, locate the suspicious ve-
hicle and detect the anomaly event. In order to achieve
those tasks, several important components need to be prop-
erly addressed, such as multiple object tracking, object re-
identification.

The multiple object tracking (MOT) technique predicts
locations of multiple objects and maintains their identities
to yield their individual motion trajectories throughout a
video sequence. Existing MOT solutions can be categorized
into two classes: 1) global optimization methods and 2) on-

line methods. Global optimization methods [4, 8] [15| [29]
minimize the total energy cost from all target trajectories.
They examine all detection results of each frame and link
fragmented trajectories due to occlusion. To build a more
accurate energy affinity measure, a “tracklet” is defined
across multiple consecutive frames and exploited to extract
the spatial and temporal features of the target. The major
drawback of global optimization is that it is not suitable for
real-time applications.

In contrast, In contrast, online MOT methods are de-
signed for real-time applications. Online MOT solutions
have been studied in [1} 3, [19 [21]. The trajectory of each
target is constructed frame by frame fashion, where the
location and identity of one target are determined by the
information of the current frame without accessing future
frames. The most challenging task in online MOT is to find
an appropriate target matching model that correctly con-
nects detection results of the current frame to tracks ob-
tained from previous frames.

For vehicle re-identification problem, the goal is to iden-
tify all the images of the same vehicle from a large gallery
dataset. Such task is particularly useful when the car li-
cense plate is occluded. Vehicle reID methods can be used
in these scenarios to effectively locate vehicles of interest
from surveillance datasets. Compared with the problem of
person relD, vehicle relD is a recently proposed research
topic with several challenging factors: (1) the number of the
different vehicle makes and models is small and the appear-
ance information can be very similar, while face or clothing
information can be a very distinguishable feature for person
relD; (2) usually vehicle moves along a fixed direction with-
out rotation, which results in invisible key information for
re-identification, while the human behavior is much more
social so that the key features like face show time to time.

In this work, we focus on solving some real world
problems presented in NVIDIA AI City Challenge like
multiple object tracking, speed estimation and vehicle re-
identification. The rest of this paper is organized as fol-
lows. Section2|briefly reviews the existing work of multiple
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object tracking and vehicle re-identification. Our proposed
methods for each task are explained in Section [3} Experi-
mental results are shown in Section Finally, we conclude
the work and show the future direction in Section

2. Related Work

Global optimization MOT. With the advancement of
object detection techniques [6} 7], tracking-by-detection be-
comes popular for multiple objects tracking. In order to
find the trajectory of each target from detection results in
all frames, data association is an essential task. It is usu-
ally conducted in a discrete space using the linear program-
ming or graph-based methods. Various optimization algo-
rithms such as the network flow [16l [32]], the continuous
energy minimization [15] and the subgraph multi-cut [24]
have been proposed. Several energy cues were introduced
and optimized using the standard conjugate gradient method
in [15]). In [5]], each target trajectory is generated one by one
in the optimization process from the best clique to the next.

Online methods. Several online MOT methods [, [28]]
have been proposed recently to tackle with the practical
real-time tracking applications. Under the online” require-
ment, the ID association problem is more challenging since
there are occlusions and interactions among objects. The
focus has been on developing an online matching model
that has an accurate feature representation so as to associate
the current target location with previously detected trajec-
tory. The part-based feature tracking was exploited in [19]
to handle partial occlusion. The recurrent neural networks
(RNNs) were used in [[14] and [17] to manage the spatial
and temporal consistency of different targets.

Vehicle re-identification. This is a relatively new pro-
posed research topic that has not received much attention.
Recent works on it mainly concentrate on building retrieval
pipelines and benchmarks. [11[] built a high-quality multi-
viewed vehicle reID dataset (VeRi-776) with 776 vehicle
identities. Another large surveillance vehicle relD dataset
(VehiclelD) is proposed by [[10], which contains more than
20,000 identities. And Coupled Clusters Loss (CCL) is pro-
posed for performance evaluation on it. There are also some
pioneering works [18| 26]] on vehicle reID problems that
achieve promising results.

3. Proposed Solutions
3.1. Multiple object detection and tracking

We track the vehicles in a tracking-by-detection manner
and follow the online tracking protocal. We first build a de-
tection model by which most vehicles can be detected, then
we do detection during each frame, and associate bound-
ing boxes between frames. Finally, we divide all detected
bounding boxes into several sets, one denotes one ID.

3.1.1 Detection model

A DenseNet architecture is used in our detection model. We
did not make any advanced optimization on the network ar-
chitecture nor make any big difference about training meth-
ods. We just fine-tune the model using a large self-labelled
vehicles dataset in addition to academical public datasets
that currently exist.

3.1.2 Bounding box association

Consider two frames nearby, the part which consists of
tracked targets and the other part of detected objects to
be tracked in new frame form a bi-party graph. For each
two objects ¢ and j, where ¢ is one of the tracked targets
and j is a new detection, there is an edge weighted W;;
between them. Here we set W;; as 1 — ToU(4, j), func-
tion ToU (-) calculates the Intersection of Union between a
pair of bounding boxes. In this way, we can work out the
best matching pairs using Minimum-cost-maximum-flow
(MCMF) by setting edge capacity to 1 (unit flow). For better
accuracy, we set wg = 0.7 as a weight threshold to dismiss
invalid edges and avoid bad matching pairs, i.e., only edges
weighted smaller than wy will be considered.

After matching, the ones in tracked targets that does
not match any detection for a few frames will be regarded
as disappeared items. Correspondingly, detections without
matching will be insert into tracked set as a new target. For
each matching pair, box position will be updated according
to the new detection box.

The association steps are described as algorithm I}

3.2. Traffic flow analysis

We aim to calculate the speed of vehicles in videos by
our MOT result. Naturally, we try to transform points from
image coordinate system to world coordinate system. On
the condition that both extrinsic and intrinsic camera param-
eters are unknown, we assume the road is a plane, then lane
width and stripes length can be used to work out a plane-to-
plane transform.

Consider the transform between a 3D point M =
[x,y, z] and its image projection m = [u, v]:

sin = A[R t]M

where s is an arbitrary scale factor, [R t] is the rotation and
translation matrix which relates the world coordinate sys-
tem to the camera coordinate system, A is camera intrinsic
matrix, which relates the camera coordinate system to the
image coordinate system.

As [R t] denote the conversion between world coordi-
nate system and camera coordinate system, [R t}]\;[ is point
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Algorithm 1 MOT association
Input: Set of tracked targets at frame ¢ I'; and detection
setin frame ¢ + 1 Dyyq
Output: Set of tracked targets at frame ¢ + 1 ',
procedure ASSOCIATEBBOX(I';, Dy 1)
Initialize weight matrix W;; with value INFINITY
for each target 7! in I'y do
for each detection dj  in D11 do

1:

2

3

4

5 if 1 — IoU (v}, d}, ) < wy then
. )

7

8

9

Set W;;to 1 — IOU(’}/E-, dg-&-l)
end if
end for
: end for
10: Find best matchings of matrix W;; using MCMF
11: SetI';11 to empty

12: for each target v; in I'; do

13: if ~/! is matched then

14: Update position of

15: Add ’}/; to Ft+1

16: else if y; not been matched for T frames then
17: Delete ~;

18: end if

19: end for ‘

20:  for each detection d} , in D, do
21: if d 1 18 NOT matched then
2 Add d]; to Typy

23: end if

24: end for

25: Return I'; 44

26: end procedure

M’s coordinates in camera coordinate system. We denote
[R t|M as [Py, P,, P.]. Then we set s = P,.

Additionally, We set road plane as X — Y plane in the
world coordinate system. The relationship between a 2D
point N = [z, y] which is on the road and its image projec-
tion n = [u, v] is as the following:

P,i=HN

where 7 = [u,v,1]",N = [z,4,1]7, H = A[R t]isa
3 x 2 Matrix. For each plane, We can work out the above
transform parameters through Gaussian Elimination using
4 reference point-pairs. Using bounding box information
given by MOT, we can get all object’s world locations. We
also use some other technique to avoid large errors: divide
the road into two planes on account of road’s convexity, use
multiple points’ reconversion precision to supervise the se-
lection of reference points. As the results from MOT are
sometimes trembling, we apply Kalman Filter to make the
trajectory smoother.

All candidate reference points (image coordinates) are

detected by lane line detection algorithm which aims to find
all stripe area with equal width, and then these points are
classified to different class according to U.S. standard and
rewritten as reference point-pairs.

For more details, after all vehicles’ world locations are
calculated, we assume that one’s speed is stable during a
short time window [t — ¢, t + €] and output the average speed
of the time window as one’s speed at time ¢. Here we set €
as 1/6 s, i.e., 5 frames at 30 fps video.

3.3. Anomaly detection

Vehicle anomaly detection is a very practical task in
surveillance video. The anomalies are defined as car crashes
and stalled vehicles. In this section, we introduce the pro-
posed framework on this task.

The system consists of four stages: vehicle detection and
tracking, data cleaning, track merging and anomaly detec-
tion:

e Vehicle detection and tracking: we apply the proposed
multiple object detection and tracking system for each
video to get all the vehicle tracks. The detection area
threshold is set to be 5x5 pixels.

e Data cleaning: due to the low video quality in the task,
we observe some false positive detections in the pre-
vious step. Most of them locate in the texture back-
ground region outside of the road. If the system keeps
receiving the information from those detections, the
anomaly detector will be triggered. Therefore, we pro-
pose a way to find the road region, illustrated in Figure
[[l All the non-static vehicle tracks have been recorded
to generate a heat-map and the area of the road can be
inferred by this heat-map. Then the detections out of
the road will be removed.

e Track merging: in order to generate a full trajectory of
a vehicle for the future anomaly detection, it is nec-
essary to remove the fragment situation. We define a
shallow neural network for this merging mission using
vehicle relD feature, position, speed and size informa-
tion. The relD appearance feature is a 256-dimension
vector generated by our proposed method explained in
Section [3.4.1] Tracks with high network score will be
merged together.

e Anomaly detection: to detect the anomalous track, we
measure the time duration of the vehicle existence.
The anomalies are defined as car crashes and stalled
vehicles, which usually last for a long time period in
the video. Therefore, if the duration of a vehicle is
much longer than the average duration of all the ve-
hicles in the video, we claim it as an anomaly. This
also shows the necessity of our data cleaning step to
remove the false positive detections.
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Figure 1. Road detection: all the non-static tracks are recorded
to generate a heat-map (yellow), which indicates the road area.
According to this information, the false positive detections (FP 1
and FP 2) out of the road can be removed.

3.4. Multi-camera vehicle re-identification
3.4.1 Appearance relD feature

The relD feature extraction branch is built upon on
GoogLeNet [23] architecture, which is proposed for han-
dling muti-scale objects simultaneously, as well as compu-
tational efficiency and practicality. The main component of
GoogLeNet is the “Inception Layer”, which convolves the
input image on different scales, from the fine-grained level
(reID) to the coarse one(5*5). Table [I] indicates the struc-
ture of our network. The output of our feature extraction
branch is a 256-dimension feature vector, which not only
includes the semantic feature for the object but also the spa-
tial detailed information for object parts. We include the ex-
perimental results for this feature extraction branch to show
the vehicle re-identification performance in Section 4]

Table 1. The proposed feature extraction network for vehicle reID

type patch size/stride | output size | depth
convolution 3*3/1 192#%192%32 1
convolution 3%*3/2 96%96*32 1
convolution 3*3/1 96*96*64 1
max pool 2%2/2 48*48*64 0
inception(4a) 48*48*256 3
inception(4b) 24*24%*384 3
inception(4d) 24%24%*512 3
inception(4e) 12*12*768 3
inception(4f) 12*12*1024 3
inception(4g) 6*6*1536 3
ave pool 6*6/1 1*1%256 0
dropout(0.7) 1*1%256 0
linear 1*1%256 1
triplet loss 1*1%256 0

To train the network for re-identification task, the triplet
loss is adopted in our work. The main idea of triplet loss

is to minimize the distance between an anchor and a posi-
tive sample (same identity), and maximizes the distance be-
tween the anchor and a negative sample (different identity).
A triplet unit consists of an anchor x; with its correspond-
ing positive sample !’ and negative sample z}. The loss
function is defined as:

N
L= If (@) = J@)l; + = 1f () = S+

where f(x) is the appearance feature extraction network,
[]+ = maz{-,0} and « is a parameter which defines the
minimum margin between matched and mismatched pairs.

3.4.2 Spatio-temporal cue

Appearance feature is a very powerful cue to identify object
instants, especially for pedestrian reID scenarios because of
personalized decorations. However, it is may not be ade-
quate enough to distinguish one vehicle from others when
the vehicles are of the same model and the plate information
is not accessible. Therefore, in order to refine the search
results, we integrate the spatio-temporal cue into consider-
ation.

Specifically, the spatio-temporal cue is a probability
model of the relationship between location and time infor-
mation when vehicle passing through different cameras. It
measures how likely that a vehicle spends time duration 7
from one specific camera to another. Similar to the idea in
[26]], we treat the vehicle transition interval between pairs
of cameras as a random variable following the logarithmic
normal distribution:

(lm'2 ;2“)2}

1
p(1 | p,0) =N (15 p,0) = exp [—
TOV 2T

where 1 and o are the parameters to be estimated for each
camera pair. From each camera pair, we can collect all the
time transition interval samples 7,, from the training set. By
maximizing the log-likelihood function:

N
1
2r L) =TT (&) wtnrim o
Tn
n=1
we have the estimated parameters as:
~ Zi\;l InT, 3
K N
N .
Lo X (Inry — )
N
Therefore, besides of the calculated appearance distance
D,, we can measure the spatio-temporal similarity distance
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between two vehicles based on the above probability model

as:
1

Ds = Iam

Finally, the similarity distance between two vehicles is de-
fined as the weighted summation of those two cues: D, and
D;.

3.4.3 Re-ranking

Object re-identification problem can be also treated as a re-
trieval process and therefore, we apply the re-ranking tech-
nique to improve the object search accuracy. The general
idea is that after ranking the initial similarity distance matrix
of the probe and gallery sets, the subsequent re-ranking is
adopted within the k nearest neighbors of each probe. Then
the final distance is computed as the combination of the ini-
tial distance and the re-ranked distance. Following the idea
in [34]], we also use the k-reciprocal encoding method to re-
rank the initial result and find the true match of the target.
Through this process, we achieve around 6% improvement
on mAP score during the evaluation. Refer to [34] for de-
tails as we use the same formulation and parameters.

3.4.4 Multi-camera multi-target (MCMT) tracking

In this part, we explain the overall tracking algorithm for the
challenge Track 3 based on the components explained above
including multiple object tracking, appearance and spatio-
temporal feature extraction, re-ranking and ID matching
process. Here are the detailed steps:

e Step 1: Generate all the individual tracks in all the sin-
gle videos in the set with the multiple object tracking
pipeline.

e Step 2: For each track in previous step, calculate the
mean appearance feature from all the images and then
generate the appearance distance matrix.

e Step 3: For each pair of tracks in Step 1, use the mid-
dle timestamp of each track to calculate the transition
interval and evaluate the spatio-temporal distance ma-
trix.

e Step 4: Combine the two distance matrices and per-
form the multi-camera multi-target matching follow-
ing the Algorithm 2]

4. Experimental Results

In this section, we include the performance evalua-
tion of two individual components: multiple object track-
ing and vehicle re-identification, on two public available

Algorithm 2 MTMC matching

Input: Distance matrix G
Output: Trajectory result list R

1: procedure MATCHTRACK(G)
2 Trajectory candidate list R,
3 for each row g; in G do
4 List T = ]
5: Sort g; to select 4 smallest ones from each video
6 for each element ¢ in selected set do
7 if Rerank(i) < Thre then T.append(i)
8 end if
9 end for
10: if IndLoc(T) is True then R..append(T)
11: end if
12: end for
13: Calculate in-group correlation for each row in R,
14: Sort R, and select top N trajectories into R

15: Return R
16: end procedure

datasets: MOTchallenge16 [[13] and VeRi-776 [L1], respec-
tively. Also, we show our AICity challenge contest results
here.

4.1. Multiple object tracking

MOTchallenge [13] benchmark is a widely used dataset
for evaluating the performance of multiple object tracking.
There are seven training and seven testing sequences. The
target object is pedestrian and the detection results of all
frames are available for reference. However, in order to pro-
vide a high detection rate, we adopted one of the most pow-
erful detectors (private) from our own side. For evaluation,
we follow the CLEAR metrics [22], including the multi-
ple objects tracking accuracy (MOTA), the multiple objects
tracking precision (MOTP), the false positives (FP), the
false negatives (FN), most tracked (MT), most lost (ML),
the identity switch error (IDs) and the total fragments of all
the trajectories (Frag).

We compare the proposed multiple object tracking sys-
tem with several the state-of-the-art methods on testing se-
quences of MOT2016. Similar to others, we use the pri-
vate pedestrian detectors to get a high detection rate. Table
[2 shows the performance result. Among all the published
online methods, our proposed method (FLOW4) achieves
the best performance in MOTA (67.7), MT (35.0%) and FN
(49178). The MOTA score is also competitive among all
the listed offline methods.

In the AICity Challenge contest, we use our vehicle de-
tector and multiple object tracking system to generate the
track for each vehicle in each video. All challenge tasks are
based on this detection and tracking module.
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Table 2. MOT16 tracking performance with private detector. In each mode (online/offline), the best performance is marked in bold text.

MOT16 - Test Set

Tracker Mode | MOTA MT ML FP FN IDs | Frag | Hz
SORTwHPD16 [2] | Online | 59.8 254% | 22.77% | 8698 | 63245 | 1423 | 1835 | 59.5
DeepSORT?2 [27] | Online | 61.4 32.8% | 18.2% | 12852 | 56668 | 781 | 2008 | 17.4
POI [31] Online | 66.1 34.0% | 20.8% | 5061 | 55914 | 805 | 3093 | 9.9
Ours Online | 67.7 | 35.0% | 18.4% | 8225 | 49178 | 1568 | 3153 | 24.7
MCMOTHDM [9] | Offline | 62.4 31.5% | 242% | 9855 | 57257 | 1394 | 1318 | 34.9
KDNT [31]] Offline | 682 | 41.0% | 19.0% | 11479 | 45605 | 933 | 1093 | 0.7
LMPp [25] Offline | 71.0 | 46.9% | 21.9% | 7880 | 44564 | 434 587 0.5
HTSJTUZTE Offline | 71.3 | 46.5% | 19.5% | 9238 | 42521 | 617 743 29

4.2. Vehicle re-identification

In order to train our appearance model, we collect the
data from multiple datasets, including VeRi-776 [11], Ve-
hicleID [10], BoxCars21k [20], CompCars [30] and some
self-labelled datas. In total, the training set contains more
than 300,000 images of around 40,000 identities. For test-
ing, we use the test set of VeRi-776 to evaluate our ve-
hicle reID model. VeRi-776 [11] dataset is a large-scale
benchmark dataset for vehicle Re-Id in the real-world ur-
ban surveillance scenario. It contains over 50,000 images
of 776 vehicles captured by 20 cameras from different loca-
tions.

We follow the same evaluation metrics in VeRi-776,
including mean average precision (mAP) and cumulative
match curve (CMC). For each identity, one image is random
selected from all the gallery images to generate the gallery
set, while the probe set remains unchanged. The random
selection procedure was repeated for 100 times to obtain an
average CMC result.

In Table[3] we compare our method with different com-
ponents, to several the state-of-the-art models, including
BOW-CN [33], KEPLER [12], PROVID [11]] and OIF
[26]]. In baseline method, we only use the appearance fea-
ture without re-ranking. We can see that our baseline al-
ready outperforms other listed methods. Our full version
is consisted of appearance feature, spatio-temporal cue and
reranking, which achieves 71.2 mAP score. We have shown
that our proposed vehicle re-identification method improves
the performance with 40% gain in mAP from OIF [26].

Besides of the standard evaluation setup in VeRi-776
dataset, we also use the training set to mimic a similar ex-
perimental environment compared to the challenge contest.
In the new setup, the appearance feature of each image can
be represented as the feature of one track from a video cam-
era. The proposed MTMC tracking system groups images
together to generate multiple trajectories. Therefore, we
evaluate the performance and achieve around 0.6 tracking
detection rate in VeRi-776 training set.

Table 3. VeRi-776 performance evaluation

Method mAP | CMC1 | CMC5
BOW-CN [33] 12.2 - -
PROVID [11]] 27.8 - -
KEPLER [12] 335 48.2 64.3

OIF [26] 514 68.3 89.7

baseline 61.3 86.1 94.2

baseline + re-ranking | 67.4 87.6 93.1
baseline + ST 68.1 88.2 95.1
full version 71.2 89.3 93.8

Table 4. Performance evaluation of challenge contest

Track #1 Track #3

Rank | ID S1 ID S3
1 48 | 1.0000 | 48 | 0.7106
2 79 | 09162 | 37 | 0.2861
3 78 | 0.8892 | 79 | 0.0785
4 24 | 0.8813 | 18 | 0.0074

4.3. AICity challenge contest

Here we (team ID 79) report our challenge contest per-
formance of the two tracks: traffic flow analysis and multi-
camera vehicle detection and re-identification.

In track #1, our global score is 0.9162, which ranks num-
ber 2 in the overall evaluation. In track #3, we rank number
3 among all the teams. It is amazing that team48 perfor-
mances so well in both track #1 and #3, and we will keep
working on these tasks to improve our methods. Please
check the following Table [] for more details.

5. Conclusion and Future Work

In this paper, we introduce several very challenging but
practical tasks in large scale surveillance video analysis
hosted in NVIDIA AICity Challenge and explain the pro-
posed methods to approach them. In this contest, one of
the most fundamental components is multiple vehicle de-
tection and tracking. We first propose a powerful online
detection and tracking system in single camera as our start-
ing point. Then, two main tasks: traffic flow analysis and

74



multi-camera vehicle re-identification have been addressed
properly. This is a very good opportunity for us to under-
stand the difficulty of the real-world problems. In the fu-
ture, we believe we will keep working on the related key
problems, such as multiple object tracking and vehicle re-
identification, to improve the large scale surveillance video
analysis.
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