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Abstract

In this work, we present a novel approach for vehicle

speed estimation from monocular videos. The pipeline con-

sists of modules for multi-object detection, robust tracking,

and speed estimation. The tracking algorithm has the capa-

bility for jointly tracking individual vehicles and estimating

velocities in the image domain. However, since camera pa-

rameters are often unavailable and extensive variations are

present in the scenes, transforming measurements in the im-

age domain to real world is challenging. We propose a sim-

ple two-stage algorithm to approximate the transformation.

Images are first rectified to restore affine properties, then the

scaling factor is compensated for each scene. We show the

effectiveness of the proposed method with extensive exper-

iments on the traffic speed analysis dataset in the NVIDIA

AI City challenge. We achieve a detection rate of 1.0 in

vehicle detection and tracking, and Root Mean Square Er-

ror of 9.54 (mph) for the task of vehicle speed estimation in

unconstrained traffic videos.

1. Introduction

With increased popularity of deep learning and au-

tonomous driving technologies, intelligent traffic analyt-

ics, including vehicle speed estimation, anomaly event de-

tection on streets (e.g., traffic accidents), and vehicle re-

identification, have become active research areas. In this

work, we focus on estimating the vehicle speed, a crucial

information for traffic analysis which can be applied to de-

tect traffic congestions or other anomalous events. Specifi-

cally, we consider the problem of vehicle speed estimation

from monocular videos. The task is challenging in two as-

pects. First, a robust vehicle detection and tracking algo-

rithm is required to localize individual vehicles over time

under varying car orientations or lighting conditions. In-

correct localization and tracking can lead to catastrophic re-

∗The first three authors equally contribute to this work.

sults. Second, the transformation from image space to real

world is often unavailable and requires expensive measur-

ing equipments such as LIDARs.

To address these issues, we present a semi-automatic ap-

proach for vehicle speed estimation which works reliably

for monocular videos and only requires minimal amount of

measurements. While deep learning has achieved state-of-

the art results for many vision tasks, including object detec-

tion [14, 17], image recognition [10, 13], and object track-

ing [22], its application in traffic surveillance domain is

still under-studied. Many existing Intelligent Traffic Sys-

tems (ITS) are still based on traditional techniques such

as background subtraction and vehicle segmentation using

hand-crafted features which are sensitive to noise. In this

work, we employ the state-of-the-art object detector, Mask-

RCNN [9], to generate reliable vehicle bounding boxes.

Given these bounding boxes, two efficient tracking algo-

rithms, SORT [1] and DeepSORT [21] are applied to track

individual vehicles and estimate velocities in the image do-

main.

Arguably, the most challenging task in vehicle speed es-

timation is to model the transformation from the image do-

main to the real world such that the speed of the vehicles can

be inferred from measurements taken in the image domain.

While most of the previous methods resort to obtaining ac-

curate correspondences between points in the 3D world and

image plane through extensive measurements and camera

calibration, we propose a simple two-stage algorithm to ap-

proximate the transformation. We first estimate a rectifying

transformation using vanishing points in the image to re-

store the affine properties. Velocities measured in the image

domain can be rectified correspondingly. We then measure

the scaling factor from the image domain to the real world

by comparing the actual lane width to the one in the rec-

tified image. Linear interpolation is applied to the scaling

factors to compensate for non-planar regions in the scene.

An overview of the entire system is shown in Figure 1.

To summarize, the main contribution of this work is

to propose a semi-automatic vehicle speed estimation ap-

137



Figure 1: Overview of the proposed system for vehicle speed estimation from monocular videos.

proach, which does not require expensive steps such as

in camera calibration and measuring 3D distance s using

lasers and LIDARS. For the traffic speed analysis dataset

in the NVIDIA AI City Challenge, the proposed framework

achieves an RMSE of 9.54 mph.

The rest of the paper is organized as follows: We briefly

summarize some related works in Section 2. The proposed

method is presented in Section 3. Finally, experimental

evaluations are detailed in Section 4.

2. Related Works

In vehicle speed estimation, the most challenging task

is to relate measurements taken in the image domain to

real world metrics. In the following, we categorize previ-

ous works into methods that require camera calibration (ob-

taining intrinsic and extrinsic parameters of the surveillance

camera) and methods that directly estimate the transforma-

tion from image domain to 3D world.

Most of the approaches such as [2,8,12] estimate camera

parameters by assuming the knowledge of exact point cor-

respondences between the image plane and 3D world are

provided. Other methods [3, 5] are based on 3D models

and vehicle motion to calibrate the camera. [3, 4] are fully

automatic as they use mean vehicle dimensions for cam-

era calibration. [18] aligns 3D bounding boxes for vehicles

for camera calibration. However without prior knowledge

about the types of vehicles or extensive distance measure-

ment on the road, these approaches are not applicable.

In [7] the authors assume that the camera is only tilted

along the axis perpendicular to the road. By locating the

vanishing point in the direction of the road axis, the image

can be rectified. Vehicle tracking and speed estimation are

performed in the rectified image domain. Cathey and Dai-

ley [2] used a method based on detecting the vanishing point

in the direction of vehicle movements. This vanishing point

is detected as the intersection of line markings with least

squares adjustment. The scale (pixels/meters ratio) for the

camera is computed from average line marking stripe length

and known stripe length in the real world. We refer readers

to [19] for a more detailed summary. In this work, we use a

combination of the above two approaches, where the trans-

formation from the image domain to 3D world is measured

by rectification and prior knowledge from Google maps.

3. Proposed Approach

The proposed vehicle speed estimation system consists

of three components: (1) vehicle detection (2) tracking, and

(3) speed estimation. We describe the details of each com-

ponent in the following sections. A flowchart of the pro-

posed approach is shown in Figure 1.

3.1. Vehicle Detection

Figure 2: Vehicle detection and segmentation results using

Mask-RCNN [9] for a Track 1 video frame of NVIDIA AI

City Challenge.
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To localize vehicles in traffic videos, we apply Mask R-

CNN [9], an extension of the well-known Faster R-CNN

[17] framework. In addition to the original classification

and bounding box regression network of Faster R-CNN, the

Mask-RCNN adds another branch to predict segmentation

masks for each Region of Interest (RoI). This is done by ap-

plying a small fully convolutional network (FCN) to each

RoI to predict a pixel-level segmentation mask. The joint

learning of detection and segmentation allows the Mask R-

CNN to localize the vehicle with reliable and tight bound-

ing boxes. In Figure 2, we demonstrate a sample result

from one of the video frames from Track 1 of NVIDIA AI

City Challenge. We observe that Mask-RCNN is able to de-

tect the vehicles at different scales, which is crucial for this

challenge as vehicles can appear at any scale in the image.

The tracking and speed estimation module use the bounding

boxes from Mask-RCNN.

3.2. Tracking

In this section, we briefly describe the algorithm used

to track vehicles. We compare and contrast two different

tracking algorithms: Simple online and real time track-

ing (SORT) [1] and DeepSORT [21]. It is noteworthy to

mention that the main advantage of employing SORT and

DEEPSORT for tracking, is that the pixel velocity can be

jointly estimated with the tracking. Even though some of

the deep learning based approaches have motion models,

they do not have explicit relations with velocity. Moreover,

these approaches require training sequences which are not

available.

SORT. SORT is a real time, online tracking algorithm

which has the accuracy comparable to the state of the art

online trackers while supporting higher update rates. It as-

sociates detections in every frame using Kalman Filters,

specifically, SORT approximates the dynamics of each tar-

get vehicle with a linear Gaussian state space model. The

state of each target is modeled as:

[x, y, s, r, ẋ, ẏ, ṡ] (1)

where x and y represent the horizontal and vertical pixel

location of the center of the bottom two coordinates of the

bounding box, while s and r represent the area and the as-

pect ratio of the bounding box respectively. When a detec-

tion is associated to a target, the detected bounding box is

used to update the state vector of the target.

Deep SORT. Deep SORT is another online tracker with

competitive performance to the state of the art online track-

ers. In DeepSORT, the state vector is defined as:

[x, y, h, r, ẋ, ẏ, ḣ, ṙ] (2)

where x, y, r are same as in (1), while h represents the

height of the bounding box.

We track the center of the bottom two corners as these

points are close to the ground plane and have the least

amount of distortion under the affine rectification presented

in Section 3.3. The vector (ẋ, ẏ) is used to approximate the

velocity of a vehicle in the image domain.

Data Association in SORT v.s. DeepSORT. The major

difference between SORT and DeepSORT is the way they

perform data association. In SORT, the new bounding box

location for each target is predicted by the Kalman Filter.

The assignment cost is then computed as the intersection-

over-union (IOU) between each incoming detection and all

predicted bounding boxes of the existing targets. The as-

signment is solved optimally using the Hungarian algo-

rithm. Additionally, a minimum IOU is imposed to reject

assignments when the overlap between the detection and

the target is less than IOUmin. In the case of DeepSORT,

for each detected bounding box, an appearance feature is

extracted by a pretrained CNN. The training detail is pre-

sented in Section 4.1. For each track, a gallery of associated

appearance features is maintained. An incoming detection

is assigned to the track with the smallest cosine distance.

3.3. Speed Estimation

After obtaining pixel velocities from the Kalman filter in

the image domain, our speed estimation approach has two

steps: (1) affine rectification to restore affine-invariant prop-

erties of the scene, and (2) scale recovery which estimates

vehicle speed in the real world.

3.3.1 Affine Rectification

The traffic videos are captured by uncalibrated cameras.

Therefore, each frame in the video is the projection of the

3D world on the image plane under a projective transforma-

tion. Since ratios between segments are not preserved under

projective transformations, estimating speed directly in the

image domain is difficult. In this work, we assume most of

the roads can be well-approximated by a plane. For these

planar regions, we apply the rectification technique which

estimate a homography H that maps points x = [x, y, 1]T

in the image domain to points X = [X,Y, 1]T in the recti-

fied domain. That is,

Hx =





h11 h12 h13

h21 h22 h23

h31 h32 1









x

y

1



 =





X

Y

1



 = X. (3)

Non-planar regions would result in degraded speed estima-

tion, which will be compensated by the scale recovery pre-

sented in Section 3.3.2. We observe that once H is deter-

mined, the velocity in the rectified domain can be obtained

by differentiating both sides of (3):
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(4)

where Ci,j represents the minor of H which corresponds to

hi,j .

One classical approach of estimating H is based on de-

tecting vanishing points for two perpendicular directions.

We denote the two vanishing points as v1 and v2 in homo-

geneous coordinates, where v1 corresponds to the direction

of the road axis, and v2 corresponds to the direction per-

pendicular to v1. Then the following equations hold:

Hv1 =





1
0
0



 ,Hv2 =





0
1
0



 , (5)

where H has the form





a b 0
c d 0
− v1 × v2 −



 . (6)

Parameters in (3) can be solved using (5) and (6). For each

location, we manually detect two vanishing points by se-

lecting points in the scene. In locations 1, 2, and 3, since

lines that are perpendicular to the road axis are almost par-

allel in the image domain, we set v2 = [0, 1, 0]T for these

locations.

3.3.2 Scale Recovery

Image rectification proposed in Section 3.3 can result in dis-

tortion of non-planar regions. Hence, after image rectifica-

tion, it is important to recover the scale in order to translate

the speed from pixel space into real world domain. This

recovery needs to be done in both horizontal and vertical

directions. We use the lane widths and road white strips

length for the purpose of scale recovery in the horizontal

and vertical directions respectively. Using Google Maps,

we obtained a rough estimate of the real world distances.

After rectification road lanes become parallel which ensures

a constant lane width in the x direction in planar regions.

Therefore, we choose the following as the scaling factor in

x direction:

sx =
W

w
(7)

In (7) W and w denote the actual lane width in meters

and pixels respectively. For the vertical direction, we pro-

pose another approach. After projection and rectification,

the pixels along the vertical direction gets stretched and

this effect is more prominent in the pixels near the detected

vanishing point. Therefore, the scale along the y direction

changes non-linearly. To compensate for this scale varia-

tion, we employed a linear compensator as follows:

s(y) =
s2 − s1

ymax − ymin

y + s1, (8)

s1 =
L1

l1
, (9)

s2 =
L2

l2
, (10)

where L1 and L2 are lengths of two white strips at two dif-

ferent heights in meters. l1 and l2 are the corresponding

lengths in pixels in the transformed image. Finally, The

speed estimate of the vehicle is then given by

√

(sxẊ)2 + (syẎ )2. (11)

We estimate the speed of all the vehicles in the window

whose heights in the image space are from ymin to ymax.

4. Experimental Evaluations

In this section, we evaluate the proposed algorithm on

the NVIDIA AI City Challenge Dataset. We first conduct

qualitative and quantitative evaluations for our tracking al-

gorithms. We then report the results of our vehicle speed

estimation from monocular videos.

4.1. Implementation Details

Vehicle Appearance Model. To learn discriminative ve-

hicular representations for DeepSORT, we train a DCNN

for the task of fine grained vehicle identification. The net-

work architecture is shown in Figure 3. We train the net-

work on the CompCars dataset which consists of 136,726

images for 163 car makes and 1,716 car models. The net-

work is trained with batch size 128. The learning rate is

set to 0.01 and is halved after 50K iterations. We initialize

α = 40 for L2-softmax.

Vehicle Detector. We use Mask-RCNN implemented

in Detectron [6] which is trained on the MS-COCO

dataset [15]. It is based on a feature pyramid network [14]

and a ResNet-101 as the backbone.

4.2. Evaluation Metric

The performance of vehicle speed estimation is calcu-

lated using the S1 metric.

S1 = DR× (1−NRMSE), (12)

in which DR and NRMSE represents the detection rate

and the normalized root mean square error (RMSE) with

respect to other participating teams respectively. DR is de-

fined as the ratio between detected and ground truth vehicle;

140



Figure 3: Network architecture proposed in [16,20]. C denotes a Convolution Layer followed by a PReLU nonlinearity [11].

P denotes a Max Pooling Layer. Each pooling layer is followed by a set of residual connections. The number of residual

connections is presented alongside. After the fully-connected layer (FC), an L2-Normalization layer and Scale Layer are

added and followed by a softmax loss layer. The figure is cited from [16].

(a)

(b)

Figure 4: Comparison between tracking results obtained from SORT and DeepSORT. (a) In SORT a track is lost and reinitialized after a

few frames. (b) DeepSORT is able to effectively track the vehicle without losing the track.

moreover, a vehicle is alleged to be detected if it is at least

localized in 30% of all the time it shows up in the video.

Additionally, a vehicle is localized if at least one predicted

bounding box exists with IOU of 0.5 or higher relative to

the annotated bounding box for the vehicle. The speed es-

timate error is computed as the RMSE of the ground truth

vehicle speed and predicted speed for all correctly localized

ground-truth vehicles.

NRMSEi =
RMSEi −RMSEmin

RMSEmax −RMSEmin

, (13)

where RMSEmin and RMSEmax are the smallest and

largest estimation error among all participating teams for

NVIDIA AI City Challenge, respectively.

Method Detection Rate RMSE

SORT 1.00 9.54

DeepSORT 1.00 10.10

Table 1: Comparison of speed estimation on the NVIDIA

AI City Challenge dataset using different tracking algo-

rithms.

4.3. Vehicle Tracking and Speed Estimation

In Figure 4 and Table 1, we compare the tracking perfor-

mance of SORT and DeepSORT. It can be observed from

Figure 4 that since DeepSORT is assisted by the learned

deep representation, the tracking results are more stable and

consistent than SORT which only uses bounding box infor-
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(a)

(b)

(c)

(d)

Figure 5: Comparison between tracking results obtained from 4 different locations from NVIDIA AI City Challenge dataset. (Best viewed

in color when zoomed in)
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mation for association and usually misses the track when

the detections of the tracked vehicle are not available for

several consecutive frames. This demonstrates a tracking

method based on similarity model can achieve stable track-

ing results with fewer id switches. This effect is shown in

Figure 4. However, quantitative results from the evaluation

server show that RMSE obtained using SORT is slightly

lower when DeepSORT is used as a tracking algorithm.

We hypothesize that since the condition to declare a ve-

hicle detection only requires a vehicle to be localized for

30% of frames through the entire video, both approaches

can achieve similar DR with proper hyper-parameter set-

tings. However, due to the design of the evaluation metric,

if a vehicle is tracked for a long time, it is more likely to

make errors in speed estimation.

Finally, we visualize the speed estimation for several

sampled frames in Figure 5. For the Track 1 of NVIDIA AI

City Challenge, the proposed system achieved S1 = 0.7654
which puts this approach in 7th position among all partici-

pating teams.

5. Conclusions and Future Work

In this paper, we presented a semi-automatic system for

vehicle speed estimation from monocular videos. The pro-

posed approach can reliably estimate the speed without ex-

plicit camera calibration and 3D modeling for vehicles or

buildings. For our future work, key-point detection and

tracking can be aggregated in the pipeline for improved

speed measurements.
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