
AIC2018 Report: Traffic Surveillance Research

Tingyu Mao, Wei Zhang, Haoyu He, Yanjun Lin, Vinay Kale, Alexander Stein, Zoran Kostic

Columbia University

Abstract

Traffic surveillance and management technologies

are some of the most intriguing aspects of smart city ap-

plications. In this paper, we investigate and present the

methods for vehicle detections, tracking, speed estima-

tion and anomaly detection for NVIDIA AI City Chal-

lenge 2018 (AIC2018). We applied Mask-RCNN and

deep-sort for vehicle detection and tracking in track 1,

and optical flow based method in track 2. In track 1, we

achieve 100% detection rate and 7.97 mile/hour estima-

tion error for speed estimation.

1. Introduction

In the context of autonomous driving and smart city

management, it is beneficial to develop a cyber physi-

cal system to better monitor traffic situations. AIC2018

aims at dealing with three topics related to traffic surveil-

lance based on camera data, including vehicle speed

estimation, anomaly detection, vehicle re-identification.

In this contest, we focus on the first two topics. The esti-

mation of vehicle speed track is to estimate the speed of

multiple vehicles simultaneously using a single bird’s-

eye view camera. This is different from conventional

speed detection methods which always calculate speed

based on time intervals and distance between two road-

side cameras. The anomaly detection track is to auto-

matically detect abnormal events including stalled cars

as well as car crashes based on traffic flow. These appli-

cations will play an important role in reducing car acci-

dent rate and improving traffic situation.

To address these problems, it is required to integrate

many computer vision techniques including object de-

tection, multi-object tracking, camera calibration, opti-

cal flow tracking etc. The methods need to be robust to

the variability of real scenarios. In this paper, we de-

scribe our methods for the first two tracks. The second

section gives a brief review of related work. In the next

three sections, we explain our methods and describe ex-

periment details. Finally, we discuss the performance of

our methods.

2. Related Work

2.1. Vehicle detection

Currently, with the advent of CNN networks, RCNN

based methods have become the mainstream of object

detection. They can be categorized into two differ-

ent classes: single-stage and two-stage networks. The

critical difference between them is the region proposal.

Single-shot detectors do one-pass feature extraction and

propose regions by a final regression layer, eg., you look

only once (YOLO) [8] and single shot detector (SSD)

[5]. Single-stage detectors are fast but less accurate.

YOLO has scaling issues and cannot detect small objects

accurately. In contrast, two-stage detectors are more ac-

curate but slow. Jifeng Dai et al [2] proposed Region-

based Fully Convolutional Networks (RFCN) which is

fully convolutional with almost all computation shared

on the entire image. An advanced Mask R-CNN [4] pro-

posed based on RFCN which detects objects in an image

while simultaneously generating a high-quality segmen-

tation mask for each instance.

2.2. Multi­Object Tracking

Multi-object tracking (MOT) is to track the tra-

jectories of multiple objects simultaneously. With

the progress in object detection, tracking-by-detection

has become the leading scheme for MOT. The core

of tracking-by-detection is to associate the detection

bounding boxes across video frames correctly. In most

cases, the metric of association is based on the appear-

ance similarity as well as motion consistency. In terms

of association policy, it can be divided into two cate-

gories: offline global optimization and online associa-

tion. Offline global methods always use flow networks

[7, 20] or probabilistic graphical models [18] to repre-

sent a MOT problem. This type of methods can achieve

better tracking trajectories and are more robust to long-

term occlusion. However, as they pursue a global opti-

185



mal solution of a time window, it is hard to implement

it online, which limits its utility in some real-time appli-

cations. Whereas, online methods [1, 16, 15] are frame-

by-frame based and focus on making correct association

between each two frames, which makes it faster. Most

of current online MOT methods are robust to false de-

tection signal, short-term occlusion and missing objects.

However, they cannot handle long-term occlusion very

well.

2.3. 3D Coordinate Reconstruction

Projective Transformation: A projective transfor-

mation h can map line to line, ie., if x1, x2, x3 are on

the same line in the original plane, then h(x1), h(x2),
h(x3) will remain on the same line after transformation.

Such transformation can map the camera-view road back

to the real road plane. It requires coordinates of at least

four feature points from these two different coordinate

systems to calculate a 3× 3 matrix.

Camera calibration: To re-construct the 3D coor-

dinate from a 2D video, Schoepflin et al.[10] use the

vanishing points to estimate the calibration parameters

of the camera. In their report, they compared three dif-

ferent calibration methods, with different required infor-

mation. They found that the method, requiring two van-

ishing points, has less sensitivity on error. But the two

vanishing points can not always be extracted from the

video in our case since in some parts, like location 1 and

3, the second vanishing point does not exist or is very

very far away. For the other two methods compared by

the authors, both of them require additional information

besides the video like the distance between the camera

and the road which is, again, not available in our case.

Uncalibrated methods: Dailey et al. [3] proposed a

method for vehicles speed measurement based on track-

ing of vehicle blobs and constraining them to move

along a line. The blobs are detected as interframe dif-

ferences followed by Sobel edge detector. The authors

assume that the vehicles are moving towards or from the

camera and use mean length of vehicles to obtain the

scene scale. While theoretically the method is sound,

we found that it had too many assumptions regarding

the traffic setting (eg. the variability of camera angle to

vehicle location is not accounted) and as a result, it does

not produce intended results.

3. Track 1 Methods

To implement speed estimation, our method can be

decomposed into three steps: (1) Vehicle detection and

instance segmentation implemented by Mask-RCNN;

(2) Online MOT model based on deep cosine metric

Figure 1. Track1 framework.

which could generate track-lets from bounding boxes;

(3) Speed estimation based on 3D coordinates recon-

structed from vehicle segmentation via google map

transformation matrix. Here a short-term accurate track-

let will be sufficient for speed estimation, therefore we

select a online MOT method, even though online meth-

ods are likely to cause more identity switches in a long

run. In the next sections, more details about these steps

will be introduced.

3.1. Mask RCNN

Amid different RCNN models, we select Mask-

RCNN owning to its high accuracy. It uses RFCN for

object detection and adds one more ROIAlign layer for

instance-level segmentation, so that the segmentation

provides more precise position information than bound-

ing boxes, especially when the vehicle orientation is not

aligned with the image borders. Besides, the network

uses ResNet101 as a backbone and adds feature pyra-

mid layers for multi-scale object detection, so that it can

detect different scale vehicles.

3.2. Deep Cosine Metric Learning

To track the detected vehicles, the re-identification

features for the deep-sort[15] are needed. The paper[14]

modifies the standard softmax classifier, so that it can

produce compact clusters in representation space, and

calls it as cosine softmax classifier. It is defined as fol-

lows:

P (yi = k|ri) =
exp(κ · ˜wT

k ri)∑C

n=1 exp(κ · w̃T
n )

(1)

where κ is a free scaling parameter, ri = f(xi) is the

underlying feature representation of a parametrized en-

coder network which is trained jointly with the classifier.

Here, l2 normalization must be applied to the final layer

of the encoder network to ensure the representation is

86



Table 1. Overview of the CNN architecture.

Name Path Size/Stride Output Size

Conv 1 3× 3/1 32× 128× 128
Conv 2 3× 3/1 32× 128× 128
Max Pool 3 3× 3/2 32× 64× 64
Residual 4 3× 3/1 32× 64× 64
Residual 5 3× 3/1 32× 64× 64
Residual 6 3× 3/2 64× 32× 32
Residual 7 3× 3/1 64× 32× 32
Residual 8 3× 3/2 128× 16× 16
Residual 9 3× 3/1 128× 16× 16
Dense 10 128

l2 normalization 128

unit-length and the weights must be normalized to unit-

length. In training, the cross-entropy loss can be used

in its standard form. This parameterization could en-

force a cosine similarity on the representation space. By

minimizing the loss function, samples in the same class

are pushed away from the boundaries and toward the pa-

rameterized mean. The network architecture is shown in

table 1.

3.3. Simple Online and Realtime Tracking with
a Deep Association Metric

Similar to the method used in the paper[15], the asso-

ciation is solved by combining the Mahalanobis distance

between predicted Kalman states and the newly arrived

measurements, and appearance descriptor ri, the output

of the CNN in table 1.

The Kalman state is defined on an eight dimension

space(u, v, γ, h, ẋ, ẏ, γ̇, ḣ), where (u, v), γ, h are the

center of the bounding box, aspect ratio and height re-

spectively. (ẋ, ẏ, γ̇, ḣ) are their respective velocities.

The Mahalanobis distance is defined as:

d(1)(i, j) = (dj − yi)
TS−1

i (dj − yi) (2)

The projection of the i-th track distribution into mea-

surement space is denoted as(yi, Si), and j-th detection

bounding box as dj .

The last appearance descriptors Rk =

{r(i)k }Lk

k=1, Lk = 100 for each track k is kept.

The appearance similarity is measured by the cosine

distance between the i-th track and j-th detection in

appearance space:

d(2)(i, j) = min{1− rTj r
(i)
k |r

(i)
k ∈ Ri} (3)

To combine them, a weighted sum is used:

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j) (4)

where an association is admissible if it is within the gat-

ing region of both metrics:

bi,j = I[d(1)(i, j) ≤ t(1)] · I[d(2)(i, j) ≤ t(2)] (5)

The matching cascade is shown in algorithm 1.

Algorithm 1: Matching Cascade

Input: Track indices T = {1, ..., N}, Detection

indices D = {1, ...,M}, Maximun age

Amax

1 Compute cost matrix C = [ci,j ] using equation 4 ;

2 Compute gate matrix B = [bi,j ] using equation 5;

3 Initialize set of matchesM← ∅;
4 Initialize set of unmatched detections U ← D;

5 for n in 1 to Amax do

6 select tracks by ages Tn = {i ∈ T |ai = n};
7 [xi,j ]← min cost matching(C, Tn,U) ;

8 M←M⋃{(i, j)|bi,j ∗ xi,j > 0} ;

9 U ← U\{j|∑i bi,j ∗ xi,j > 0} ;

10 returnM,U

3.4. Speed Estimation

It is reasonable to assume that all vehicles are in the

same horizontal plane. Thereby, to convert the pixel

distance to real world distance, we could use the sim-

ple projection matrix based method. The transformation

matrix of each video is calculated by taking 4 points (xj ,

yj), j=1,..4, on image. Their corresponding real-world

coordinates points (uj , vj), j=1,...4, are measured using

Google Map. Then a 3 x 3 projective transformation

matrix is calculated from the four point pairs.

In order to apply projective matrix to recover 3d coor-

dinates, all sample points of a vehicle should stay in the

same horizontal plane. Therefore, we take advantage of

the bottom part of vehicle’s contour provided by Mask

RCNN as shown in Figure 2 and consider the central

position of contour points as the vehicle position. Then,

given the projective matrix, the 3d coordinate of each

vehicle is reconstructed from smoothed 2d coordinates.

Velocity is estimated based on the difference between

smoothed position coordinates.

4. Track 2 Methods

4.1. Fisher Vector Descriptor

When applying Fisher Vector, the papers [6][9] claim

to use Gaussian Mixture Model(GMM) with K clusters

with µk,Σk, πk for each cluster where µk,Σk, πk are

the mean, variance and prior probability of k-th cluster.

87



Figure 2. Sample points extraction. The red curve is the orginal

Mask-RCNN segmentation contour and the blue curve is of the

select sample points.

Based on the paper [12], we use Fisher encoding to en-

code the vector by:

uk =
1

N
√
πk

N∑

i=1

qki(
xi − µk

αk

) (6)

vk =
1

N
√
2πk

N∑

i=1

qki[(
xi − µk

αk

)2 − 1] (7)

where N is the number of datapoints, qki is the pos-

terior probability of i-th data in k-th cluster, xi is the

vector we intend to encode. By concatenating vk and

uk, we form our Fisher vector with the length of 2D′K
where D′ is the reduced dimensionality after applying

PCA.

4.2. Vector of Locally Aggregated Descriptor En­
coding

VLAD encoding is treated as the simplified version

of Fisher encoding. In the paper [17], a k-means clus-

tering algorithm is first implemented to have 64 clusters.

And it calculates the VLAD vector representation uk by:

uk =
∑

i:NN(xi)=ck

(xi − ck) (8)

where NN(xi) indicates xi’s nearest neighbors

among center ck. The paper finds out that it achieves

the best performance when K = 64.

In addition, other papers[9][19] also claim that Fisher

encoding can be thought as the best image descriptor for

image classification purpose, and VLAD can be treated

as the best video representation vector. The only dif-

ference is that these two papers use different number of

clusters with different dimensionality of data.

Figure 3. Visualization of iDT features

4.3. Sparse Tracking

We also try to apply sparse tracking algorithm to in-

clude temporal information. This algorithm uses VGG

Net to generate features and a Siamese network to match

objects. The reason that it is called sparse tracking is

because we do not match every pixel between two con-

secutive frames. Instead, we only match the objects that

potentially have moved between the two frames. Simi-

larly, for the tracking system, we input N = 50 frames

into system, and then have N−1 vectors to represent the

sequence of moving. Each vector has the fixed length of

256 which describes the motion of all objects between

two consecutive frames. Then, we apply Fisher encod-

ing algorithm to encode 49 vectors into a fixed length of

32768. More experimental details will be shown in the

later section.

4.4. Improved Dense Trajectory

In [11][12] iDT features have been proposed as the

best motion descriptor and claimed to be invariant of

camera motion. This is mainly because the proposed

vector representation includes all the information from

previous work of dense trajectories, Histogram of Gra-

dient, Histogram of Optical Flow and Motion Bound-

aries Histogram. The key advantage of this method is to

eliminate the motion made by camera. In Figure 3 we vi-

sualize the iDT algorithm by showing a resultant frame

with markers where a green line points out the path and

direction of a motion and a red dots marks the ending

point of a particular motion.

4.5. Full Pipeline

For this specific case, we down-sample frame rate

from input stream. In particular, we uniformly sam-

ple two frames per second. This is simply because the

model we trained is based on low frame scenario rather

88



than 29 frames per second. Empirically, this down-

sampling techniques shows a better result.

To build our full pipeline, we construct two separated

branches to process raw data. The first branch serves

as an image feature extractor such as VGG Net to ex-

tract futures from raw images. Then, the extracted fea-

tures are encoded using VLAD encoding to form a fixed

length vector. The second branch serves as a motion fea-

ture extractor such as sparse tracking or iDT from raw

images. Similarly, we apply Fisher encoding on track-

ing vectors. At the end, we merge two branches together

by concatenating two vectors and feed them into SVM

to train six different classifiers.

We input training frames as a batch where each batch

contains 50 frames. The resultant VGG Net image fea-

ture vector has the length of 4096 for each frame. After

applying PCA, we can reduce this to 256. For GMM,

we set K=64. Thus, Fisher encoding produces a vec-

tor of length 2 × 64 × 256. Similarly, we use K = 64

coarse centers for VLAD encoding. As a result, VLAD

encoding will lead to the size of 64 × 256 of the output

vector. For the tracking part, sparse tracking will gen-

erate a vector of 256 for two consecutive frames. With

a 256-clusters Fisher encoding, it produces a vector of

length 2 × 256 × 256. On the other hand, iDT track-

ing algorithm generates a vector of 426 in length on two

consecutive frames. We also apply PCA to make it as

short as 256. We apply Fisher encoding for a batch of

frames, which makes it 2× 256× 256 in length.

The full pipeline can be visually seen as Figure 4. It

is necessary to point out that the final result of classifi-

cation can be overlapping. That is, multiple events can

happen at the same time. This is mainly because of the

nature of data. For example, when an event of car acci-

dent occurs, the event of police arrival also often occurs

at the same time. This can also be viewed from Figure

4.

5. Experiments

5.1. Deep Cosine Metric Training

We use UA-DETRAC dataset [13] to train the deep

cosine metric. UA-DETRAC provides 60 training se-

quences and 83910 images in total. Considering the low

resolution of images shot at night, we removed all night

sequences during the training phase. Then we cropped

each vehicle based on annotations and collected query

images for 366 vehicles. The split ratio between train-

ing set and validation set used is 0.9/0.1. The training

process is shown as in Figure 5. The final accuracy of

validation set is about 91%. Later we apply this pre-

Table 2. Part of MOT evaluation results.

Seq id 20052 39861 40192 40871

Weather sunny night cloudy rainy

Type road T-junction road busy road

#Frame 692 739 2192 1718

#Car 43 14 313 37

#MT 21 10 145 18

#PT 19 2 159 5

#ML 3 2 9 14

MOTA 0.72 0.65 0.76 0.54

MOTP 31.26 49.64 23.54 8.19

trained deep cosine metric on vehicle tracking.

5.2. UA­DETRAC Evaluation

Vehicle detection: The Mask-RCNN model is pre-

trained on the COCO dataset and evaluated on the UA-

DETRAC training dataset. UA-DETRAC consists of

four different types of cars. However, as the purpose

of competition is speed estimation, it is not necessary

to distinguish different categories of cars. Therefore, all

vehicles are classified into the same class ”car”. As a

result, we get a Precision/Recall (PR) curve as shown as

Figure 6 and the average precision (AP) is about 65%.

Multi-object tracking: Given the pre-trained deep

cosine metric and detection responses, we further evalu-

ate the MOT model. Part of evaluation results are shown

in Table 2, where ”mostly tracked” (MT) means that the

object is tracked for at least 80 percent of its lifespan

and ”partly tracked” (PT) means the object is tracked

between 20 and 80 percent of its lifespan otherwise the

target car is ”mostly lost” (ML). MOTA is the multi-

ple object tracker accuracy while MOTP is the multi-

ple object tracker precision. Figure 7 displays the corre-

sponding scenarios. The tracking method achieves good

accuracy on UA-DETRAC and become robust to vari-

ations on weather and scenes. In addition, from gener-

ated videos, it can be observed that the tracking method

can handle the turning cars. Even though the orientation

of a turning car has changed a lot, the tracker can still

successfully track the car. According to the result of se-

quence 40871 where occlusion occurs more frequently,

MOTA drops which means the tracking methods cannot

handle occlusion very well.

89



1

0

1

0

0

0

VGG Net

Tracking

50 Consecutive Frames

fc 7 layer VLAD

Fisher

Concat
S
V
M

Car Accident

Hazardous Car Stopped

Police

Construction

Partial Closure

Road Closure

6 Classifiers

Figure 4. Full Pipeline of Proposed Algorithm

Figure 5. Training process of deep cosine metric. The left one

is the classification accuracy of training batches. The right one

is the top-1 validation accuracy during training.

Figure 6. Precision/Recall curve of Mask RCNN.

6. Results

6.1. Track 1 speed estimation

Track 1 is evaluated on two aspects: detection rate

and root of mean square error (RMSE) of speed estima-

tion. According to the submissions, our detection rate

is 100% and the overall RMSE is about 7.97 miles/hour.

Next, we evaluate the speed estimation of different lo-

cations separately. Figure 8 visualizes the speed distri-

bution of different locations. Average vehicle speed on

highway (Loc1,2) varies from 60 to 70 miles/hour while

average speed on intersection is from 9 to 12 miles/hour.

In terms of mean speed value, our result is in a reason-

Figure 7. Sample scenarios for MOT evaluation. The top-left

red number is the sequence id (seq id)

able range. Table 6.1 provides a detailed description

about the mean/median value of different locations as

well as their RMSEs which are the results on the con-

test submission system. It can be observed that highway

estimation is better than that of intersection. Based on

our experiments, we guess that this is caused by three

factors: more frequent occlusions at the intersection, un-

stable detections and shaking cameras. As our method

relies on tracking accuracy, it is probably affected by

the inaccurate detection of bounding boxes when two

cars almost overlap with each other. For example, the

bounding boxes will become larger than they should be.

On the other hand, as 3d coordinates are reconstructed

from a fixed projective matrix, then a shaky camera will

affect the accuracy of 3d coordinates and further make

speed estimation deviated from true value.

6.2. Track 2 anomaly detection

Track 2 is evaluated based on the detection perfor-

mance which is based on F-1 score and event time dif-

ference judged by RMSE. Our goal is trying to predict

the time stamp as accurate as possible without compro-

mising too much on F-1 score. The distribution of the

90



Figure 8. Histogram of velocity from four locations. The x-

axis represents vehicle speed (miles/hour) while the y-axis is

the number of vehicles within the corresponding speed range.

Table 3. Track1 speed estimation (mile/hour).

Location Mean Median RMSE

1 66.64 67.31 9.61

2 60.15 61.20 10.20

3 11.54 5.27 6.50

4 9.27 5.48 5.50

Overall - - 7.97

Table 4. Track2 anomaly detection.

F1 RMSE (seconds)

0.7692 214.2712

predicted time stamps can be viewed in Figure 9. From

the frequency plot, we can recognize how model per-

forms on this testing dataset. Correspondingly, in Fig-

ure 10, we plot the confidence we have from the model.

It is worth mentioning that we also perform a thresh-

old cutting on the confidence score so that we can get

as better F-1 score as possible. The final F-1 score and

RMSE in seconds can be seen in Table 4. We think that

part of reason of this high RMSE can be that we pay

too much attention on the end time stamp of an anomaly

event in training. Thus, the start time stamp cannot be

fully trained. This is also an aspect on which we can im-

prove on. Last but not the least, the sparsity of training

data of anomaly can also be the reason for high RMSE.

7. Conclusions

We present our methods for the first two tracks of

the challenge, ie., speed estimation and anomaly detec-

Figure 9. Distribution of Predicted Time Stamp

Figure 10. Distribution of Confidence Score

tion. For track 1, we propose a pipeline to estimate ve-

hicle speed and evaluate the detection & tracking steps

on UA-DETRAC. Due to the good accuracy in vehi-

cle detection/tracking, our method achieves 100% de-

tection rate, and the average estimation error is about

7.97 mile/hour. Our rank in track 1 is 5/13. For track 2,

we develop an optical flow based method. By using the

information from optical flow, we can include the tem-

poral relationship between frames. We obtain 0.7692 F1

score and about 214 second estimation error in the con-

test. We apply a threshold cut on the confidence score to

eliminate the unqualified judgment.

In the future, for the speed estimation problem, the

first thing is to promote the accuracy by mitigating the

aspects of frequent occlusions and increasing the dis-

placement estimation via introduction of the 3D box es-

timation of vehicles. Secondly, it is essential to optimize

our pipeline by speeding up detection response gener-

ation, which could be implemented by applying Mask

RCNN on key frames and impute the missing frames

by interpolation. For track 2, there are two main points

that we want to improve on. First of all, we shoud do

more fine-tuning to improve the feature extraction from

91



the VGG Net. In our scenario, we used the pretrained

model weights directly for VGG Net, which might not

perfectly fit in the case. Secondly, we should consider

accumulating more data for the training purpose. Mean-

while, for this specific task, we should choose such an

objective function so that only start time stamp matters.

References

[1] W. Choi. Near-online multi-target tracking with aggre-

gated local flow descriptor. In Proceedings of the IEEE

International Conference on Computer Vision, pages

3029–3037, 2015. 2

[2] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object detection

via region-based fully convolutional networks. CoRR,

abs/1605.06409, 2016. 1

[3] D. J. Dailey, F. W. Cathey, and S. Pumrin. An algorithm

to estimate mean traffic speed using uncalibrated cam-

eras. IEEE Transactions on Intelligent Transportation

Systems, 1(2):98–107, Jun 2000. 2

[4] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask

R-CNN. CoRR, abs/1703.06870, 2017. 1

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,

C. Fu, and A. C. Berg. SSD: single shot multibox detec-

tor. CoRR, abs/1512.02325, 2015. 1

[6] F. Perronnin, J. Sánchez, and T. Mensink. Improving the

fisher kernel for large-scale image classification. Com-

puter Vision–ECCV 2010, pages 143–156, 2010. 3

[7] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-

optimal greedy algorithms for tracking a variable number

of objects. In Computer Vision and Pattern Recognition

(CVPR), 2011 IEEE Conference on, pages 1201–1208.

IEEE, 2011. 1

[8] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.

You only look once: Unified, real-time object detection.

CoRR, abs/1506.02640, 2015. 1

[9] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek.

Image classification with the fisher vector: Theory and

practice. International journal of computer vision,

105(3):222–245, 2013. 3, 4

[10] T. N. Schoepflin, D. J. Dailey, and P. Briglia. Algo-

rithms for estimating mean vehicle speed using uncal-

ibrated traffic management cameras. Technical report,

Washington State Department of Transportation, 2003. 2

[11] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action

recognition by dense trajectories. In Computer Vision

and Pattern Recognition (CVPR), 2011 IEEE Conference

on, pages 3169–3176. IEEE, 2011. 4

[12] H. Wang and C. Schmid. Action recognition with im-

proved trajectories. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 3551–

3558, 2013. 4

[13] L. Wen, D. Du, Z. Cai, Z. Lei, M.-C. Chang, H. Qi,

J. Lim, M.-H. Yang, and S. Lyu. Ua-detrac: A new

benchmark and protocol for multi-object detection and

tracking. arXiv preprint arXiv:1511.04136, 2015. 5

[14] N. Wojke and A. Bewley. Deep cosine metric learning

for person re-identification. 2018. 2

[15] N. Wojke, A. Bewley, and D. Paulus. Simple online and

realtime tracking with a deep association metric. arXiv

preprint arXiv:1703.07402, 2017. 2, 3

[16] Y. Xiang, A. Alahi, and S. Savarese. Learning to track:

Online multi-object tracking by decision making. In

2015 IEEE international conference on computer vi-

sion (ICCV), number EPFL-CONF-230283, pages 4705–

4713. IEEE, 2015. 2

[17] Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative

cnn video representation for event detection. In Proceed-

ings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1798–1807, 2015. 4

[18] B. Yang, C. Huang, and R. Nevatia. Learning affini-

ties and dependencies for multi-target tracking using a

crf model. In Computer Vision and Pattern Recognition

(CVPR), 2011 IEEE Conference on, pages 1233–1240.

IEEE, 2011. 1

[19] J. Yuan, B. Ni, X. Yang, and A. A. Kassim. Temporal ac-

tion localization with pyramid of score distribution fea-

tures. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3093–3102,

2016. 4

[20] L. Zhang, Y. Li, and R. Nevatia. Global data association

for multi-object tracking using network flows. In Com-

puter Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on, pages 1–8. IEEE, 2008. 1

92


