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Abstract

Vehicle re-identification plays a major role in modern

smart surveillance systems. Specifically, the task requires

the capability to predict the identity of a given vehicle, given

a dataset of known associations, collected from different

views and surveillance cameras. Generally, it can be cast

as a ranking problem: given a probe image of a vehicle,

the model needs to rank all database images based on their

similarities w.r.t the probe image. In line with recent re-

search, we devise a metric learning model that employs a

supervision based on local constraints. In particular, we

leverage pairwise and triplet constraints for training a net-

work capable of assigning a high degree of similarity to

samples sharing the same identity, while keeping different

identities distant in feature space. Eventually, we show how

vehicle tracking can be exploited to automatically generate

a weakly labelled dataset that can be used to train the deep

network for the task of vehicle re-identification. Learning

and evaluation is carried out on the NVIDIA AI city chal-

lenge videos.

1. Introduction

According to Gartner[13] 20.4 billions of connected

“things” will be in use worldwide by 2020. Since the most

of world population is congregating in urban areas, data

from traffic and surveillance cameras will likely constitute

the large part of these devices. Taking advantage of this

huge amount of available visual data is particularly attrac-

tive, and seems almost compulsory in order to achieve more

efficient and greener societies in the near future.

As example, transportation can be considered one of the

(a) (b)

(c) (d)
Figure 1. Examples of real-world settings in which the task of

re-identification is particularly challenging. Large illumination

changes (a), (b), completely different scales (c), cluttered scenes

(d). Images taken from the NVIDIA AI city challenge videos.

largest segments that may benefit from the analysis of these

data. There is a concrete and huge opportunity for insights

from traffic and infrastructure cameras to make transporta-

tion systems safer and smarter.

Nonetheless, many issues (poor data quality, lack of la-

bels, etc.) often still prevent to exploit these data satisfac-

torily. Broadly speaking, even though research in computer

vision and machine learning is growing fast, there is still a

gap between scoring high performance in academic bench-

marks and the actual deployment of these systems in the

real-world. Examples of challenges that a system needs to

be robust to in order to be deployable in the real-world are

depicted in Figure 1.

In this work we tackle the problem of vehicle re-
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Figure 2. Our system pipeline that is composed of three modules. The first phase is vehicle detection and tracking. Detections are either

assigned to an existing tracklet or used to initialize a new tracker. Tracklets are exploited to automatically annotate the videos and train

a triplet network for vehicle re-identification. The output vector of the triplet network is used as feature vector to represent each detected

vehicle. Eventually, these feature vectors are compared between different probes and the gallery to generate a ranking. We refer the reader

to Section 3 for further details.

identification, which plays a major role in modern smart

surveillance systems. Specifically, the task requires the ca-

pability to predict the identity of a given vehicle against a

dataset of known associations, which may have been col-

lected from different views and surveillance cameras.

The remainder of this paper is organized as follows. Sec-

tion 2 presents a review of recent literature in vehicle re-

identification. Section 3 describes the proposed methodol-

ogy in detail. Section 4 contains the experiment designs;

and finally, conclusions are in Section 5.

2. Related Works

Liu et al. [7] proposed a method based on features fu-

sion (FACT) to re-identify large scale vehicles. They made

use of Bag Of Words (BOW) of SIFT descriptors [10] along

with color names [18] and employed GoogleNet [17] fine-

tuned on CompCars [20] to extract high level semantic fea-

tures such as the number of doors, the number of seats or the

light shape. After merging texture, color and semantic fea-

tures the euclidean distance is used to match the prediction

against a features gallery. The authors further refined their

work in [8], where two new features representing an em-

bedding of the license plate and spatio-temporal property

are concatenated with the former. In first place, Null-space-

based is used on the FACT model in order to transform the

feature space from one space into another while also com-

bining each feature vector into a single one. Then, plates

are used to determine whether the vehicles are the same or

different. To this purpose, a siamese network is employed

over the plates. A spatio-temporal relation that is previously

calculated is applied in the system.

With the rise of triplet network based architectures in

various and different tasks [9, 15, 14, 1] with promising re-

sults, Hoffer et al.[4] revisited the traditional implementa-

tion of [5] to include the concept of vehicles classes. With

this consideration, only the centroid embedding of each

class is used in the function, thus enhancing the speed of

the training process. A similar method is shown also in

[21], where the authors further investigated the sampling

of triplets from a dataset. In particular, for each pair (j, k)

two triplets are built; in the first one, j is the anchor and

k the positive, while in the second one they are swapped.

Negatives are randomly sampled for both.

In this work we leverage on a triplet-based deep net-

work to learn a representation features space in which sim-

ilar vehicles are close together, whereas vehicle with differ-

ent identities are kept distant. While using triplet network

for vehicle re-identification is not a novelty itself, here we

focus on presenting an overall pipeline that could be de-

ployed for re-identifying vehicles across completely differ-

ent views. Also, we detail how a re-identification network

can be trained even when labelled data are not available, as

for the case of this challenge.

3. Method

In this section we describe our proposed method. Over-

all, the system is composed of three main modules (Figure

3):

1. A detector identifies all vehicles appearing in the re-

gion of interest. Each detection is either assigned to an

existing tracklet or a new tracker is initialized from it

(Sec. 3.1).

2. Exploiting the aforementioned tracklets, a triplet net-

work is trained to keep vehicles belonging to the same

tracklet close in a learned feature space. (Sec. 3.2)

3. A matching strategy is employed to re-identify vehi-

cles between different videos. (Sec. 3.3)

In the following we detail each of these components sepa-

rately.

3.1. Detection and Tracking

The goal of a detector is to detect all objects belonging

to a particular class in a scene, regardless of their intra-class

variation. In the case of vehicles appearing in real-world

videos as the ones in the NVIDIA challenge, detection is

made challenging by many factors of variation (e.g. differ-

ent scales, poses and lighting conditions).

In order to alleviate these issues, in each of the chal-

lenge video a region of interest (ROI) is manually selected

in order to preserve as much information as possible while

reducing computational effort and discarding the vehicles
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Figure 3. Here the automatic labelling of the NVIDIA AI city chal-

lenge videos is schematized. Each detected car is tracked until it

exits the region of interest. Different detections belonging to the

same tracklet constitute positive examples for the triplet network.

Conversely, patches that belong to different tracklets are labelled

as negative examples. See Section 3.2 for details.

which are too far/small to provide reliable and useful infor-

mation. This cropping policy allows to greatly reducing the

false positives, trading off this gain with a small loss on the

detector recall. An example of the considered ROI for one

of the challenge videos is depicted in Figure 4. Privileg-

ing precision over recall is particularly important since the

output of the tracker is later used to automatically label the

dataset.

After qualitatively evaluating the performance of various

state-of-the-art detectors [11, 3, 12], we employ as detector

the Single Shot MultiBox Detector (SSD) [6] architecture

since it gave us the best results on the challenge videos.

The SSD network is built upon a VGG-16 backbone and

is trained using the COCO dataset and then fine-tuned us-

ing only the vehicle class. We refer the reader to the original

paper [6] for details on the SSD architecture.

Detections are filtered in order to remove the ones in

which the vehicle is only partially present in the bound-

ing box, e.g. at the edge of the frame. We then use the

detection to initialize the same correlation tracker as [2].

Whenever a new vehicle is detected, the tracker is initial-

ized and then updated with new detections until the vehicle

leaves the region of interest. Each different vehicle track

has a different ID even if it appears among different videos,

as we assume to learn a non-linear transformation to cluster

vehicles tracks.

3.2. Learning the representation

As mentioned above, NVIDIA AI city challenge videos

do not come along with any annotation, making supervised

training infeasible. Thus, we apply the method shown in

[19] to the vehicle re-identification task to create an an-

notation in an unsupervised manner, along with exploiting

visual tracking to produce a (weakly) labelled training set

for our task. As result, for each video we identify positive

Figure 4. Example of considered ROI for location 4 of NVIDIA

AI city challenge. It can be appreciated how the farthest vehicles

are ignored, thus trading off the detector recall for an improved

precision. Detections which are ignored are the most difficult and

it would be very hard to track them successfully. Since in the

successive phase tracklets are used to label the challenge videos

we choose to privilege the precision w.r.t. the recall of the tracker.

Figure 5. Triplet network architecture. The network is composed

of three branches with shared weights, initialized from VGG-

16 [16] pre-trained parameters. See Section 3.2 for details.

examples from different detections belonging to the same

tracklet and other tracklets patches as negative examples.

More formally, for each detection of a particular vehicle xi

we define the set of positive and negative pairs as follows:

X+
i = {xj |t(xj) = t(xi)} (1)

X−

i = {xj |t(xj) 6= t(xi)} (2)

where t(xi) indicates the tracklet to which detection xi be-

longs to, i.e. the tracklet ID. We can now form a set of

triplets T as follows:

T = {(xi, x
+
i , x

−

i )|x
+ ∈ X+

i , x− ∈ X−

i } (3)

where xi are detections from the NVIDIA AI city challenge

videos and similar and different vehicles are sampled from

X+
i and X−

i sets respectively. The underlying assump-

tion is that the tracker is always correct: despite this is not
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the case, we empirically verify that the generated labelled

dataset is reasonable enough to be useful in practice.

In general, a common approach in re-identification is to

map any given example (possibly of variable size) to a vec-

tor of fixed low dimensionality. This dense representation

can be later used for the matching stage. Specifically, the

input bounding box bi ∈ R
w×h is transformed into a vec-

tor vi ∈ R
d, where w, h indicate the size of the detected

bounding box and d is the dimensionality of the representa-

tion space. Commonly d << w × h, which greatly speeds

up the successive matching phase.

In order to tell different detections of the same vehicle

apart, we need to represent the vehicle’s visual appearance

in a feature space in which similar vehicles lie closer than

different ones. To this end we leverage on the triplet net-

work architecture [4] to represent each detected vehicle with

the output vector of the network. This architecture is based

on three VGG-16 networks sharing the same weights and

is depicted in Figure 5. The very last layer of the network

is a last fully connected layer of dimension d: this is used

as feature vector. The triplet network can be trained for the

task of vehicle re-identification using the set automatically

labelled triplet T . We want the distance between negative

pairs to be greater than distance from positive pairs by a

margin. Formally we want to minimize the following hinge

loss:

di = ||f(xi)− f(x+
i )||

2
2 − ||f(xi)− f(x−

i )||
2
2

LT =
∑

(xi,x
+

i
,x

−

i
)∈T

max(0, di + γ) (4)

where γ ≥ 0 is a positive margin and f(xi) is the network

output for detection xi.

3.3. Matching strategy

To be able to match identities of vehicles which belong to

different tracklets, a single dense representation need to be

extracted from each tracklet. Also, since a tracklet can last

for several hundreds of frames, information is extremely re-

dundant (i.e. the visual appearance of the vehicle hardly

changes from one frame to the next). Thus, during the

matching phase we choose to represent each tracklet with

the feature vector of the vehicle in the middle of the tracklet

(see Figure 6). Furthermore, tracklets are grouped by the

location of the video (1 . . . 4), under the assumption that a

car does not appear more than once in each location.

In order to compute the matches, we iterate over all dif-

ferent vehicle IDs, each one represented by the feature vec-

tor of the middle frame of the tracklet. In order to compute

the compare two feature vectors f(xi) and f(xj) we use

euclidean distance:

dij = ||f(xi)− f(xj)||2 (5)

This distance can be used to compute the best match with

vehicles from different video locations, where lower dis-

tance clearly corresponds to a better match. Despite by de-

sign there is always a best match candidate for each vehicle,

matches are confirmed only if the distance is lower than a

definite threshold θ ≥ 0.

Also, following the indication of the NVIDIA AI city

challenge team, we keep only once ID correspondence for

each of the four locations. We then consider the quadruple

composed by

{IDmin(loc1), IDmin(loc2), IDmin(loc3), IDmin(loc4)}

as the proposed vehicle re-identified. Moreover, once a ve-

hicle ID is assigned to one quadruple, we remove the cor-

respondent ID to avoid it to be re-matched in future com-

parisons. Eventually, once all the IDs are processed, we

compute the average distance among the members of each

quadruple. This distance is then normalized to lie in range

[0, 1] as used as measure of re-identification confidence to

sort the matches. In this way we can keep only the top k

similar groups.

4. Experiments and Implementation details

The methodology is applied over all 15 videos of the

NVIDIA AI city challenge, a total of 15 hour approx. of

recording. Videos are captured at 30 frames per second

(fps) with a Canon EOS 550D camera at four different lo-

cations (I280 and Winchester, I280 and Wolfe, San Tomas

and Saratoga, Stevens Creek and Winchester) and feature a

resolution of 1920× 1080 pixels.

To reduce the computational burden, each vehicle’s de-

tection is resized to 80 × 80 pixels in RGB color space.

Overall, our dataset is composed by 2,198,829 vehicles be-

longing to 67,825 different tracklets.

The triplet network is trained using a batch size equal to

64 for a total of 10 epoch. We minimize the mean squared

error loss using a SGD optimizer with a learning rate of

0.01. We empirically choose the size of the feature vector

equal to 100 since it qualitatively gave the best results.

The limit bounds to the vehicle detection is initialized

with a value equal 100 px. Thus if the centroid of the ve-

hicle detection is inside of this region bound (top, bottom,

left and right) the detection is ignored. Eventually, to the

re-identification strategy, θ is set to 3,500 to distinguish be-

tween relevant and not-relevant vehicle.

5. Conclusions

In this work we present a pipeline for vehicle re-

identification across different real-world scenarios. In line

with recent researches, we devise a metric learning model

supervised on local constraints. In particular, we leverage

pairwise and triplet constraints for training a triplet network
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Figure 6. During the matching phase a single dense representation need to be extracted from each tracklet. Frames in each tracklet suffer

from a lot of information redundancy (i.e. the visual appearance of the vehicle hardly changes from one frame to the next). Thus we

represent each tracklet with the feature vector of the vehicle in the middle of the tracklet.

for the task of vehicle re-identification. The network trans-

forms the examples from the input dimension into a feature

space in which samples sharing the same identity are close

together, while keeping different identities distant. Further-

more, we demonstrate that the output of a tracker can be

exploited to produce an automatic labelling of NVIDIA AI

city challenge videos, used in turn to train the triplet net-

work in a weakly-supervised fashion. Eventually, we show

how these feature vectors can be efficiently compared and

matched to infer to re-identify the detected vehicles.
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[2] M. Danelljan, G. Häger, F. Khan, and M. Felsberg. Accu-

rate scale estimation for robust visual tracking. In British

Machine Vision Conference. BMVA Press, 2014.

[3] R. Girshick. Fast r-cnn. arXiv preprint arXiv:1504.08083,

2015.

[4] E. Hoffer and N. Ailon. Deep metric learning using triplet

network. In International Workshop on Similarity-Based

Pattern Recognition, pages 84–92. Springer, 2015.

[5] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang. Deep rela-

tive distance learning: Tell the difference between similar ve-

hicles. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2167–2175, 2016.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European conference on Computer Vision, pages 21–37.

Springer, 2016.

[7] X. Liu, W. Liu, H. Ma, and H. Fu. Large-scale vehicle re-

identification in urban surveillance videos. In IEEE Interna-

tional Conference on Multimedia and Expo (ICME), pages

1–6. IEEE, 2016.

[8] X. Liu, W. Liu, T. Mei, and H. Ma. Provid: Progressive

and multimodal vehicle reidentification for large-scale urban

surveillance. IEEE Transactions on Multimedia, 20(3):645–

658, 2018.

[9] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. Deepfash-

ion: Powering robust clothes recognition and retrieval with

rich annotations. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1096–

1104, 2016.

[10] D. G. Lowe. Object recognition from local scale-invariant

features. In Proceedings of the Seventh IEEE International

Conference on Computer Vision, volume 2, pages 1150–

1157. Ieee, 1999.

[11] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017.

[12] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015.

[13] G. Says. 8.4 billion connected things will be in use in 2017,

up 31 percent from 2016, gartner, february 7, 2017.

[14] W. Shimoda and K. Yanai. Learning food image similarity

for food image retrieval. In IEEE Third International Con-

ference on Multimedia Big Data (BigMM), pages 165–168.

IEEE, 2017.

[15] E. Simo-Serra and H. Ishikawa. Fashion style in 128 floats:

joint ranking and classification using weak data for feature

extraction. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 298–307. IEEE, 2016.

[16] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[17] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2015.

[18] J. Van De Weijer, C. Schmid, J. Verbeek, and D. Larlus.

Learning color names for real-world applications. IEEE

Transactions on Image Processing, 18(7):1512–1523, 2009.

170



[19] X. Wang and A. Gupta. Unsupervised learning of visual rep-

resentations using videos. arXiv preprint arXiv:1505.00687,

2015.

[20] L. Yang, P. Luo, C. Change Loy, and X. Tang. A large-scale

car dataset for fine-grained categorization and verification.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3973–3981, 2015.

[21] Y. Zhang, D. Liu, and Z.-J. Zha. Improving triplet-wise

training of convolutional neural network for vehicle re-

identification. In IEEE International Conference on Multi-

media and Expo (ICME), pages 1386–1391. IEEE, 2017.

171


