
 

 

 
Abstract 

 
Tracking of vehicles across multiple cameras with non-

overlapping views has been a challenging task for the 

intelligent transportation system (ITS). It is mainly because 

of high similarity among vehicle models, frequent 

occlusion, large variation in different viewing perspectives 

and low video resolution. In this work, we propose a fusion 

of visual and semantic features for both single-camera 

tracking (SCT) and inter-camera tracking (ICT). 

Specifically, a histogram-based adaptive appearance 

model is introduced to learn long-term history of visual 

features for each vehicle target. Besides, semantic features 

including trajectory smoothness, velocity change and 

temporal information are incorporated into a bottom-up 

clustering strategy for data association in each single 

camera view. Across different camera views, we also 

exploit other information, such as deep learning features, 

detected license plate features and detected car types, for 

vehicle re-identification. Additionally, evolutionary 

optimization is applied to camera calibration for reliable 

3D speed estimation. Our algorithm achieves the top 

performance in both 3D speed estimation and vehicle re-

identification at the NVIDIA AI City Challenge 2018. 

 

1. Introduction 

Among the studies in the Intelligent Transportation 

System (ITS), video analytics with data captured by 
multiple cameras have been of high significance for many 
applications, e.g., the estimation of traffic flow 
characteristics, anomaly detection, multi-camera tracking, 
etc. However, different from the majority of works in 
Multiple Object Tracking (MOT) that focus on human 
objects, tracking of vehicles in urban environments is much 
more challenging due to several reasons. First, because of 
the limited number of car models, the appearance similarity 
among vehicles is generally higher than humans. Second, 
in a busy flow of traffic especially at traffic intersections, 
many vehicle objects are occluded, which will cause severe 
identity switches. Last but not least, the viewpoints of the 
same car in two different cameras can vary largely.  

In Single-Camera Tracking (SCT), the problem of 
vehicle tracking for 3D real world speed estimation (in 
terms of mi/h, not pix/sec) remains challenging. Some 
propose to utilize traditional approaches for MOT such as 
Bayesian inference methods [1]. Automatically generated 
3D vehicle models are adopted in [2, 3] to address the 
problem of occlusion. But for long videos with busy traffic 
flow, a more efficient and reliable descriptor of appearance 
features is critically needed. Also, the semantic features for 
data association in vehicle tracking, which has been proven 
effective in many works of human tracking [4, 5], is of little 
attention. Finally, the accurate backprojection of vehicle 
positions into 3D world space is another critical issue to be 
addressed.   

Inter-Camera Tracking (ICT) of vehicles, i.e., vehicle re-
identification, can be considered as an instance-level object 
search task, which is different from vehicle detection, 
tracking, and categorization problems. Many works [6, 7] 
focus on the extraction of reliable appearance features, 
especially attributes learned by Deep Convolutional Neural 

Networks (DCNNs). Additionally, license plate recognition 
[8] and spatio-temporal optimization [6] are commonly 
used to resolve confusion between vehicles, as there are 
large number of similar cars in urban surveillance. But all 
the mentioned approaches can only perform well in fine-
grained vehicle categorization and verification, which may 
not be suitable for vehicles captured in low resolution. 
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Fig. 1.  Object detection, SCT with 3D speed estimation and multi-
camera tracking. The detected vehicles and their car types are 
shown on top left. The trajectories of objects are shown on top 

right with the estimated speed in mi/h plotted above each 
bounding box. At the bottom, a pair of identified vehicles in two
camera views are shown in red bounding boxes.  
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In this paper, we propose an innovative framework for 
both SCT and ICT. A fusion of visual and semantic features 
is exploited for SCT, including a histogram-based adaptive 
appearance model designed to learn long-term appearance 
change. The computed loss function is applied to a bottom-
up clustering scheme for the association of tracklets. 
Similarly, we also employ a fusion of various features for 
vehicle re-identification across cameras. Finally, an 
evolutionary algorithm is introduced to optimize camera 
parameters for 2D-to-3D backprojection, resulting in 
reliable 3D speed estimation of tracked vehicles in SCT.  

The rest of this paper is organized as follows. The related 
works of our approach are reviewed in more details in 
Section 2. The system overview and description of each 
algorithmic component are covered in Section 3. In Section 
4, we introduce the evaluation of our method on the 
NVIDIA AI City Dataset [9]. Finally, the conclusion is 
drawn in Section 5.  

2. Related works 

We follow the tracking-by-detection paradigm for 
vehicle tracking in each single camera and across multiple 
cameras. Some related methods are reviewed as follows.  

2.1. Single-camera tracking (SCT) 

MOT within a single camera has been a challenging field 
mainly due to noise in object detection, occlusion and 
similar appearance among nearby objects. Most methods 
focus on formulating MOT as a data association problem, 
where many approaches are developed using semantic 
features of human objects [4, 5], but none is specifically 
designed for vehicle tracking. Effective modeling of object 
appearance is also key to the robustness of MOT. To 
overcome partial occlusion, Chu et al. [10, 11] propose to 
build multiple spatially weighted kernel histograms with 
binding constraints to model object appearance. However, 
for vehicle objects in traffic scenes, the occluded parts are 
usually not regular due to fast change of viewpoint along 
car movement. Therefore, Lee et al. [3] make use of 3D 
deformable models of vehicles to define multiple kernels in 
3D space. Tang et al. [12] extend their work and combine 
kernel-based MOT with camera self-calibration for 
automatic 2D-to-3D backprojection [13], which is selected 
as the winning method in NVIDIA AI City Challenge 2017. 
More recently, Sochor et al. [2] introduce a simpler vehicle 

model using 3D bounding box for fine-grained recognition. 
The 3D modeling of vehicles can work fine for light traffic 
flow, where the shape of each car can be well segmented. 
However, the performance is degraded when the contours 
of vehicles are attached to each other. In [14], a pixel-based 
adaptive appearance model is proposed for multiple human 
tracking, in which a relatively long-term history of 
appearance change is explicitly encoded in a normalized 
matrix of pixel models. However, pixel-based appearance 
model can fail easily for vehicle re-identification, as the 
variation of viewpoints in two different cameras can 
contrast significantly.  

2.2. Inter-camera tracking (ICT) 

  Vehicle re-identification is a frontier area with limited 
research in recent years. Yang et al. [7] propose to apply 
DCNNs for fine-grained vehicle categorization and model 
verification. Recently, Liu et al. [6] explore fusion of 
appearance features, such as texture, color and semantic 
attributes learned by DCNNs, where low-level and high-
level semantic features are integrated for vehicle search. 
Nevertheless, all these appearance features are extracted 
from one or few instances of a vehicle, which can be 
affected by the poor quality in some specific frames. 
Moreover, these appearance-based methods can hardly 
distinguish among vehicles of the same model. In [6, 8], 
video-based license plate recognition and comparison are 
explored for vehicle re-identification. But they may not 
work properly when the traffic video resolution is low. 

3. Methodology 

The overview flow diagram of our proposed framework 
for SCT and ICT in a camera array is presented in Fig. 2. In 
each single camera view, we first employ evolutionary 
algorithm for camera calibration. For object detection, the 
state-of-the-art YOLOv2 detector [15] is adopted, which is 
trained on thousands of hand-labeled frames. Taking 
advantage of the calibrated camera, which allows the 
detected objects to be backprojected to 3D space, we can 
perform 3D SCT based on a bottom-up clustering strategy 
with a fusion of features in loss computation, among which 
the histogram-based appearance models are learned and 
used to resolve confusion between nearby targets. 
Meanwhile, other visual and semantic information, i.e., 
DCNN features, license plates, temporal information and 

Fig. 2.  Flow diagram of the proposed multi-camera tracking framework, where each color represents the processing flow of a camera.  
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detected car types, are also extracted for vehicle re-
identification in the ICT task. Each algorithmic component 
will be elaborated in this section. 

3.1. Evolutionary optimization for camera calibration 

From each camera view, we first manually label two 
pairs of vanishing lines, i.e., parallel line pairs on the 3D 
ground plane that are orthogonal with each other, from 
which we can derive the two vanishing points on the ground 
plane, noted  and . It has been proven [16] that all the 
camera parameters in a ×  projection matrix  can be 
computed from  and  with some constraints on 
intrinsic camera parameters. To relax these constraints for 
more accurate estimation of camera parameters, we 
formulate an optimization problem to minimize the 
reprojection error. A set of  line segments on the ground 
plane, each defined by two endpoints, noted { }, are 
manually selected, whose ground-truth 3D lengths are 
measured in the Google Maps [17]. Using the calculated 
camera parameters, the 2D endpoints of the line segments, 
noted { }  and { } , can be backprojected to 3D. Their 
Euclidean distances represent the estimated 3D lengths of 
the line segments. The absolute differences between 
estimations and ground truths are summed up to describe 
the reprojection error. Thus, the objective of our 
optimization problem is defined as follows.  min∑ ‖ − ‖ − − , s. t. ∈ Rng , = ∙ , = ∙ ,    (1) 

where  and  denote the estimated endpoints of the 
selected line segments that are backprojected to the 3D 

ground plane. Additionally, Rng  is the initial range for 
each camera parameter to be optimized.  

The non-linear optimization problem in (1) can be 
iteratively solved by the Estimation of Distribution 

Algorithm (EDA) [18], which is a classic evolutionary 
optimization algorithm, to optimize the 11 camera 
parameters in . This iterative process stops until the mean 
of the estimated probability density function (pdf) is smaller 
than a specified threshold, . In Fig. 3, the visualization of 
our performance on two scenes of the NVIDIA AI City 

Dataset [9] is shown. 

3.2. Object detection based on YOLOv2 

The provided training dataset, UA-DETRAC [20], by the 
NVIDIA AI City Challenge 2018 is not adopted by us due to 
its highly unbalanced data distribution, which gives little 
information about vehicle categorization. Therefore, we 
select 4,500 frames uniformly sampled from [9], where 
each of them contains 5 to 40 objects. The training data are 
manually labeled in 8 categories, including sedan, 
hatchback, bus, pickup, minibus, van, truck and 
motorcycle. The state-of-the-art object detector, YOLOv2 
[15], is chosen by us for training and testing. The pretrained 
weights are used to initialize the network. An example of 
our qualitative performance can be viewed in Fig. 1. 

After the 2D bounding box of each observation is derived 
from object detection, the optimized  from evolutionary 
camera calibration is used to backproject its foot point, i.e., 
the center of the bottom, to 3D space for speed estimation.  

3.3. Loss function for data association 

A bottom-up clustering strategy based on a fusion of 
visual and semantic features is proposed for SCT. First, the 
detected objects are grouped into tracklets based on spatio-
temporal consistency [21]. Then we employ a clustering 
method to associate tracklets into longer trajectories. The 
clustering operations are determined by minimizing a loss 
function measuring the loss in the assignment of tracklets,  = ∑ , = , + , + , + , ,   (2) 
where  is the number of vehicle identities in a camera,  
is the clustering loss for the -th trajectory, ,  is the 
trajectory smoothness loss, ,  is the velocity change loss, ,  is the time interval loss between adjacent tracklets, and ,  is the appearance change loss. We use  to denote the 
regularization parameters of loss functions, which are 
empirically set as 0.2, 8, 25 and 0.5 respectively.  

The smoothness of vehicle trajectories can be 
represented by Gaussian regression. We denote the x and y 
coordinates of observed tracklets in 2D as  and  
respectively, which can be expressed as = + , = + ,          (3) 
where  and  are from the real trajectories and ~ ,  and ~ ,  are the Gaussian noise 
from detection results. Given a new set of frame indices ∗, 
we want to predict the trajectories ∗ and  ∗. 

We denote the kernel function as , ′ . Then the joint 
density of the observed data and the latent noise-free 
function on the test time indices are given by 

∗ ~ , ∗∗ ∗∗ , 

∗ ~ , ∗∗ ∗∗ ,      (4) 

(a)                                            (b) 
Fig. 3.  Visualization of the performance of the proposed
evolutionary camera calibration. Projected (uniformly distributed)
virtual grids on the ground plane are plotted as red dots. The green 

solid lines denote the manually selected line segments used to
measure the reprojection error on the ground plane. (a) A scene at 
Loc4 in [9].  (b) A scene at Loc1 in [9]. 
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where = , + , = , +	 , ∗ =, ∗  and ∗∗ = ∗, ∗ . Then the posterior predictive 
densities can be defined as ∗| ∗, , = ∗| , , ∗| ∗, , = ∗| , ,      (5) 
where = ∗ , = ∗∗ − ∗ ∗, = ∗ , = ∗∗ − ∗ ∗.      (6) 
Hence, we can use  and  as the prediction results 
given frame indices ∗. 
• Smoothness loss 

Smoothness loss is defined to measure the smoothness of 
tracklets which belong to the same trajectory. The tracklets 
in each trajectory is sorted by the entering time stamps. For 
each pair of adjacent tracklets in the -th trajectory, we 
calculate their distance in the connected region, i.e., 

               , = ∑ ∗,, , /, , +  

∑ ∗,, , /, , ,    (7) 

where = [ , ]  is the detected location of the 

-th tracklet at time , ∗, = [ , 	 ]  is the 
predicted location of the -th tracklet at time  using 
Gaussian regression, ,  and ,  respectively 
denote the width and height of the detected bounding box, ,  and , 	respectively denote the starting and ending 
frame indices of the -th tracklet, and =  is the number 
of neighboring points around the endpoints of adjacent 
tracklets for comparison. Examples are shown in Fig. 4.  

The smoothness loss of the -th trajectory is defined as  ,	 = ∑ , ,       (8) 

where  is the number of tracklets in the -th trajectory. 

• Velocity change loss 

Since the velocity of vehicles cannot change abruptly, we 
use acceleration to measure the velocity change between 
two adjacent tracklets. If high acceleration is detected in the 
connected region, the two tracklets are less likely to hold 
the same identity. We calculate the maximum acceleration 
around each endpoint of a tracklet as follows, 

, = max, ,…, , ∗, ∗, ∗,, , / , 

, = max, ,…, , ∗, ∗, ∗,, , / ,  (9) 

Then the velocity change loss is defined as , = ∑ , + , .       (10) 

• Time interval loss 

 If a pair of adjacent tracklets have long time interval in 
between, they are less likely to share the same trajectory. 
The time interval loss is defined based on the difference 
between two endpoint time stamps, 	 ,  and , , of two 
adjacent tracklets accordingly, , = max , − , / .    (11) 

• Appearance change loss  

Reliable description of object appearance is key to the 
reduction of identity switches, especially for nearby 
vehicles with similar appearance. We propose a histogram-
based adaptive appearance model for the computation of 
appearance change loss, which is elaborated in Section 3.4.  

3.4. Histogram-based adaptive appearance modeling 

The appearance model of the -th tracklet, noted , 
contains a set of  observed concatenated histogram 
vectors. = , , , , … , , .        (12) 
In our experiments, we use a combination of RGB color 
histogram, HSV color histogram, Lab color histogram, 
Linear Binary Pattern (LBP) histogram and Histogram of 

Oriented Gradients (HOG) histogram for feature 
description. As there are 11 channels with 8 bins each, we 
have each copy of  , ∈ ℝ . For each tracklet, we keep 

 copies of continuously updated { , } to “memorize” 
variations of the appearance. The value in each bin is 
normalized between 0 and 1. An example of feature maps 
and the corresponding histograms is shown in Fig. 5.   

To build and update this appearance model, each cropped 
object region within the detected bounding box is used to 
build histograms. When the observation is occluded by 
other(s), the occluded area is removed from the object 
region before our building the concatenated histograms of 
visual features. The pixel values for histogram construction 
are spatially weighted by Gaussian (kernel) distribution, 

 
Fig. 4.  Examples of smoothness loss between adjacent tracklets.
Top figures present two tracklets that belong to the same
trajectory. Bottom figures show two tracklets that do not belong to 
the same trajectory. Black dots show the detected locations at time 
t, i.e.,  and . Red curves represent trajectories from 
regression, i.e., ∗,  and ∗, . Green dots show 
neighboring points on the red curves around the endpoints of the 
tracklets at ,  and , . 
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= exp − 	‖ ‖ 	 ,                (13) 

where  denotes a pixel location in the visible object 
region,  denotes the center of mass of the visible area, and 

 and ℎ  are the width and height of the object region 
respectively. The spatial weight  is maximum around 

 where the object usually occupies, which should be 
emphasized in our feature description. As  decreases 
when  gets further from , we can suppress the 
background area. 

Since the object instances that are closer to the camera 
should enjoy more reliable appearance description, the 
learning rate, noted , of  is inversely proportional 
to the depths of vehicles’ 3D foot points, defined as  = , ,…, ,

,               (14) 

where  denotes the depth. For each tracklet,  
concatenated histogram vectors extracted from instances 
with the smallest depths are inserted into . Any other 
encountered histogram vector can be randomly swapped 
with an existing element ,  with probability .  

 Therefore, the appearance change loss in (2) can be 
defined as  

, = ∑ ∑ # , , 	
,        (15) 

where = .  is a threshold for histogram distance. The 
loss in (15) is equivalent to the ratio of histogram vectors 
from two appearance models that are mismatched. The 
Bhattacharyya distance is adopted for the measurement of 
histogram distance.  
 After a group of tracklets are associated in SCT, their 
appearance models are merged together based on depth 
information following similar update scheme in (14). The 
merged appearance model, noted , is used to describe the 

appearance change along the entire vehicle trajectory, 
which will be employed in ICT.  

3.5. Optimization by bottom-up clustering 

For the -th tracklet, noted , we compute the changes of 
loss, noted ∆ , for five separate operations (assign, merge, 
split, switch and break) and select the operation with the 
minimum loss-change value, i.e., ∆ ∗ = arg	min∆ ∆ , , ∆ , , ∆ , , ∆ , , ∆ , 	 ,  (16) 

where ∆ , , ∆ , , ∆ , , ∆ ,  and ∆ ,  respectively 
stand for the changes of loss for assign, merge, split, switch 
and break operations. If ∆ ∗ is greater than 0, which means 
the loss increases after performing the selected operation, 
no change is made for this tracklet. All tracklets are 
iteratively clustered into trajectories until convergence. 
Since the loss decreases or remains unchanged after each 
selected operation, we are guaranteed to reach convergence. 

• Assign operation 

The trajectory set of , noted , is a set of tracklets 
including , which belongs to a trajectory. We search 
through all the trajectory sets and assign  to the trajectory 
that generates the minimum loss. To be specific, the change 
of loss after assign operation is given by ∆ , = min \ + ∪ − + . (17) 

The first term in (17) is the updated loss after assign 
operation while the second term is the original loss. 

• Merge operation 

For each tracklet, we merge its trajectory set  with 
another trajectory set if lower loss can be obtained. 
Similarly, the change of loss is calculated as ∆ , = min ∪ − + . (18) 

• Split operation 

Split operation is used to split a tracklet from the current 
trajectory set, which becomes an independent trajectory set. 
The change of loss is defined as ∆ , = + \ − .   (19) 

• Switch operation 

For a trajectory set , we denote all the tracklets after 
 as  and all others as . In the switch 

operation,  and ,  are switched for the calculation 
of the change of loss, ∆ = min ∪ , + ∪ , − + .       (20) 

• Break operation 

Fig. 5.  An example of the construction of an adaptive appearance
model. The first row respectively presents the RGB, HSV, Lab,
LBP and gradient feature maps for an object instance in a tracklet,
which are used to build feature histograms. The second row shows 
the original RGB color histograms and the third row demonstrates 
the Gaussian spatially weighted histograms, where the
contribution of background area is suppressed.  
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We split  into  and  for the 
computation of the change of loss in break operation, ∆ = + − . (21) 

3.6. Feature fusion for ICT 

Like SCT, another fusion of visual and semantic features 
is extracted for ICT. Besides the histogram-based adaptive 
appearance models for the computation of loss function in 
SCT, we also exploit DCNN features, detected license 
plates, detected car types and traveling time information in 
our feature fusion. The loss function for ICT is defined as  = ∑ , = , × , × , × , × , ,    (22) 
where  is the number of vehicles appeared in all 
cameras, 	  is the loss for the -th vehicle, ,  is the 
appearance change loss, ,  is the matching loss of 
DCNN features, ,  is the license plate comparison loss, ,  is the mis-classified car type loss, and ,  is the 
traveling time loss.  
 In two camera views for ICT, for each probe vehicle 
trajectory, a trajectory from the gallery with the lowest loss 
is selected for vehicle re-identification. If the selected loss 
is considered too high, i.e., over a threshold , the vehicle 
is assigned a new identity. 

• Appearance change loss  

The computation of appearance change loss in ICT is 
similar to SCT, except the appearance model merged from 
all tracklets in a trajectory set is used to describe each 
vehicle identity from a camera. The definition is as follows, 

, = ∑ ∑ # , , 	
,       (23) 

where  and  are the indices of probe and gallery for  
respectively.  

• Matching loss of DCNN features  

For the extraction of DCNN features, we make use of the 
GoogLeNet [22] model that is fine-tuned on the CompCars 
[7] dataset. From each trajectory within a camera, we select 
3 representative views of object instances. A 1024-dim 

feature vector is extracted from each object instance, noted , . Thus, the matching loss of DCNN features is given by 
Bhattacharyya distance as  

, = ∑ ∑ , ,
.       (24) 

• License plate comparison loss  

The license plates are essential to large-scale vehicle re-
identification. However, the resolution of the NVIDIA AI 

City Dataset [9] is not sufficient to support automatic 
license plate recognition, which brings about a major 
challenge in ICT. Hence, we propose a license plate 
comparison scheme for low-resolution images. The process 
of license plate comparison is demonstrated in Fig. 6. 

First, we train another DCNN model [15] to detect the 
license plate region in each cropped vehicle image. For each 
trajectory set, 3 representative views of object instances are 
selected for license plate recognition. The license plate 
detector is run on cropped vehicle images and the detected 
region with the highest score is chosen for comparison. 
Then, all the characters are segmented based on a vertical 
histogram that finds gaps between the plate characters. An 
Optical Character Recognition (OCR) phase analyzes each 
character independently, which generates the most possible 
characters and the confidence. If the confidence scores of 
two license plates are both above a threshold = .8, the 
recognized characters are considered correct. The license 
plate comparison loss is thus calculated as the portion of 
characters that are mismatched,  

, = ∑ ⋀,
, , > 	&	 > , (24) 

where  denotes the string of characters of a license plate 
and  is the corresponding confidence of recognition. 
 Otherwise, if either of the license plates fails to be 
recognized properly, which is common for low-quality 
images, the cropped images of license plate regions are 
normalized and segmented into binary images by Otsu’s 
method for comparison. Because of potential perspective 
difference between two license plates, we perform =

 random perspective transforms on the gallery image. 
Each transformed image is compared with the probe image 

 
Fig. 6.  Demonstration of license plate comparison in low resolution. The confidence score in OCR for the license plate above is 
considered too low. The segmented binary license plate images are used for calculating the comparison loss.  
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by bitwise OR operation. In this scenario, the license plate 
comparison loss is proportional to the 1’s in the combined 
binary image, 

, = min, ,…, ∑ ∨ , ≤ 	|	 ≤ , (25) 

where  is the binary image of a license plate and  
represents the normalized size of license plate images. In 
each of the  iterations,  gives a randomly perspective 
transform of .  

• Mis-classified car type loss  

From the output of our DCNN-based object detector [15], 
the vehicle types in 8 categories can be derived. Along a 
trajectory set in a video, the majority vote of car type, noted 

, can be used to inform the vehicle identity. Hence, the 
mis-classified car type loss can be computed as follows 

, = ,																			 =. ,																 ≠ .         (26) 

• Traveling time loss  

From SCT in 3D space, we can compute the driving 
speed of each vehicle. From the given driving distance 
between two cameras, the expected traveling time can thus 
be estimated. The traveling time loss is designed as a 
normal distribution around the mean of the expectation, 

, = , − , | , , ,         (27) 

in which ∙  is the pdf of normal distribution, ,  

indicates the traveling distance between two cameras and 
 is the estimated 3D speed. ,  is applied only when 

there is time overlap between two video sequences.  

4. Experimental results 

Our proposed method is submitted for evaluation on the 
NVIDIA AI City Challenge 2018, in which we participate in 
both tracks of 3D speed estimation and multi-camera 
tracking. Our team achieves the rank #1 in each of the two 
tracks. The visualization of our qualitative performance in 
each track is made available at the following link 
http://allison.ee.washington.edu/thomas/aicity18/. Detailed 
analyses on our performance are as follows.  

4.1. 3D speed estimation 

The dataset for traffic flow analysis consists of 27 videos, 
each 1 minute in length, recorded at 30 fps and 1080p 
resolution. Our task is to estimate the speed of all vehicles 
on the main thruways in all frames of all given videos. The 
ground-truth speed data have been collected via in-vehicle 
tracking for a subset of cars in each video, which we call 
ground-truth vehicles. The evaluation is based on the ability 
to localize these vehicles and predict their speed. The 
performance evaluation score for this track is computed as  = × − ,        (28) 
where  is the detection rate and  is the 
normalized Root Mean Square Error (RMSE) of speed. The 

 score ranges between 0 and 1, and higher  scores are 
better.  is computed as the ratio of detected ground-truth 
vehicles and the total number of ground-truth vehicles. A 
vehicle is said to be detected if it was localized in at least 
30% of frames it appeared in. A vehicle is localized if at 
least one predicted bounding box exists with Intersection-

Over-Union (IOU) score of 0.5 or higher relative to the 
annotated bounding box for the vehicle.  is the 
normalized RMSE score across all teams, obtained via min-
max normalization given all team submissions.   

There are 13 submissions in total for this track. The 
quantitative comparison of  scores across all teams is 
presented in Table 1. Our method achieves perfect  
score, as the association of tracklets based on clustering 
operations can maximize the utility of detected bounding 
boxes. We also generate the lowest RMSE (4.0963 mi/h) in 
speed estimation, as the proposed camera calibration 
scheme can minimize reprojection error on the ground 
plane, which leads to robust speed estimation after SCT.  

4.2. Multi-camera tracking 

The dataset for multi-camera vehicle detection and re-
identification contains 15 videos, each around 0.5-1.5 hours 
long, recorded at 30 fps and 1080p resolution. The task for 
each team is to identify all vehicles that pass through each 
of the 4 recorded locations at least once in the given set of 
videos. This track is evaluated based on tracking accuracy 
and localization sensitivity for a set of ground-truth vehicles 
that were driven through all camera locations. Specifically, 
the evaluation score is computed as 

Table 1. Quantitative comparison 
of speed estimation on the 

NVIDIA AI City Dataset [9] 

Rank Team S1 Score 

1 Ours 1.0000 

2 team79 0.9162 

3 team78 0.8892 

4 team24 0.8813 

5 team12 0.8331 

6 team4 0.7924 

7 team65 0.7654 

8 team6 0.7174 

9 team40 0.6564 

10 team26 0.6547 

11 team18 0.6226 

12 team45 0.5953 

13 team39 0.0000 

Table 2. Quantitative comparison 
of multi-camera tracking on the 

NVIDIA AI City Dataset [9] 

Rank Team S3 Score 

1 Ours 0.7106 

2 team37 0.2861 

3 team79 0.0785 

4 team18 0.0074 

5 team28 0.0026 

6 team41 0.0024 

7 team53 0.0002 

8 team6 0.0001 

9 team10 0.0000 

10 team31 0.0000 

* Bold entries indicate the rank 
#1 in each comparison. 
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= . × + ,         (29) 
where  is the trajectory detection rate and  is the 
localization precision. The  score ranges between 0 and 
1, and higher  scores are better.  is the ratio of 
correctly identified ground-truth vehicle trajectories and the 
total number of ground-truth vehicle trajectories.  is the 
ratio of correctly localized bounding boxes and the total 
number of predicted boxes across all videos. 
 There are 10 teams submitted to this track, whose 
performance is summarized in Table 2. As can be seen, 
vehicle re-identification under low resolution is such a 
challenging task that most teams cannot identify even a 
single vehicle across all 4 locations, which leads to zero 

 and heavily penalized . However, with the 
effective fusion of visual and semantic features in ICT, our 
proposed method can successfully identify 3 out of 7 
ground-truth vehicles with a  of 0.9925.  

5. Conclusion 

In this paper, we propose a multi-camera tracking system 
based on fusion of visual and semantic features. In SCT, the 
loss function consists of motion, temporal and appearance 
attributes. Especially, a histogram-based adaptive 
appearance model is designed to encode long-term 
appearance change for enhanced robustness. The change of 
loss is incorporated with a bottom-up clustering strategy for 
the association of tracklets. Furthermore, the proposed 
appearance model together with DCNN features, license 
plates, detected car types and traveling time information are 
combined for the computation of cost function in ICT. 
Finally, robust 2D-to-3D backprojection is achieved with 
EDA optimization applied to camera calibration. Our 
superior performance in both speed estimation and vehicle 
re-identification is presented in the experimental results on 
the NVIDIA AI City Dataset [9].  
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