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Abstract

In this paper we present a novel framework for geolo-

calizing Unmanned Aerial Vehicles (UAVs) using only their

onboard camera. The framework exploits the abundance

of satellite imagery, along with established computer vision

and deep learning methods, to locate the UAV in a satel-

lite imagery map. It utilizes the contextual information ex-

tracted from the scene to attain increased geolocalization

accuracy and enable navigation without the use of a Global

Positioning System (GPS), which is advantageous in GPS-

denied environments and provides additional enhancement

to existing GPS-based systems. The framework inputs two

images at a time, one captured using a UAV-mounted down-

looking camera, and the other synthetically generated from

the satellite map based on the UAV location within the map.

Local features are extracted and used to register both im-

ages, a process that is performed recurrently to relate UAV

motion to its actual map position, hence performing prelim-

inary localization. A semantic shape matching algorithm

is subsequently applied to extract and match meaningful

shape information from both images, and use this infor-

mation to improve localization accuracy. The framework

is evaluated on two different datasets representing differ-

ent geographical regions. Obtained results demonstrate the

viability of proposed method and that the utilization of vi-

sual information can offer a promising approach for uncon-

strained UAV navigation and enable the aerial platform to

be self-aware of its surroundings thus opening up new ap-

plication domains or enhancing existing ones.

1. Introduction

The proliferation of Unmanned Aerial Vehicles (UAVs),

also known as aerial drones, has been shifting from mili-

tary applications to utilization in domestic markets. This

conception came through recent developments and acces-

sibility to robust embedded hardware platforms, miniatur-

ized electronics and sensor modules including accelerom-

eters, barometers, and gyroscopes, as well as introduction

of high-performance processors with low power consump-

tion and efficient batteries. Currently, UAV use is ubiqui-

tous with applications in photography, aerial mapping, agri-

culture, surveillance, search and rescue, parcel delivery, to

name a few. Most of these aerial platforms comprise an on-

board camera and use GPS and route planning software to

plan and manage navigation.

Figure 1: A figure showing the registration of two images

from different domains. Left: an image from a UAV, Right:

a satellite image.

Presently, the abundance Earth Observation (EO) high-

resolution imagery acquired using aerial or satellite sources

and covering most of the globe has facilitated the emergence

of new applications. In autonomous vision-only UAV navi-

gation, UAV camera feed is compared with aerial/satellite

imagery to consequently infer drone location. However,

processing these images is computationally demanding es-

pecially if data labeling is needed to extract actionable in-

formation. Furthermore, the ability to correlate two images

of the same location but acquired from different sources

is challenging but central for accurate navigation. In this

typical image registration problem, shown in Figure 1, the

challenges that arise when dealing with EO-UAV image
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registration can be attributed to: (1) different camera po-

sition, orientation and illumination conditions during the

image acquisition phase resulting in different object ap-

pearance as well as occlusion/exposure problems that con-

fuse traditional feature-based image registration using local

features such as SIFT [34]/SURF [6]/etc., (2) dissimilarity

in camera intrinsic parameters introduces photogrammetric

differences between the image pair, and (3) difference in

image acquisition history may result in mismatch between

the image pair due to objects appearing/disappearing nence

making registration more difficult. Consequently, there has

been a myriad of research work related to geolocalization

[36, 61, 60, 38, 58], navigation [51, 10, 62], and change

detection [29, 16, 63].

Conventionally, UAV navigation has relied on its on-

board sensors, such as inertial sensors and gyroscopes,

and more recently on Global Navigation Satellite Systems

(GNSSs), such as GPS and GLONASS, to acquire position

information. However, by the time it reaches earth, and due

to the large distance traveled, the satellite transmitted L1

signal power is limited -160 dBW when measured by re-

ceiver units, which is below the ambient background noise

of many places on earth especially in urban locations in and

around certain areas of large cities. In addition to back-

ground noise, L1 signals are also vulnerable to radio in-

terference, GPS spoofing [57, 27, 64], and loss of Line of

Sight (LOS). GPS-denied environments hence refer to areas

where GPS signal is not available, jammed or too weak to

be used reliably. GPS denial necessitates finding alternative

reliable approaches for UAV navigation [28, 9, 4, 35, 39].

This paper presents a vision-based framework that geolo-

calizes a UAV using only its on-board camera to allow the

aerial platform to navigate autonomously without relying on

GPS signal availability. The proposed framework thus en-

ables navigation in GPS-denied areas and can also provide

enhancements to existing GPS modules. In addition, on-

board visual information processing provides the UAV with

real-time contextual information of its surroundings which

could be beneficial in new application domains and endeav-

ors. The main contribution of this work can be summarized

as a novel framework combining traditional computer vi-

sion techniques with deep learning networks for performing

satellite (reference) image and UAV (target) image registra-

tion for enhanced UAV localization. To this end, a prelimi-

nary UAV localization phase is applied followed by a novel

Semantic Shape Matching (SSM) phase for UAV localiza-

tion. The former is based on local hand-crafted features, i.e.

SIFT (Section 3.2) for system calibration and ORB [49]

for path calculation (Section 3.3). The latter phase applies

semantic segmentation (Section 3.4) to both reference and

target images to extract and match meaningful shapes, such

as buildings and roads, understand the context, and subse-

quently use this information to significantly improve UAV

localization accuracy (Section 3.5). It should be noted that

the proposed framework relies on online mapping services

such as Google Satellite, Bing Maps and Open Street Map

(OSM) for reference images. In the Experiments and Re-

sults section (Section 4), the proposed work is tested on two

datasets: an existing dataset and an extended one where it

has been shown that, in both cases, the framework success-

fully geolocalizes two different UAV video feeds in differ-

ent geographical locations.

2. Related Work

2.1. VisionBased UAV Geolocalization

Using traditional computer vision techniques, image fea-

tures are computed and used to compare reference and tar-

get images based on some similarity measures as presented

by [13, 54]. [10, 62] use template matching with cross

correlation where the aerial image is used as a template to

match against another georeferenced image. These methods

work only on images that are nearly identical and dont cater

for significant image differences making them unusable in

practical localization applications especially in dense urban

areas or long journeys.

In Simultaneous Localization and Mapping

(SLAM) [12], UAV navigation is achieved by acquir-

ing and correlating distinct features of indoor or outdoor

regions to map the UAV to a specific location. This method

is more suitable to constrained and pre-mapped environ-

ments and has been successful mainly with micro-UAVs

and quadcopters. Other work uses local feature detectors,

such as SIFT [34] or SURF [6] to produce features that are

subsequently matched, providing an affine transformation

between reference and target images as investigated in

[26, 52, 53]. Pose estimation using deep learning is used

in [43], however unlike our work, their algorithm requires

training with data acquired from locations similar to the

area of navigation.

Significant work has also been proposed on using mea-

surements from the UAV Inertial Measurement Unit (IMU)

and on-board camera to acquire hybrid features and store

them in a feature database to be used later for localiza-

tion [36, 9, 46]. During flight, the feature database is

queried and extracted features are used to compute UAV lo-

cation using feature matching. Viswanathan et al. [60] use

street-level imagery for localization. In this case, panoramic

ground images are warped to top-down view images which

are then compared to the UAV image using local feature

matching. [31, 1] employ Convolutional Neural Networks

(CNNs) to extract features for geolocalization. In Sebastien

et al. [29], the comparison of multiple different image

sources is achieved by applying a Siamese Network [8].

To this end, a Siamese Network is trained with two types

of images, satellite and perspective-transformed panoramic
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Figure 2: The major components of the proposed UAV geolocalization framework.

images. Subsequently, features from both images are ex-

tracted and the distance between the features of each image

calculated to find out if they are similar. [32] finds a se-

quence of UAV images inside a reference map to create im-

age mosaics. Inspired by this work, we employ this method

to find transformations to provide us with the geolocation

of the UAV and its path.

It is worth mentioning that the nature of the problem we

are trying to solve limits the the application of recent CNN-

based approaches for pose estimation [24, 44] and image-to-

image regressors [50, 59]. For instance, there aren’t many

publicly-available aerial videos, existing ones cover limited

geographical locations, and the aerial platforms usually fly

at high altitudes making extraction of meaningful depth in-

formation challenging. The same applies for retrieval-based

and structure from motion methods [17, 7] which require

large features database and efficient retrieval methods. Our

method can be deployed to new locations by training the

system using available satellite imagery only and is not

based solely on image retrieval or search methods.

2.2. Segmentation for Earth Observation Imagery

Earth Observation (EO) applications include weather

forecast, disaster risk management, water management,

coastal erosion assessment, land cover classification, mar-

itime monitoring, natural resource management, agricul-

tural monitoring, among others. Recently, deep learning has

been applied for EO image registration and geolocalization.

Semantic segmentation of EO imagery using fully convo-

lutional deep networks has been used for EO image analy-

sis. These algorithms seek to classify each pixel within the

EO image to common classes such as surfaces (pavements,

hard surfaces), buildings, vegetation, trees, cars, roads, etc.

[2, 40, 48, 42]. In proposed work, the Semantic Shape

Matching algorithm described in (Section 3.5) relies on se-

mantic segmentation for detecting objects of different types.

3. Proposed Enhanced Geolocalization Frame-

work

The proposed work relies solely on on-board camera for

accurate UAV geolocalization. It comprises a sequence of

key components as illustrated in Figure 2. The following

sections present details of each of the framework compo-

nents.

3.1. Input Images

The framework processes image sequences from two dif-

ferent sources: real images acquired from the UAV (aerial

images) and synthetic images generated from the satellite

imagery (reference map images). For the latter, multiple

satellite imagery sources are used to be able to provide ad-

equate visual description of the covered geographical area.

Aerial Images (UAV) This work focuses on vision-

based geolocalization and excludes UAV control com-

mands. The framework accepts a video sequence from the

UAV denoted as S. From S, we can extract S(i) (video

frame) which we compare to a reference map (R). It is im-

portant to note that the initial starting GPS coordinate of the

UAV is assumed to be known and can be defined as the cen-

ter pixel of S(1). This assumption is made based on notion

that a UAV cannot be deployed without knowing its location

(at least initially).

Reference Map Images (Satellite) The framework uses

a reference map R with known GPS bounds. Mainly the

process is finding out where S(i) resides in R and subse-

quently estimating the position of S(i). Using Equations 1a

& 1b, it is possible to calculate a certain GPS coordinate

(lat, lon), by knowing Rs width, height, and the extent or

bounds of R such as lonn, late, latw, and lons. The op-

posite is also possible to estimate the latitude and longitude

of a pixel (pixw,pixh) using Equations 1c & 1d.

pixx =
(widthmax − widthmin)(lon− lonw)

(lats − latw)
(1a)

pixy =
(heightmax − heightmin)(lat− latn)

(lons − lonn)
(1b)

lat =
latn + (latn − lats)(pixh − heightmin)

(heightmax − heightmin)
(1c)

lon =
lonw + (lone − lonw)(pixw − widthmin)

(widthmax − widthmin)
(1d)
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3.2. Calibration

The Calibration component is responsible for computing

an affine geometric transformation between the UAV image

and the reference map image in order to map the UAV onto

a reference map location, i.e. map S(i) with its field of view

extents to corresponding position and covered region in R,

taking into consideration the difference in scale and orienta-

tion between the two images. Calibration is an integral part

of the framework, and is called upon on at S(1) and every

three iterations (S(i+3)) frames to autocorrect any drift that

might occur. To accomplish this task, SIFT feature points

are extracted from the UAV image and the reference im-

age and subsequently matched. Even though SIFT feature

computation is time consuming, the calibration process is

applied every several frames to maintain real-time perfor-

mance. As previously stated, the initial GPS coordinates of

the UAV are assumed to be known and so a region of in-

terest r can be cropped from the reference map R where

r = R(l, wS+b) is the coordinate of the center pixel. The

region width wS+b is equal to the width of S plus a margin

b. This is done to limit the search of the features extracted

from S(i) in R to include only features in sub region r thus

reducing the search space and eliminating the possibility of

matching to go astray. It is important to note that r covers a

wider region than the one in S and that Equations 1a, 1b, 1c,

and 1d provide the mapping from pixel locations to map co-

ordinates and vice versa.

Using the created reduced search space, features are ex-

tracted from both r and S(i). Subsequently, the features are

matched and a statistical estimator, such as RANSAC [14],

is used to estimate a homography matrix that describes the

transformation between UAV and reference image pairs.

During UAV flight, the Calibration procedure is applied ev-

ery several frames to sustain reasonably accurate transla-

tion, rotation and scale components between UAV images

and reference map images.

3.3. Sequential Frame Registration

An image registration process is applied on sequential

UAV images, S(i) and S(i+f) with f being the processing

frame rate, for UAV egomotion estimation and subsequently

mapping this motion to the reference map. The process-

ing frame rate is used to adapt registration rate to platform

translation while sustaining real-time performance. Fur-

thermore, since consecutive frames usually don’t entail sig-

nificant changes between the images, efficiently computed

ORB [49] features are used for key point extraction and

matching. Figure 4 shows ORB features extracted from two

successive UAV frames and used in the registration process

in a way similar to the method used in the Calibration com-

ponent. It is important to note that even though ORB is an

efficient alternative to SURF and SIFT, it cant handle scale

variance robustly. Therefore, scale estimation and subse-

Figure 3: If the condition of being the first frame, or the 3rd

sequence frame, S and r are passed to the SIFT registration,

which gives out a homography, in which it is applied to r

and updates the UAV location as well.

Figure 4: Registration of S(i) and S(i+1) using matched

ORB features.

quent UAV altitude estimation, depend mainly on the Cali-

bration phase. As shown in Figure 4, after matching the key

ORB points a homography is estimated which provides us

with the translation in pixels. This translation then updates

l using 1a & 1b.
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3.4. Semantic Segmentation Using UNet

Semantic segmentation is utilized to help extract mean-

ingful shapes in UAV and satellite images, such as roads

and buildings, and pass them to the SSM component for

matching. To be able to accomplish this, S(i) and r are

fed into U-Net [47] network. U-Net is an encoding and

decoding model that was originally proposed for biomedi-

cal image segmentation. It is chosen due its performance

and prominence in recent EO tasks [30] in comparison to

FCN [33] and SegNet [5]. In fact adding skip connections to

FCN [23] provides finer segmentation which is already im-

plemented in U-Net. This enables the classification of our

image pixels into many classes. However, for registration,

we rely on building and road classes as shown in Figure 5.

Implementation Details The original U-Net network is

slightly modified where regularization using dropout layers

is added after every convolutional layer with a value of 0.5.

After every dropout layer, a batch normalization layer is

also added to normalize the activation at each batch, which

resulted in small improvement (≈ 3%) in segmentation re-

sults. We also experimented with freezing the first convolu-

tional layer as will be explained in Section 4.

Figure 5: Buildings segmented using U-Net (Left: an EO

image. Right: EO image overlaid with segmentation re-

sults).

Training The resolution of images intended to train the

network exceeded 2000x2000 pixels per image. A Region

of Interest (ROI) of 500x500 is thus cropped around the

center pixel. Afterwards, the images are split into smaller

patches of size 224x224 pixels, similar to the size used by

VGG [55] and ResNet [19]. Simple normalization is ap-

plied on each patch by dividing each pixel value by its

channels highest value. After prediction, the patches are

stitched to form the full image. The same process is ap-

plied to ground truth images. In this work, a pre-trained

model is used for initialization since pre-trained models,

even trained on different datasets, provide useful initializa-

tion due to the low-level features learned at early network

layers such as edges and blobs [23]. The used pre-trained

model was trained using a random image generator that also

creates the ground truth for the randomly generated images.

As for the the optimization algorithm, we chose the Adap-

tive Moment Estimator (ADAM) [25]. In our early exper-

iments, ADAM converged much faster than stochastic gra-

dient descent and NADAM [11]. The loss function used is

Dices coefficient, also known as Srensen index [56], which

computes the similarity of objects in image segmentation

by finding the overlap between ground-truth objects and the

output provided by the segmentation method.

Dice score =
2TP

2TP + FP + FN
(2)

As shown in Equation 2, the Dice score is calculated by

finding the true positives and penalizing the false positives

as well as the true positives the method could not find. Dice

is similar to the Jaccard index [21], another commonly used

loss function for image segmentation, however the former

is more intuitive than the latter which only counts true pos-

itives once in both the numerator and denominator. The av-

erage training epochs were 7 with a learning rate of 0.0001.

Training was stopped when the average F-score of the vali-

dation step stopped improving.

Figure 6: Left: segmented S(i). Right: segmented r. The

contours found in a segmented image, along with the area,

and radius calculated.

3.5. Semantic Shape Matching (SSM)

Applying the semantic segmentation step to S(i) and r

results in two images containing only buildings and roads

as seen in Figure 6. Next, the two images are each split into

two layers: building and road objects. Morphological tech-

niques and contouring are applied to each layer to find the

boundaries of different objects and extract shape descrip-

tor information to be used in the matching process such as

location, area, roundedness, etc. In fact, knowledge of ob-

ject types provides information on the surroundings of the

UAV which could be used recurrently to improve segmen-

tation results and can also be beneficial in some applica-

tions such surveillance, parcel delivery, etc. The Semantic

Shape Matching SSM pipeline accepts a classified image

with a box drawn around each contour and executes the fol-
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lowing process (all steps are applied similarly to both im-

ages):

1. Morphological operations such as dilation followed by

erosion are used to fill gaps in blobs or shapes [18].

2. Small shapes or blobs are filtered using the area of the

shape found using area filtering, and using erosion fol-

lowed by dilation which is another morphological op-

eration that removes outlier pixels or noise.

3. A dictionary is built containing all the different shape

features extracted. These features are the shapes’ area,

location, radius, centroid, and orientation, which are

all calculated using Hu moments [20].

4. Using brute force matching, a scoring system is imple-

mented to pick the matching pair. Each matching pair

is awarded points based on if they have similar fea-

tures within a certain tolerance. These features are also

weighted due to their importance, for example match-

ing shapes’ area is more important than their centroid.

5. Matches found are checked to see if a shape matched

more than once, then these matches are filtered once

more based on the scoring system devised by giving

higher points to certain combinations of similar fea-

tures.

Figure 7: Matches of segmented buildings. Left: S(i) and

on the right r. Blue circles represent positive matches, and

red circles represent false positives.

The scoring system gives higher points to certain com-

binations of similar features. For instance, more points are

awarded to matched shapes if they share the same area, dis-

tance, and orientation, rather than sharing the same area,

centroid, and radius. Afterwards, matches with the highest

scores are selected. However, matches are eliminated if the

score is near similar and they are within a short distance

since this might be an unreliable match between two ob-

jects that are of the same size and within the same distance,

as shown in Figure 7. Finally, matched shapes are used to

calculate a homography that is then applied to adjust the

current location of the UAV with improved accuracy.

4. Experiments and Results

The framework is evaluated over two different cities for

which the datasets are created manually. The semantic seg-

mentation component is first evaluated separately since the

Semantic Shape Matching SSM component relies on the

quality achieved from the semantic segmentation step. The

full framework including the SSM component is evaluated

afterwards.

4.1. Datasets

Two cities were chosen based on the availability of the

data, Famagusta (Cyprus) and Potsdam (Germany). Two

dataset types are created for each city, one for training the

semantic segmentation network and another for the geolo-

calization experiment. While creating the datasets, it was

important to make sure that differences between the two im-

age sources (UAV and satellite imagery) are minimized by

taking into consideration: (1) acquisition dates are close to

avoid introducing/removing different objects, and (2) using

near similar image acquisition/generation parameters.

Geolocalization Dataset Due to lack of an established

dataset to benchmark UAV navigation in open areas using

on-board camera, a dataset had to be created. We are aware

of other datasets such as Zurich Urban Micro Aerial Vehicle

Dataset [37], but unfortunately a dataset does not exist with

top-down view and a new dataset had to be created along

with its ground-truth. For Potsdam, a simulated aerial flight

video with a bird-eye view using Google Earths photoreal-

istic 3D flight simulator was used to capture a length of 2

minutes with traveled distance of 1.2 km at an altitude of

300m. For Famagusta, a YouTube video of a UAV flight

for a distance of 0.5 km was utilized. For every second

in each video, a GPS coordinate was computed to create

ground truth path to evaluate the proposed framework pre-

dictions.

Training Dataset To train a network capable of seman-

tically segmenting two different sources, such as S and R, a

huge dataset had to be compounded. Firstly, we used Pots-

dam ISPRS semantic labeling benchmark dataset1 as our

base which covers an area of 2.16 km2. Then, we pro-

ceeded to create similar RGB tiles with the same bounds as

the ISPRS dataset using Google Satellite Imagery covering

the same area of 2.16 km2. Afterwards, we extended the

areas outside the tiles in ISPRS by downloading an area of

1.24 km2 around Potsdam and 1.13 km2 around Famagusta

from Google Satellite and Bing Maps. Similar to [3, 23], the

extended dataset ground-truth was created by using Open-

StreetMap to train and test the semantic segmentation net-

work. Furthermore, 30% of each UAV video sequence that

are not used during the geolocalization dataset from each

1 http://www2.isprs.org/commissions/comm3/wg4/ semantic-

labeling.html
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Method Average Building Roads

HUSTW3 † 95.25 % 96.7 % 93.8 %

Experiment I 84.7 % 85.1 % 84.3 %

Kaiser et Al. [23] 83.85 % 91.3 % 76.4 %

Table 1: Comparison to other work using ISPRS Potsdam

2D Semantic Labeling Challenge (RGB images only). The

first score is highlighted in bold. † This entry is added for a

full picture as it is the highest score available on the ISPRS

Potsdam 2D Challenge, however this method uses the DSM

data in addition to RGB.

city was also labeled using OpenStreetMap when suitable

or manually and then added to the dataset. It is important

to note that these images were also augmented horizontally

and vertically along with random rotations.

4.2. Semantic Segmentation Experiments

In this section, the setup of the experiment will be pre-

sented with the choices and reasons made for our network.

Due to hardware availability limitations, each region (Fam-

agusta, Potsdam) had its separate model and each class

(buildings, roads, etc.) trained separately using the modi-

fied U-Net. To evaluate the semantic segmentation compo-

nent of the framework, the following experiments had been

carried out. It is worth mentioning that the average F1-score

is used as an error metric for each trained class.

Experiment I. Was trained purely on ISPRS Potsdam

dataset using 19 images for training and 5 for validation.

The purpose of this experiment was to find out how well U-

Net performs in comparison to other benchmark networks.

The experiment was only run for the buildings and roads

classes which is the most important for this region since it

is mainly urban area. In general, Experiment I model per-

formed better across the 2 classes which resulted in an av-

erage score of 84.7% as seen in Table 1. Unfortunately, the

buildings class score was lagging but this experiment was

the basis on which the other experiments are built upon. Ex-

periment II. After testing the model generated from Exper-

iment I on the UAV sequence, the results were not satisfac-

tory. So, Experiment II was trained on the extended dataset

(Section 4.1) using Experiment I model as the pre-trained

model. The first convolutional layer was frozen while train-

ing since the first layer contains the basic shapes and edges.

The scores were satisfactory when tested and the predic-

tions provided sharp edges with hollow shapes. Experi-

ment III. Carried out to validate if freezing Experiment

II first convolutional layer would improve results. There-

fore, in this experiment unlike Experiment II the first con-

volutional layer was unfrozen. Experiment III model pro-

vided fuller shapes but with inaccurate edges in compar-

Method Average Building Roads

Experiment II 86.59 % 87.98 % 85.2

Experiment III 85.7 % 88 % 83.4 %

Experiment IV 75.5 % 76.3 % 74.7%

Table 2: The first score is highlighted in bold, the second in

underline, and third in italic.

(a) (b)

(c) (d)

Figure 8: Ground truth and estimated paths. Top: Potsdam.

Bottom: Famagusta. Left: Local features. Right: SSM.

ison to Experiment II. However, this model provided the

highest scores. To demonstrate the procedure of training

with the online map services using OSM as ground truth,

Experiment IV was arranged. As expected, the results

were behind Experiment II, and III by nearly 10% which

demonstrates that high-resolution data with accurate pixel-

level ground truth definitely had a positive effect. In gen-

eral, the proposed framework aim is not to introduce a new

segmentation method, but to utilize the most accurate al-

gorithm in the segmentation component of the framework.

Although Experiment III provided the highest score, prac-

tically, Experiment II was the model used due to its crisp

shapes while artifacts were remedied using morphological

operations. Qualitatively, the buildings that are close to

each other are challenging to segment separately. There is

also segmentation discrepancy between buildings and side-

walks which are sometimes considered part of the buildings

class. Another point to consider when using OSM to create

ground-truth, is that OSM labels treats trees and vegetation

as one class.

1632



4.3. Geolocalization Experiments

The proposed integrated framework is evaluated for UAV

geolocalization using S and r. Since there are no similar

work the authors are aware of, the framework performance

is evaluated by breaking it down to geolocalization (1) us-

ing local features (Calibration and Sequential Registration

components), and (2) using the full pipeline (including the

SSM component). The distance between the predicted GPS

coordinates and the ground truth is the main evaluation met-

ric chosen to represent drift or geolocalization error.

Using Local Features The performance of this ap-

proach depends on the quality of local features extracted

from S and r, and used for geolocalization, as explained in

Section 3. It was found that this method achieves an average

drift of 10.4m and 6.3m from the ground truth in the Fam-

agusta and Potsdam datasets, respectively. Qualitatively, as

seen in Figures 8a & 8c, using only local features, the de-

viation or geolocalization error is apparent.

Using SSM This method takes S(i) and its correspond-

ing r, and matches the equivalent segmented shapes to im-

prove registration. The path estimated by the framework is

compared to ground-truth of manually-labelled GPS coordi-

nates. The geolocalization error from the ground-truth is re-

duced to a 5.1m error for Famagusta, and considerably less

for Potsdam to 3.6m as shown in Figures 8b & 8d. This re-

sult could be explained by the low quality of Famagustas R.

As for Potsdam, the quality of both R, and S contributed

to better localization as shown in the results in Figures 9a

& 9b. This clearly demonstrates that applying scene con-

textual information extracted by semantic segmentation and

semantic shape matching significantly reduce geolocaliza-

tion error. However, it has been observed that in Potsdam,

building blocks are tightly spaced so when segmented, they

create huge blobs that are very difficult to match at low al-

titudes. Better localization could be achieved in less dense

areas, at higher altitudes, or with finer segmentation.

5. Conclusion

This paper presented a novel framework for geolocaliz-

ing a UAV using its on-board camera and EO imagery. The

vision-only approach enables the UAV to navigate without

a GPS hence alleviating GPS spoofing and denial problems.

The components of the proposed framework are explained

including a novel matching method SSM that performs reg-

istration by matching semantically segmented objects thus

improving upon methods using local features. This seman-

tic segmentation model was compared against similar work

and also evaluated as part of the framework.

Carried out experiments demonstrate that (1) incorporat-

ing online mapping information as additional data sources

for training semantic segmentation networks increases the

accuracy of segmentation and (2) using shape and contex-

(a) Famagusta

(b) Potsdam

Figure 9: These figures show the Geolocalization Error in

distance from the ground truth for the local features and

shape matching techniques.

tual information provide improved geolocalization than re-

lying solely on local features.

One possible future work direction is to experiment with

larger datasets covering multiple cities and to improve the

semantic segmentation pipeline by exploiting additional

UAV videos. This dataset should prove beneficial when

developing an end-to-end deep learning algorithm that re-

places the traditional computer vision methods used in this

work. It is also expected that adding more classes to seman-

tic segmentation outputs will increase the robustness of the

framework. Will also investigate efficient semantic segmen-

tation methods such as ESPNet [41], [45], and ShuffleSeg

[15]. As for the SSM component, it can be further improved

by replacing the demanding dictionary search and heuristics

by a CNN inspired by [22]. Pose estimation and image-to-

image registration can also be experimented with for Cali-

bration and sequential frame registration components.
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[51] O. Saurer, G. Baatz, K. Köser, M. Pollefeys, et al. Image

based geo-localization in the alps. International Journal of

Computer Vision, 116(3):213–225, 2016.

[52] P. Shukla, S. Goel, P. Singh, and B. Lohani. Automatic

geolocation of targets tracked by aerial imaging platforms

using satellite imagery. The International Archives of Pho-

togrammetry, Remote Sensing and Spatial Information Sci-

ences, 40(1):381, 2014.

[53] M. Siam and M. Elhelw. Enhanced target tracking in uav

imagery with pn learning and structural constraints. In Com-

puter Vision Workshops (ICCVW), 2013 IEEE International

Conference on, pages 586–593. IEEE, 2013.

[54] D.-G. Sim, R.-H. Park, R.-C. Kim, S. U. Lee, and I.-C. Kim.

Integrated position estimation using aerial image sequences.

IEEE transactions on pattern analysis and machine intelli-

gence, 24(1):1–18, 2002.

[55] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[56] T. Sørensen. A method of establishing groups of equal am-

plitude in plant sociology based on similarity of species and

its application to analyses of the vegetation on danish com-

mons. Biol. Skr., 5:1–34, 1948.

[57] J. Su, J. He, P. Cheng, and J. Chen. A stealthy gps spoof-

ing strategy for manipulating the trajectory of an unmanned

aerial vehicle. IFAC-PapersOnLine, 49(22):291–296, 2016.

[58] Y. Tian, C. Chen, and M. Shah. Cross-view image matching

for geo-localization in urban environments. arXiv preprint

arXiv:1703.07815, 2017.

[59] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Deep end2end voxel2voxel prediction. In Computer Vision

and Pattern Recognition Workshops (CVPRW), 2016 IEEE

Conference on, pages 402–409. IEEE, 2016.

[60] A. Viswanathan, B. R. Pires, and D. Huber. Vision based

robot localization by ground to satellite matching in gps-

denied situations. In Intelligent Robots and Systems (IROS

2014), 2014 IEEE/RSJ International Conference on, pages

192–198. IEEE, 2014.

[61] S. Workman, R. Souvenir, and N. Jacobs. Wide-area image

geolocalization with aerial reference imagery. In Proceed-

1635



ings of the IEEE International Conference on Computer Vi-

sion, pages 3961–3969, 2015.

[62] A. Yol, B. Delabarre, A. Dame, J.-E. Dartois, and E. Marc-

hand. Vision-based absolute localization for unmanned

aerial vehicles. In Intelligent Robots and Systems (IROS

2014), 2014 IEEE/RSJ International Conference on, pages

3429–3434. IEEE, 2014.

[63] M. Zhai, Z. Bessinger, S. Workman, and N. Jacobs. Pre-

dicting ground-level scene layout from aerial imagery. arXiv

preprint arXiv:1612.02709, 2016.

[64] Q. Zou, S. Huang, F. Lin, and M. Cong. Detection of gps

spoofing based on uav model estimation. In Industrial Elec-

tronics Society, IECON 2016-42nd Annual Conference of the

IEEE, pages 6097–6102. IEEE, 2016.

1636


