
Deep Visual Teach and Repeat on Path Networks

Tristan Swedish

MIT Media Lab

tswedish@mit.edu

Ramesh Raskar

MIT Media Lab

raskar@mit.edu

Abstract

We propose an approach for solving Visual Teach and

Repeat tasks for routes that consist of discrete directions

along path networks using deep learning. Visual paths are

specified by a single monocular image sequence and our

approach does not query frames or image features during

inference, but instead is composed of classifiers trained on

each path. Our method is efficient for both storing or fol-

lowing paths and enables sharing of visual path specifica-

tions between parties without sharing visual data explic-

itly. We evaluate our approach in a simulated environment,

and present qualitative results on real data captured with a

smartphone.

1. Introduction

Visual navigation is a complex problem that inspires

similarly complex solutions to its numerous challenges.

Many methods require specialized vision hardware and sig-

nificant computational resources. However, the problem of

visual navigation can be simplified when autonomy in novel

environments is not necessary. Methods known as Visual

Teach & Repeat (VT&R) are able to repeatedly follow paths

driven first by another expert (often a human). The VT&R

paradigm has shown promise in applications where paths

must be routinely followed, and expert control examples are

available: intra-site delivery and patrol, tours, and return-

to-site missions. In this paper, we propose a new technique

using deep learning methods to solve VT&R type tasks in

environments where directions can be described by discrete

instructions: “forward”, “left” or “right.” We call this class

of environments “path networks” since they can be repre-

sented as a set of paths connected at intersections.

VT&R does not require specialized hardware and has

been shown to be effective in scenarios where a recording

of odometry and visual observations along a specific path

is available to the navigating agent. This paper explores a

novel way to compactly represent these recordings within

the weights of a neural network. We evaluate our tech-

nique for paths in sparsely connected path networks found

“Left”

Path Decoder

Input

Action

“Forward”

“Left”

“Forward”

Frame Localization

Input

Deep VT&RFrame Database

“Left”
Action

References frame memory
memory and time complexity
grows with path length

Tunable time complexity
time and memory dictated by
path ambiguity

f(x) f(x)

g(f(x))

f(x)

f(x)

f(xᵢ)

Figure 1: The proposed system predicts the necessary ac-

tions to follow a visual path from an image sequence. Our

method does not refer to the image sequence at the time of

inference, instead using a compact representation.

predominately in the built environment (e.g. Indoor Floor

Plans, Road Networks).

The motivation for our approach is the observation that

deep learning methods are effective at solving challeng-

ing inference problems with tunable computational capac-

ity. Computational complexity, such as the memory and op-

erations required, can be controlled by the capacity of the

neural network architecture. When compared to more tra-

ditional VT&R, our deep learning based approach allows

for greatly reduced memory requirements during the “re-

peat” phase (Table 1). In other words, the trained model

parameters contain all the information needed to follow the

path. This memory reduction may also be advantageous

when sharing path representations over low-bandwidth net-

works.

Data driven methods are also well suited for the chal-

lenges posed by visual navigation. For example, monocular

visual odometry (MVO) must overcome fundamental and

practical ambiguities. The movement of a pinhole camera

can only be estimated up to a relative scale since it is impos-

1646

sible to estimate distance without an established baseline.

Practically, small field of view (FOV) sensors also make it

difficult to determine if the camera is moving sideways or

rotating. Limited FOV may also be more susceptible to per-

ceptual aliasing, where identical observations of different

hidden states confound estimation. In order to overcome

these challenges, reasonable estimates can be made using

priors learned from training data [18]. This enables a sys-

tem to infer the distance of certain objects in a frame simply

by knowing the size of similar objects (e.g. people, furni-

ture, vehicles).

1.1. Contributions

We propose a novel method based on deep learning that

seeks to solve VT&R type tasks, preserving the ability to

follow a visual path without a graphical representation or

frame feature database. We list our contributions for clarity:

• An unsupervised labeling scheme using monocular vi-

sual odometry for image sequences.

• Deep Visual Teach and Repeat framework for navigat-

ing in sparsely connected path networks.

• Demonstration of the framework for defining routes

and following them in realistic environments.

1.2. Limitations

The proposed method does not perform visual servoing

or correction to ensure that it stays on the intended path.

This is not a serious problem, however, when paths are re-

stricted to a set of simple intersections, what we refer to in

this paper as sparsely connected path networks. We assume

the navigating agent using the proposed system is able to

interpret instructions like “forward” or “left” and is able to

stay on track (such as staying centered walking down a hall-

way, or taking a left at an intersection) independently.

2. Related Work

2.1. Monocular Visual SLAM

The robotics and computer vision communities have

studied mobile navigation for decades. Most robotic plan-

ning approaches are applied to some known map and the

robot’s pose within this map. This process is fused in

SLAM, which has has been successfully applied in nu-

merous applications, including indoor navigation and au-

tonomous driving [32, 22, 17, 16]. Numerous approaches

have been suggested that incorporate depth-sensitive sen-

sors (stereo, RGBD, Lidar) [21, 36]. Recently, real-time

monocular SLAM up to a scale factor has been demon-

strated [7], as well as data-driven methods that estimate real

scale [33, 29]. A comprehensive overview of SLAM meth-

ods is outside the scope of this work, we direct the reader to

an introductory text [34] or an overview of the state of the

art [5].

However, monocular visual SLAM can suffer from poor

scalability, the search space grows with the number nodes

in the pose graph [6], incurring large memory and compu-

tational costs in increasingly connected and large environ-

ments.

2.2. Visual Teach & Repeat

Visual Teach and Repeat consists of a training or “teach”

phase and an execution phase known as the “repeat” phase.

In the teach phase, an image sequence and odometry in-

formation is recorded. In the repeat phase, the odometry

information is used to replay the desired motion along the

path, and the recorded image sequence is used to adjust the

current viewpoint and estimated position along the path.

In previous VT&R applications, a robot or sensor plat-

form is driven along a path by a human and then uses this

example to follow the visual path in the future using re-

played motor commands and a frame database to correct

localization along the path [30, 8]. Recent work has shown

applications to aerial vehicles and multiple paths through an

environment [23, 35, 25]. The setting of VT&R differs from

traditional SLAM in that maps may not attempt to preserve

a global coordinate system, so accumulating errors from vi-

sual odometry are less likely to produce maps unsuitable for

navigation.

Our approach distinguishes itself from from traditional

VT&R because it is does not save frame features in a

database, but instead encodes information from the teach

phase directly in the neural network weights.

2.3. Topological Localization

Topological localization attempts to localize the po-

sition of the current frame to a prerecorded image se-

quence [13, 10]. A topological map recovers the local con-

nectivity of the scene based on a sequence of measurements,

detecting loop closures, and attempting to recover the global

topological structure of the scene. Loop closure detection

typically consists of a similarity metric applied to an image

sequence and an input image with a minimum threshold that

indicates a loop closure exists at that point in the image se-

quence. Recently, Convolutional Neural Networks (CNNs)

have been used to construct robust representations which

are compared using the cosine similarity or other distance

metrics [14, 9]. CNNs have also been used to memorize

6DOF for specific image sequences labeled using structure

from motion [15].

Visual place recognition tries to identify places from un-

structured data such as images on the internet, but does not

use these metrics for planning paths through an environ-

ment [19]. NetVLAD is a more recent approach using a

special VLAD layer to refine image queries from a large

1647

Table 1: Computational performance of the baseline and proposed method in experiments. In this table, D is the embedded

feature size (512), N is the number of frames in any sequence and M is the total number of sequences (we expect M ≪ N).

Both methods use a ResNet encoder, adding a fixed overhead. The train time is shown for one epoch.

Train Time

(ResNet: 63ms ×N)

Inference Time Complexity

(ResNet +63ms)

Memory

(ResNet +44.7MB)

Baseline Action Prediction - D log(N) 2.0KB ×M ×N

Baseline Path Selection - D log(N)×M 2.0KB ×M ×N

Proposed Action Prediction +10ms (2ms total GPU)×N D × 3 6.2KB ×M

Proposed Path Selection +10ms (2ms total GPU)×N D ×M 2.1KB ×M

database of images of places [1].

2.4. Mapless Navigation

Recently, it has been suggested that an end-to-end fully

learned functional mapping from sensor input to action may

be able to solve some kinds of navigation problems [20].

These methods do not construct a map explicitly, but learn a

representation useful for the given task. These methods can

be further differentiated as “planning based” and “reactive

control” approaches [4, 12]. In a planning based method,

prior data and inference over expected scene regularities is

used to select actions to achieve some goal state [31, 37].

Reactive control methods such as [11] use learned policies

that map observations to reasonable actions within some

general class of environment. In simplified environments

these strategies perform similarly, but in sufficiently com-

plex scenarios planning based methods may be necessary to

achieve improved performance.

3. Approach

The problem we consider in this work is following a vi-

sual path captured using a monocular RGB camera. We as-

sume there is no other source of odometry and the vertical

FOV is restricted to less than 50 degrees. These restrictions

are imposed to make our method suitable in applications

utilizing commodity general purpose hardware (e.g. smart-

phone cameras).

Table 1 enumerates the computational benefits of our ap-

proach. Encoding time is not excessive and the amount of

data needed to perform inference is smaller than performing

a lookup on a saved sequence of frames.

Within this problem framework, our proposed system

consists of three parts.

1. Unsupervised VO Labeling: Estimate the local mo-

tion from a monocular image sequence.

2. Path Encoding: Learn an encoder that embeds in-

put images so that a classifier can select the correct

high-level action corresponding to each part of the se-

quence.

“Left” “not Left”

Figure 2: Left: t-SNE embedding of experiment path “a1-

00” using ResNet-18 features trained on ImageNet. Notice

that image order is preserved in the encoding (color maps

to frame number). Right: Visualization of linear classifier

learning sections of the sequence corresponding to the “left”

label. Black and blue dots are representative of training and

test data respectively.

3. Path Selection: Determine where the input corre-

sponds with the path or select from a set of memorized

paths.

3.1. Unsupervised VO Labeling

We estimate the per-frame visual odometry in order to

determine the prediction labels for training (forward, left,

right). Our method is entirely unsupervised the only input

required is the image sequence and the camera field of view.

We adapted an open source visual odometry implementa-

tion [28] for our experiments. Our unsupervised labeling

method could utilize another odometry method as long as it

estimates proper metric scale.

Visual Odometry with Estimated Scale This ap-

proach uses tracked FAST features [26, 27] and Nister’s

1648

RightLeft

Forward

θ

(a)

Left

Forward

Right

Path SelectFrame Decode Path M

Decode Path M+1

Decode Path M-1

D
e-

M
U

X

Select M

(b)

Figure 3: (a) Visual odometry is performed on a sequence

of frames. Each frame is labeled by the future trajectory

determined by VO. The labels are used to train an action

prediction network for each sequence and a path selection

network. (b) At inference time the correct path is selected

and directed to the appropriate action selection network.

method [24] to estimate the essential matrix. We then

factor the essential matrix and select the feasible solution

to recover pose changes between the current frame and a

keyframe to a relative scale. The baseline of the pose is

normalized and each feature is then triangulated so that the

depth relative to the baseline is known.

We solve for scale by estimating the distance of each

feature in the input images with an pre-trained FCRN-

depth [18] network trained on the NYU dataset. As in [33],

the output of this network is scaled to match the intrinsic

camera parameters since depth estimates predicted by the

network are incorrect for our input FOV. The accumulated

FCRN-depth estimates are averaged over a small window

for each feature and a scaling factor is selected that incor-

porates the local depth estimate. The median scaling factor

over all features is used to scale the pose estimate appropri-

ately.

In order to reduce spurious solutions from small base-

lines, we select a keyframe to localize subsequent images

until the estimated baseline exceeds a threshold. We also

limit the gradient of the scaling factor over time and apply a

smoothing function to reduce the impact of spurious odom-

etry estimates.

This pipeline runs real-time using a GPU to estimate

depths from each image, while the rest of the pipeline runs

faster than real-time on a CPU.

Unsupervised Labeling using Visual Odometry With

our visual odometry in place, we label each frame with its

local motion (Figure 3). For each frame we label future

motion after following the path a distance d. After the pose

on the path ahead of the current frame is found, a refer-

ence point is placed 1 meter in front of the pose in order

to incorporate information about the pose orientation. We

assume that the agent preferentially moves in the direction

of their orientation, and that local future motion does not

occur along the y axis (up/down).

Look ahead ensures the network learns to predict motion

for a specific sequence and does not associate image fea-

tures such as motion blur with particular directions. In our

experiments, we set d to 0.5 meter, which provides a good

trade-off of future prediction and relevance.

Once the future location along the path is found for a

given frame, the label is chosen with the following rule:

l =

left θ > θ0

forward |θ| < θ0

right θ < −θ0

(1)

Where θ = arctan(z, x) is the angle between the current

orientation and a vector emanating from the current frame

position to the point found through look ahead. In all exper-

iments, θ0 was chosen to be 15 degrees.

3.2. Path Encoding and Action Selection

The path encoding step attempts to learn a classifier over

the sequence of observations, mapping each observed input

to the high-level action to take. We briefly sketch how a

classifier can be found that is able to label each subset of a

sequence. Consider a sequence of frames: we would expect

that each frame in the sequence is a point on a 1D mani-

fold moving through pixel space. We then consider a dif-

ferentiable transformation Φ that projects this set of points

into feature space. We note that we’re interested in trans-

formations that preserve the topology of the 1D pixel space

manifold.

The structure of the 1D manifold in feature space enables

the discrimination of its elements with a hyperplane. In Fig-

ure 2, notice that a 1D line can easily be warped in 2D so

that a 1D linear decision boundary can be defined to label

any subset of the line. We thus pose path encoding as the

problem of finding Φ that warps the manifold containing our

input sequence so that it can be cut into two desired subsets

with a hyperplane. Our general approach is to represent Φ
with a deep neural network.

argmaxgc(Φ(xn)) (2)

Where gc is a decoding function that receives an em-

bedding from Φ and predicts whether the desired class is

present or not. In our experiments we use fully connected

1649

layers followed by rectified linear units to represent gc (the

output is not followed by a ReLU). We choose Φ such that

the tangent space of the manifold containing the input se-

quence warps along with the data, so that the classifier gen-

eralizes to known invariants to the path sequence (blue dots

Figure 2), such as lighting or slight changes in appearance

along the path. In the sequence labeling task, our model

needs enough capacity to produce the necessary folds so

that the linear classifier is effective.

The consolidated paths should preserve the desired high-

level actions even when the observations are perturbed, ei-

ther due to lighting, new objects in the scene, or changes in

viewpoint. CNNs in general have been shown to be capable

of learning representations invariant to these types of pertur-

bations. We use the ResNet-18 trained on ImageNet as our

sequence encoding function, utilizing the feature layer be-

fore the classification layer. Instead of predicting the image

class, we add a three output layer corresponding to the three

possible high-level actions: “forward”, “left”, and “right”.

Method 1: Reactive Control In the case where the input

sequence never overlaps with itself in feature space, every

element can be uniquely mapped to an action. This prob-

lem reduces to a reactive control problem: each action can

be determined from the current input, and no global map

understanding is required. A reactive control network re-

cieves embeddings from ResNet-18 and attempts to directly

predict the action to take. We train the network by randomly

selecting images from the input sequence and providing the

target predictions from the local motion graph.

This approach is fundamentally susceptible to perceptual

aliasing, where the projected data Φ(x) may produce a 1D

path representation that overlaps with itself from real metric

loop closures or the appearance of loop closures that do not

actually exist. In these cases, representations from adjacent

frames could be combined over time using a long short-

term memory (LSTM), producing an encoding that incor-

porates more information about the sequence leading up to

the current frame. However, LSTMs do not entirely address

the problem and may still suffer from perceptual aliasing.

Instead, we introduce an alternative that predicts location

along the path directly.

Method 2: Path Sequence Recall An alternative archi-

tecture that more closely resembles traditional VT&R meth-

ods is to use incoming frames to estimate progress along the

path itself. Action selection is then accomplished by refer-

encing a lookup table of prior actions for each section along

the path.

The path sequence recall network observes an incoming

frame and then predicts the likelihood that the frame corre-

spondes to discrete sections along the path. In our experi-

ments we divide each path into 16 sections and then inter-

polate the progress along the path by combining the acti-

vations of the 16 output position prediction neurons. We

use a sliding mask to restrict the combination of positions

to adjacent sections with a known start. This masking step

reduces confusion between similar sections of the path and

enables the recovery of the original sequence even for paths

that overlap.

It may be advantageous to combine Reactive Control and

Path Sequence Recall into a heirarchical model. In such a

construction, a path selection network predicts what “sub-

path” the agent is on, such as the discrete sections used

for Path Sequence Recall, and then the appropriate reac-

tive control network is selected (Figure 3). This is done by

introducing a “path selection” supervisory network.

3.3. Path Selection

Our path following formulation becomes significantly

more useful if it can select from a set of previously observed

paths. This path selection enables high-level path control

and more flexible navigation for certain applications. We

compose memorized paths that each contain some minimal

overlap with each other, and then select from them to deter-

mine what action to take.

For path selection, we train a new network that takes the

current frame as input and predicts the likelihood of the ob-

servation corresponding to each path. As such, each out-

put corresponds to a particular path. During inference, the

most likely path would be selected, corresponding to action

selection network that would then use the visual input to

determine the correct action.

4. Experiments

4.1. Evaluation Environment

We use the Stanford 2D-3D-Semantics Dataset (2D-3D-

S) to evaluate our approach [2, 3].

The textured 3D mesh from the 2D-3D-S dataset was

used to produce a Unity evaluation environment consisting

of a camera and controls for forward, rotate right, and rotate

left. This enables a user to navigate virtually in real time

through the environment mesh. Ground truth pose informa-

tion of the camera was recorded for each captured frame. A

more detailed overview of this environment can be found in

the Supplementary Material.

All experiments use a Nvidia GeForce GTX 1070 with

8GB of RAM on a machine with an 8-core Intel i7–6700

with 32GB of RAM. All experimental results are reported

for validation runs (not used for training). Action and Path

Selection networks are trained with Stochastic Gradient De-

scent with a batch size of 4 and a learning rate of 0.001

and momentum of 0.9. Unless otherwise noted, we train

each encoding/decoding network for 7 epochs. For a typi-

cal path length of 3k frames, training takes 20s per epoch

1650

Figure 4: Top view of “Area 1” in the 2D-3D-S dataset [2, 3] with paths drawn for the first 4 visual paths. The top right plot

shows the corresponding activations of the path selection decoder when replaying the three paths in order (color coded). The

bottom plots show the individual action decoder for each path along with the ground truth label along the bottom of each.

and running the inference over all validation frames takes

12s (batch size 1 for average latency of 4 ms or 250 fps).

Performing a forward pass using the CPU takes 63ms.

4.2. Baseline

Our approach is compared to the baseline of matching

the input frame to a database of saved frames. This is an

essential procedure in VT&R for the localization step dur-

ing the “repeat” phase. This operation also contributes to

a large share of the operational resource requirements of

VT&R systems.

Following the recent trend replacing feature based visual

bag of words with CNN feature extractors, we pre-process

the known path sequence by extracting CNN features using

the same pre-trained ResNet-18 used by the proposed de-

coders. We find the nearest neighbor in the training set and

associated label to produce the high level action class. Our

experiments use the Python Scikit Learning library imple-

mentation of a ball tree nearest neighbor algorithm.

The proposed system functions much differently than

this baseline, but solves the same task of identifying what

action to take based on prior experience. See Table 1 to see

the computational requirements of the baseline compared

to the proposed method. Our implementation requires less

memory and performs faster inference than the optimized

baseline implementation while performing comparably at

recalling the proper action compared to the baseline.

We show results for each method using ground truth pose

graphs available from the evaluation environment in addi-

tion to labels produced by the visual odometry system in

Table 2.

4.3. Single Path Task

The single path task is to determine the high-level ac-

tion from a single reference image sequence while travel-

ing along the same path for a second time. For these ex-

periments, we evaluate the performance of our approach as

the accuracy of future action prediction over each frame in

the sequence compared to ground truth. Area 1,3, and 6

were used from the 2D-3D-S dataset, following the recom-

mended validation split.

Reactive Control The path decoding network success-

fully memorizes the set of future actions to take (Table 2).

This network learns to associate certain key frame land-

marks with each action, effectively discovering the regions

1651

Figure 5: Accuracy of path selection (left) and action pre-

diction (right) under lighting pertubations (top) and transla-

tional and rotational offset from the original paths (bottom).

in feature space that are relevant to future prediction. We

see in Figure 4 that the predicted actions are stable through-

out the route, and exhibit interesting inhibition behavior as

the input transitions from a region in feature space associ-

ated with one action to another. This demonstrates that the

single layer linear classifiers are able to effectively separate

each region in the sequence.

One reasonable concern is that the paths have a strong

forward bias. The classifiers may appear to perform accu-

rately while only predicting the “forward” label. This does

not seem to be the case for the experiments. As seen in Fig-

ure 4, the disagreement between the labels and the network

predictions is typically isolated to a few frames before and

after direction changes.

The action prediction network performed comparably to

the baseline. It did not perform as well for Area 6. Fine-

tuning the ResNet seems to only provide marginal improve-

ment. Fine-tuning sometimes decreases performance, sug-

gesting there may be some over-fitting introduced by lower

layers in the ResNet encoder in these cases. Regardless,

the error differences are not dramatic between the baseline

and proposed action prediction network, despite the action

prediction network making inferences without the frame

database and using two orders of magnitude less memory.

Path Sequence Recall We implemented a path sequence

recall network to investigate ways of recovering the se-

quence when reactive control alone is not sufficient. The

network predicted the location along the path and a sliding

window was applied to ensure only adjacent regions along

the path could be activated at one time. Figure 6 demon-

strates the sequence recall for a route in Area 1 (the green

Figure 6: Path Sequence Recall for Area 1 Route 1 (s3-

a1-00). The left plot shows the ground truth input frame

position plotted against the predicted frame. This prediction

is found by interpolating from the masked neuron activation

shown in the activation plot to the right.

Table 2: Comparison between accuracy on 3 areas in the

2D-3D-S dataset for the path action prediction and path

selection. The nearest neighbor baseline is compared to

the Path action Decoder (PD) while fine-tuning the ResNet

(+FT) and when training using perfect ground truth (+GT).

All results are shown for validation data based on ground

truth.

Method
2D-3D-S

Area 1

2D-3D-S

Area 3

2D-3D-S

Area 6

Path Action Prediction Accuracy

Baseline 0.7333 0.6472 0.7318

PD 0.7567 0.6991 0.7099

PD+FT 0.7678 0.6830 0.7472

Baseline+GT 0.8644 0.8332 0.8700

PD+GT 0.8553 0.8312 0.8550

PD+GT+FT 0.8576 0.8060 0.8550

Path Selection Accuracy

Baseline 0.9892 0.9913 0.9920

PS 0.9406 0.9147 0.9019

PS+FT 0.9244 0.9475 0.8864

path in Figure 4). It is possible to predict the specific frame

number because neurons exhibited activation values pro-

portional to the distance from the set of frames they were

trained.

Reactive Control methods did not seem to suffer from

significant problems with perceptual aliasing in our tasks,

so our analysis focuses on path selection as a more general

sub-path selection architecture.

Prediction Error for out of sample Perturbations To

ensure robust performance, it is important to examine pose

and lighting change perturbations on the path prediction ac-

curacy. In Figure 5, the trained networks show some learned

1652

Figure 7: Example visual path captured using a smartphone

(Samsung Galaxy Edge S6+) with 46 degree vertical FOV.

Two image sequences were captured, one for training and

the validation shown above using the same procedure as de-

scribed in the experiments.

invariance to lighting and pose, except for a sharp perfor-

mance drop off for orientation changes greater than 20 de-

grees and path location offsets greater than 0.2 meters. We

did not test offset errors greater than 0.7 meters because

that was the largest offset that would fit in the hallways in

the validation environment. More aggressive data augmen-

tation may be necessary to achieve improved invariance to

large angle variation. In practice we imagine that specifying

canonical orientations may reduce such problems in struc-

tured environments (e.g. canonical orientation in a hallway).

4.4. Path Selection

The path selection experiments evaluate the ability of the

proposed method to select between a set of path hypotheses.

In a practical system, this would be the first step before rout-

ing the input to the correct path decoding network. Being

able to select the correct path with a high accuracy enables

more complex routing to be implemented.

Path selection is accurate, both the baseline and the Path

Selection decoders were able to achieve over 90% in many

of the cases. Interestingly, as demonstrated in Figure 4, am-

biguities in the network activations indicate low confidence

of being on any path at all. This would be expected from

such path selection methods, and suggests an interesting

direction for future work where this uncertainty could be

exploited when moving through partially known environ-

ments.

4.5. Realworld Path Following

Finally, we demonstrate path following performance on

a real world dataset. Video was captured moving through an

office environment similar to that of the simulated dataset.

The ground truth was not known for these image sequences,

Figure 7 shows the estimated visual odometry along with

frames labeled by the decoder. More work is needed to eval-

uate performance compared to ground truth, the system was

able to predict the visual odometry labels with an accuracy

of 93.4%. This accuracy demonstrates that the action pre-

diction network is able to recall the labels produced by VO.

5. Conclusion

We introduce a method of solving VT&R tasks for paths

that can be described by an observation and corresponding

desired direction: forward, left or right. We solve these

tasks using small (6.2KB), path specific classifiers trained

on embeddings produced by ResNet-18. We introduced an-

other classifier that estimates which of known paths the cur-

rent observations correspond. All results are shown for val-

idation data. The performance is comparable to a nearest

neighbor baseline despite not having access to the original

image sequence or associated features and pose graph.

The experiments suggest that neural network models are

able to learn path specific reaction control policies to fol-

low an example path for VT&R tasks. Furthermore, simi-

lar neural network architectures are able to predict the cur-

rently observed sub-path. By combining these predictions

with a sequential masking operation, the location along the

sequence can be recovered without referring to a frame fea-

ture database.

Deep networks have a number of advantages compared

to traditional methods: they have fixed memory and time

complexity during inference, they benefit from improve-

ments in the deep learning ecosystem (such as better em-

bedding architectures), are easily adapted to other modali-

ties and reduce overall system complexity. The use of visual

odometry as an unsupervised labeling scheme suggests new

ways to combine traditional and deep learning based meth-

ods.

These networks demonstrate some invariance to input

variations, but new methods must be addressed to increase

the networks ability to tolerate large changes. Finally,

our proposed method does not implement visual servoing

typically found in VT&R architectures, suggesting future

work that may accomplish visual servoing from deep neu-

ral network features. Despite these limitations, we hope

Deep VT&R may provide new applications that leverage

its unique ability to solve path following problems with low

computational complexity and memory requirements.

Acknowledgements

We would like to thank the reviewers for their helpful
comments. This material is based upon work supported by
the National Science Foundation Graduate Research Fel-
lowship under Grant No. (1122374).

1653

References

[1] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic.

NetVLAD: CNN architecture for weakly supervised place

recognition. In IEEE Conference on Computer Vision and

Pattern Recognition, 2016.

[2] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-

3D-Semantic Data for Indoor Scene Understanding. ArXiv

e-prints, Feb. 2017.

[3] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis,

M. Fischer, and S. Savarese. 3d semantic parsing of large-

scale indoor spaces. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision and Pattern Recogni-

tion, 2016.

[4] S. Brahmbhatt and J. Hays. Deepnav: Learning to navigate

large cities. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), July 2017.

[5] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,

J. Neira, I. Reid, and J. J. Leonard. Past, present, and

future of simultaneous localization and mapping: Toward

the robust-perception age. IEEE Transactions on Robotics,

32(6):1309–1332, Dec 2016.

[6] A. Dine, A. Elouardi, B. Vincke, and S. Bouaziz. Graph-

based simultaneous localization and mapping: Compu-

tational complexity reduction on a multicore heteroge-

neous architecture. IEEE Robotics Automation Magazine,

23(4):160–173, Dec 2016.

[7] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-

scale direct monocular SLAM. In European Conference on

Computer Vision (ECCV), September 2014.

[8] P. Furgale and T. D. Barfoot. Visual teach and repeat

for longrange rover autonomy. Journal of Field Robotics,

27(5):534–560.

[9] X. Gao and T. Zhang. Loop closure detection for visual slam

systems using deep neural networks. In 2015 34th Chinese

Control Conference (CCC), pages 5851–5856, July 2015.

[10] E. Garcia-Fidalgo and A. Ortiz. Vision-based topological

mapping and localization methods: A survey. Robotics and

Autonomous Systems, 64(Supplement C):1 – 20, 2015.

[11] A. Giusti, J. Guzzi, D. C. Cirean, F. L. He, J. P. Rodr-

guez, F. Fontana, M. Faessler, C. Forster, J. Schmidhuber,

G. D. Caro, D. Scaramuzza, and L. M. Gambardella. A ma-

chine learning approach to visual perception of forest trails

for mobile robots. IEEE Robotics and Automation Letters,

1(2):661–667, July 2016.

[12] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Ma-

lik. Cognitive mapping and planning for visual navigation.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017.

[13] X. He, R. S. Zemel, and V. Mnih. Topological map learning

from outdoor image sequences. Journal of Field Robotics,

23(11-12):1091–1104, 2006.

[14] Y. Hou, H. Zhang, and S. Zhou. Convolutional neural

network-based image representation for visual loop closure

detection. In 2015 IEEE International Conference on Infor-

mation and Automation, pages 2238–2245, Aug 2015.

[15] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolu-

tional network for real-time 6-dof camera relocalization. In

Computer Vision (ICCV), 2015 IEEE International Confer-

ence on, pages 2938–2946. IEEE, 2015.

[16] K. Konolige, J. Bowman, J. Chen, P. Mihelich, M. Calonder,

V. Lepetit, and P. Fua. View-based maps. Int. J. Rob. Res.,

29(8):941–957, July 2010.

[17] M. Labb and F. Michaud. Online global loop closure detec-

tion for large-scale multi-session graph-based slam. In 2014

IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 2661–2666, Sept 2014.

[18] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and

N. Navab. Deeper depth prediction with fully convolutional

residual networks. In 3D Vision (3DV), 2016 Fourth Interna-

tional Conference on, pages 239–248. IEEE, 2016.

[19] S. Lowry, N. Snderhauf, P. Newman, J. J. Leonard, D. Cox,

P. Corke, and M. J. Milford. Visual place recognition: A sur-

vey. IEEE Transactions on Robotics, 32(1):1–19, Feb 2016.

[20] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard,

A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu,

D. Kumaran, and R. Hadsell. Learning to navigate in com-

plex environments. In ICLR, volume abs/1611.03673, 2017.

[21] R. Mur-Artal, J. M. M. Montiel, and J. D. Tards. Orb-slam: A

versatile and accurate monocular slam system. IEEE Trans-

actions on Robotics, 31(5):1147–1163, Oct 2015.

[22] R. Mur-Artal and J. D. Tards. Orb-slam2: An open-source

slam system for monocular, stereo, and rgb-d cameras. IEEE

Transactions on Robotics, 33(5):1255–1262, Oct 2017.

[23] T. Nguyen, G. K. I. Mann, R. G. Gosine, and A. Vardy.

Appearance-based visual-teach-and-repeat navigation tech-

nique for micro aerial vehicle. Journal of Intelligent &

Robotic Systems, 84(1):217–240, Dec 2016.

[24] D. Nister. An efficient solution to the five-point relative pose

problem. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 26(6):756–770, June 2004.

[25] A. Pfrunder, A. P. Schoellig, and T. D. Barfoot. A proof-

of-concept demonstration of visual teach and repeat on a

quadrocopter using an altitude sensor and a monocular cam-

era. In 2014 Canadian Conference on Computer and Robot

Vision, pages 238–245, May 2014.

[26] E. Rosten and T. Drummond. Fusing points and lines for

high performance tracking. In IEEE International Confer-

ence on Computer Vision, volume 2, pages 1508–1511, Oc-

tober 2005.

[27] E. Rosten and T. Drummond. Machine learning for high-

speed corner detection. In European Conference on Com-

puter Vision, volume 1, pages 430–443, May 2006.

[28] A. Singh. Vo-mono: github.com/avisingh599/mono-vo,

2015.

[29] S. Song, M. Chandraker, and C. C. Guest. High accuracy

monocular sfm and scale correction for autonomous driving.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 38(4):730–743, April 2016.

[30] B. E. Stenning, C. McManus, and T. D. Barfoot. Planning

using a network of reusable paths: A physical embodiment of

a rapidly exploring random tree. Journal of Field Robotics,

30(6):916–950, 2013.

[31] L. Tai, G. Paolo, and M. Liu. Virtual-to-real deep reinforce-

ment learning: Continuous control of mobile robots for map-

less navigation. CoRR, abs/1703.00420, 2017.

1654

[32] C. Tang, O. Wang, and P. Tan. Globalslam: Initialization-

robust monocular visual SLAM. CoRR, abs/1708.04814,

2017.

[33] K. Tateno, F. Tombari, I. Laina, and N. Navab. Cnn-slam:

Real-time dense monocular slam with learned depth predic-

tion. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), July 2017.

[34] S. Thrun and J. J. Leonard. Simultaneous Localization

and Mapping, pages 871–889. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2008.

[35] S. K. v. Es and T. D. Barfoot. Being in two places at once:

Smooth visual path following on globally inconsistent pose

graphs. In 2015 12th Conference on Computer and Robot

Vision, pages 54–61, June 2015.

[36] R. Wang, M. Schwörer, and D. Cremers. Stereo dso: Large-

scale direct sparse visual odometry with stereo cameras.

In International Conference on Computer Vision (ICCV),

Venice, Italy, October 2017.

[37] G. Wei, D. Hus, W. S. Lee, S. Shen, and K. Subrama-

nian. Intention-net: Integrating planning and deep learn-

ing for goal-directed autonomous navigation. arXiv preprint

arXiv:1710.05627, 2017.

1655

