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Figure 1: Given videos of an environment, our system can automatically process and make two services available: 3D interactive virtual

navigation and image-based localization.

Abstract

3D virtual navigation and localization in large indoor

spaces (i.e., shopping malls and offices) are usually two

separate studied problems. In this paper, we propose an

automated framework to publish both 3D virtual naviga-

tion and monocular localization services that only require

videos (or burst of images) of the environment as input. The

framework can unify two problems as one because the col-

lected data are highly utilized for both problems, 3D visual

model reconstruction and training data for monocular lo-

calization. The power of our approach is that it does not

need any human label data and instead automates the pro-

cess of two separate services based on raw video (or burst

of images) data captured by a common mobile device. We

build a prototype system that publishes both virtual navi-

gation and localization services for a shopping mall using

raw video (or burst of images) data as inputs. Two web ap-

plications are developed utilizing two services. One allows

navigation in 3D following the original video traces, and

user can also stop at any time to explore in 3D space. One

allows a user to acquire his/her location by uploading an

image of the venue. Because of low barrier of data acquire-

ment, this makes our system widely applicable to a variety

of domains and significantly reduces service cost for poten-

tial customers.

1. Introduction

3D visual models of indoor environments are useful in

applications such as navigation, virtual reality and enter-

tainment. It can provide detailed knowledge about the en-

vironment as well as contextual information for users and

allow their interactions with the environment. Monocular

localization is a relatively new rising area of study. Since

global positioning system (GPS) typically cannot commu-

nicate with the satellites inside the buildings, indoor local-

ization and navigation is still an open problem which has

potential huge impact on many commercial and public ser-

vices. Both fields have wide applications and are well stud-

ied. However, most technologies for one field are developed

independent of the other as they are considered two separate

problems. As an example, monocular localization does not

require 3D visual model and is, therefore, unrelated to vir-

tual navigation. The result of this disconnection between

the two problems is that the production pipeline for virtual

navigation cannot be utilized for monocular localization. In

short, a hybrid technology that can achieve both virtual nav-

igation and monocular localization at the same time does

not exist yet.
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Virtual navigation requires 3D models. Most early tech-

nologies for building accurate 3D models require heavy-

duty laser scanners, which are not easily accessible to aver-

age users. Second tier of 3D reconstruction technology uses

less expensive depth cameras such as Kinect [5]. Vision-

based 3D modeling is the third tier and most cost effective

method. Photo Thourism has shown 3D structures can be

recovered from photos. However, all technologies for 3D

modeling do not consider achieving the goal of monocular

localization.

Early methods for indoor localization are sensor-based

approaches, which require infrastructure installation (e.g.,

WiFi access points or beacons with known positions).

Those sensors are either densely distributed within the

scene or pre-assume initial absolute locations [10, 2]. This

implied heavy deployment cost and labor requirements at

the venue to be mapped. They also have operational limi-

tations due to them being battery powered. With the focus

shifting to minimizing infrastructure cost without compro-

mising substantially on accuracy, there have been many at-

tempts at vision-based localization. Many vision-based lo-

calization approaches require the preparation of a database

of images with their corresponding location for the venue.

Such a database usually contains only images but not a 3D

model of the venue. Localization then involves indexing in

the dataset by matching the visual appearance and/or geom-

etry. Other vision-based localization methods [18] require

significant manual labeling work to generate training data.

The key idea behind our work is built on the follow-

ing two observations. First, if vision-based localization ap-

proaches are based on a learning method that uses images

as training data, then the 3D visual model for virtual navi-

gation should be able to reuse those image data. Second, 3D

visual model contains information about how a geo-location

co-relates with an image, which should be useful for vision-

based localization. Achieving both goals and providing two

services at the same time are useful in many scenarios. Sup-

pose you get lost somewhere in a shopping mall and have

a hard time to describe where you are, and you need to go

to another store. Instead of finding shops name and looking

them up on a directory map, the easiest way to locate your-

self is to snap a photo of the store nearby. Once you are

localized, a path may be planed with the desired destination

store’s name. The navigation could then be assisted by the

virtual navigation.

Following this intuition, we present an automated frame-

work that publishes both monocular localization and 3D

virtual navigation services with simple video inputs. The

framework highly utilizes the pipeline of building 3D vi-

sual model for monocular localization, and reuses the data

from the processing results of building 3D model as the

training data for monocular localization. The main con-

tributions of our work are three folds. First, we present

an automation framework that publishes both virtual nav-

igation and monocular localization services with videos (or

burst of images) as inputs. Second, we share a new dataset

for a part of the shopping mall. Third, as an alternative

data collection method, we present a tool and method that

captures a burst of images with indoor position geotags,

and transform low accuracy discrete geotags into high ac-

curacy continuous geotags. Our data is publicly available at

https://goo.gl/j2KUrc.

2. Related Work

Since one of the main goals for our work is to solve in-

door localization, we here mainly review the related work

in this field.

The conventional indoor localization focuses mainly on

location accuracy and involves the use of custom sensors

[4, 19] such as WiFi access points and Bluetooth iBea-

cons. It requires deployment of anchor nodes in the en-

vironment and sometimes even sensors for users. For ex-

ample, a WiFi-based positioning system measures the in-

tensity of the received signal from the surrounding WiFi

access points for which the location is known. This im-

plied heavy deployment cost and labour requirements at the

venue to be mapped. The maintenance of geolocalized WiFi

dataset also requires maintenance to prevent being out-of-

date. Moreover, such localization accuracy may be varied

depending on the changes in signal strength, and only per-

forms well in the area with a sufficient number of sensors to

enable triangulation calculation.

With the focus shifting to minimizing infrastructure

cost without comprising substantially on accuracy, there

have been many attempts at vision-based localisation. Ap-

proaches of this kind mainly fall into three categories: met-

ric based, appearance based, and additional cue based. Si-

multaneous localization and mapping (SLAM) [6, 8] and

structure-from-motion (SfM) [1, 14] are metric based. They

are mainly used for mobile robot localization. Camera’s

pose are calculated based on the relative movement to the

previous position or the collection of images. Appearance

based localization provides a coarse estimate by compar-

ing visual features of the query image against the scene de-

scribed by a limited number of images with location infor-

mation. For example, using SIFT features [12] in a bag

of words approach has been proposed to probabilistically

classify the query image. Deep learning based approaches

which learn visual features automatically also belong to this

category. For example, Convnets [15] classifies a scene into

one of location labels and PoseNet [11] regresses locations

to localize the camera. Additional cue based approaches

[7, 3, 18] mainly incorporate the map data as an additional

cue into the localization framework. However, usually those

data requires heavy manual labeling labour in order to be

useful for the system. For example, [18] uses Amazon Me-
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chanical Turk (AMT) to label 3D polygons enclosing shop’s

names in the images.

The closest to our work is PoseNet [11] which use SfM

[20] as an offline tool to prepare training data and [9] to

generate a dense visualisation mainly for visualizing the re-

localisation results purpose. Our work takes it a step fur-

ther, re-using the data from 3D visual model and achieving

virtual navigation at the same time. In addition, we also

develop the localization training part in Tensorflow frame-

work and compare with PoseNet Caffe framework on the

King’s College 1 dataset and the result shows our training is

superior.

3. System Overview

In this paper, we propose an automation framework that

enables two web-based services simply with videos as in-

puts: 3D visualization and monocular localization. Figure 2

illustrates the automation framework. It takes videos of a

venue as input and provides two web services for the venue

as output. The core components of the framework contain

two production engines and one process monitor engine.

The 3D reconstruction engine mainly contains SfM meth-

ods to generate 3D visual model and image data labeled

with camera pose information. The localization training

engine takes labeled data prepared by the 3D reconstruc-

tion engine as the training data to train a recognition model

using machine learning algorithms. Subsequently, the pro-

cess monitor engine coordinates the production, monitors

the process, and publishes web services once required data

is available.

Below we describe the implementation details of two

production engines and the process monitor engine.

3.1. 3D reconstruction engine

It implements a series of SfM algorithms [20] that take a

set of images as input and computes a 3D point cloud, back-

calculated camera positions in 3D space for all images, and

a 3D dense visual model as output. The images could come

from sampled video frames or captured by our in-house de-

veloped tool. SfM algorithms mainly include feature ex-

traction and matching, back-calculation of 3D position for

each pixel in images, minimal solvers, and camera pose in-

cluding position and orientation for each image. When geo

position (e.g., indoor position) measurements are available

for images (e.g. captured by in-house developed tool), then

the 3D model can be registered with the corresponding geo-

location.

For this part, we compared two different SfM produc-

tion pipelines, vsfm [9] and OpenMVG [13]. After exper-

iments, we discover that OpenMVG is superior to vsfm in

1The dataset is available on PoseNet project webpage:

mi.eng.cam.ac.uk/projects/relocalisation/

Figure 2: Detailed system overview: the system accepts videos

as inputs and provides two services: 3D visualization and image-

based localization. The core components of the framework con-

tains two production pipelines, 3D reconstruction engine and lo-

calization training engine

terms of 3D reconstruction speed, accuracy, ease of code ex-

tension and automation integration. After comparison, we

employed OpenMVG as part of 3D reconstruction engine

and integrated into our system prototype. We present the

comparison results in the experiment part.

3.2. Localization training engine

This part could be any machine learning method that

takes a set of labeled data (e.g. our prototype uses images

labeled with corresponding camera pose information) as in-

put and trains a recognition model for monocular localiza-

tion service.

In our prototype, we use Tensorflow framework to de-

velop the model for deep regression of camera pose pro-

posed in PoseNet [11]. Unlike PoseNet which uses Incep-

tion v1 [16] as a basis for developing pose regression net-

work, we employed Inception v3 [17] as the basis. We mod-

ify the Inception v3 similar to the way PoseNet proposed as

follows:

• Because Inception v3 has only one auxiliary classi-

fier, we replace all two softmax classifiers with affine

regressors. The sofmax layers were removed, and

the final fully connected layer was changed to 7-

dimensional pose vector representing position (3) and

orientation (4).

• Insert fully connected layer before the regressors of

feature size 2048 both on the final classifier and auxil-

iary classifier.

Because we use video data which was taken in portrait

mode as our training data, we only rescaled the input im-
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age to 224× 224 resolution without random cropping. This

could help us avoid training with images cropped to contain

mainly floors or ceilings of the shopping mall. At test time,

we evaluate an image also by rescaling it to 224×224 pixel

size.

Like many deep learning applications which apply

“transfer learning” for training classifiers. We applied trans-

fer learning by training with Places2052 dataset first. Be-

cause there is not a pre-trained model available for Incep-

tion v3, we trained it with Places205 dataset from scratch.

Our submission shows 0.5961 top 1 accuracy and 0.8837

top 5 accuracy. The model is then further trained with our

own shopping mall data.

3.3. The process monitor engine

This engine controls the processing order, preparation of

data for the production pipeline and web services, and se-

rialization of data to backend server. The process is con-

trolled so that localization training engine will be synchro-

nized with the availability of input data from the 3D recon-

struction process. There are four kinds of controls in the

process monitor engine:

• Preparation of input data for 3D reconstruction engine:

This is a control script that extracts image frames from

video inputs at a predefined frequency (e.g. two frames

per second). Once the 3D reconstruction process is

completed, the script serializes new information such

as point cloud, camera positions, and 3D model to the

backend data server.

• Preparation of data for 3D visualization service: When

the 3D visual model is available, this script converts

model into a format that can be visualized on web

browser. Potree is applied for visualizing models on

web browser.

• Preparation of input data for localization training en-

gine: This script prepares the training data for the lo-

calization training engine. The training data includes

image frames extracted from videos, and a file describ-

ing the camera pose information, which includes data

on the position and orientation for each image. The

camera pose information is saved to the backend data

server as part of the processing results from the 3D

reconstruction engine. Once the training process has

completed, the script also serializes new information,

such as recognition model, to the server.

• Preparation of data for monocular localization service:

When the recognition model is available, this script

publishes an image-based localization service by load-

ing the recognition model. The service outputs a pre-

2http://places.csail.mit.edu/downloadData.html

dicted camera pose including position and orientation

by giving an image of the venue.

4. Dataset

We have two means of collecting data. One is captur-

ing raw video data from a mobile phone camera. Another

one is using an in-house developed tool which captures a

burst of images with corresponding geotag information. Al-

though we only use video data in our prototype, the later

one which collects data with geolocation information may

be more useful in many applications, such as aligning a vi-

sual model with the corresponding floor plan.

4.1. Video data

We collected a new dataset for a shopping mall named

Metrotown in Vancouver. In order to capture variance of

appearance, illumination, and lighting changes, we visited

the mall in a few different times spanning from April to Au-

gust in 2017. We recorded 12 video sequences for the same

section of the shopping mall with an iPhone 7 device and

took different paths in order to cover a complete view of the

section. This video is then sub-sampled at 2Hz frequency

to generate images which are used as input to the 3D re-

construction engine. In total there are 1882 images, and we

split them into 1247 training images, and 635 testing im-

ages. Figure 3 illustrates sampled video frames, 3D visual

model from SfM pipeline, and back-calculated camera pose

for each sampled image. Our data is publicly available at

https://goo.gl/j2KUrc.

4.2. Burst of images

As an alternative way of data collection, we also devel-

oped a tool for taking burst of images with geolocation in-

formation which is saved in image’s geotag. The tool has

features including setting capture rate and resolution, blurry

image indicator that may indicate the user is moving too

fast, and indoor position selection such as GPS, WiFi net-

work, or radio maps. Figure 5 shows screen shots of the

tool.

One problem we find while capturing images with this

tool is that geotags generated through sensor technologies

relying on Bluetooth beacons or RFID tags can be error

prone due to limitations in the technology. For example,

for three continuous walking paths along an indoor corri-

dor, as shown in Figure 4a, geotags recorded via Bluetooth

sensors create a radio map of discrete locations, as shown

in Figure 4b. In order to correct erroneous geotags, we pro-

pose extrapolate geotags for images according to their vir-

tual camera positions computed through SfM pipeline. This

is a two-step process:

• Compute virtual camera position by SfM pipeline. In

SfM pipeline, the first step is the extraction and match-
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(a) Sample video frames (b) 3D model (c) Camera poses

Figure 3: Original video data and processed resulting data

(a) Office view (b) Collected Geotags are in discrete (c) Transformed Geotags are in continuous

Figure 4: Data collection by the burst image capturing tool. (a) Continuous images are taken at 2 frames/second using an internally

developed image-capturing tool on an Android device held by the operator walking along the office corridor. The red lines in the image

represent three different walking paths, and the arrow represents the direction of travel. (b) Captured images are grouped according to the

recorded geotag, which shows their positions are in discrete rather than continuous. An image is represented by a tetrahedron. (c)After

transformed, the camera positions are labeled with continuous Geotags.

(a) Preview screen (b) Settings screen

Figure 5: Screen shots of the function features developed in the

tool.

ing of features within the images taken at the same

venue or scene. This is done using a Scale Invariant

Feature Transform (SIFT ) algorithm. An image fea-

ture is an area of image texture containing patterns that

is likely to be recognized in other images, such as lo-

gos and patterns with strong color contrast. The sec-

ond step is matching these features across an image

set. A sparse point cloud where each point in the im-

age is back projected in a 3D space in addition to the

back-calculated position and orientation of the virtual

cameras for these images are computed.

• Extrapolate geotags for images according to their vir-

tual camera positions. Once the continuous virtual

camera positions are available, geotags of the selected

images are used to calculate a transformation model

between their virtual camera positions and geo loca-

tions. Different algorithms can be used to compute the

transformation. For example, RANSAC can estimate

a 3D similarity transformation X 0 = S ∗ R ∗ X + T .

Once calculated, the transformation model is applied

to the rest of geotags to correct their location errors.

The resulting corrected geotags are illustrated in Fig-

ure 4c.

5. Experimental results

In this section, we present our experiment results on lo-

calization accuracy, and comparison of OpenMVG to vsfm.

We also demonstrate two web services published using our

prototype, virtual navigation and monocular localization.

5.1. Comparison of localization accuracy

We show that our implementation performs better than

PoseNet on localization accuracy. We present our exper-
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