This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Multi-scale Voxel Hashing and Efficient 3D Representation for Mobile
Augmented Reality

Yi Xu

Yuzhang Wu

Hui Zhou

JD.COM Silicon Valley Research Center, JD.COM American Technologies Corporation
Mountain View, CA, USA

{yi.xu, yuzhang.wu, hui.zhou}@jd.com

Abstract

In recent years, Visual-Inertial Odometry (VIO) tech-
nologies have been making great strides in both research
community and industry. With the development of ARKit
and ARCore, mobile Augmented Reality (AR) applications
have become popular. However, collision detection and
avoidance is largely un-addressed with these applications.
In this paper, we present an efficient multi-scale voxel hash-
ing algorithm for representing a 3D environment using a set
of multi-scale voxels. The input to our algorithm is the 3D
point cloud generated by a VIO system (e.g., ARKit). We
show that our method can process the 3D points and con-
vert them into multi-scale 3D representation in real time,
while maintaining a small memory footprint. The 3D repre-
sentation can be used to efficiently detect collision between
digital objects and real objects in an environment in AR ap-
plications.

1. Introduction

Mobile AR technologies use a mobile phone’s camera
and its display to provide live view of the surrounding phys-
ical environment, which is then “augmented” by computer-
generated elements (e.g., digital objects) [3, 6, 17]. A key
component of mobile AR is monocular Simultaneous Lo-
calization and Mapping (SLAM), which constructs and up-
dates a map of an unknown environment while simultane-
ously keeping track of the camera pose.

Without additional knowledge of the scene geometry,
monocular SLAM approach usually relies on structure-
from-motion (SfM) to bootstrap camera tracking. SfM
methods reconstruct an initial structure of the scene and re-
cover camera pose at the same time. However, these re-
constructions are up to an arbitrary scale. With the recent
advancement of sensor fusion technology, Visual-Inertial
Odometry (VIO) becomes mature enough for commercial
use. Two most prominent examples are Apple’s ARKit and

Google’s ARCore platforms. By fusing visual and inertial
sensor information, metric scale of the environment can be
estimated. With accurate camera tracking and scale estima-
tion, ARKit and ARCore allow seamless blending of digital
objects into the physical environment. There are already
many mobile AR applications running on these two plat-
forms in different fields (e-commerce, gaming, education,
etc.) that leverage such capability.

However, one important issue that has not been ad-
dressed by these systems is collision detection and avoid-
ance between digital objects and real physical objects in the
environment. Without such function, once digital objects
are placed in the physical environment, they can be moved
around freely in the space mapped from the real physical
environment. This can cause digital objects and real ob-
jects occupy the same physical space; leading to unrealistic
perception. Conventional approaches for collision detec-
tion and avoidance do not meet the need for mobile AR ap-
plications as 1) the computation and memory constraint of
mobile phone as well as the real-time requirement for mo-
bile AR application are both strict; 2) most AR applications,
which run on third party proprietary AR platforms such as
ARKit or ARCore, cannot access the complete 3D recon-
struction information from the AR platforms.

To solve this problem in an efficient way on mobile de-
vices, we developed a multi-scale voxel hashing algorithm
(Fig. 1). Our method takes the 3D points generated by a
monocular SLAM system as input and uses a hash map to
store the data into voxels. Nearby points might be repre-
sented by a common voxel. We perform bottom-up merging
of voxels in order to reduce total memory footprint. More-
over, since the voxel hashing scheme implicitly removes re-
dundant 3D points, point correspondence between frames
is not required to identify repeating points. This allows our
method to work with ARKit and ARCore, where such cor-
respondence data is proprietary and not accessible to devel-
opers.

The rest of the paper is organized as follows. Section
2 discusses the related work in monocular SLAM and 3D

1618

(d)

Figure 1. Multi-scale voxel representation for point cloud data generated by ARKit. (a) A panorama of an office kitchen scene. (b) Side-
view of the sink area with voxels superimposed on the scene and rendered with random red/yellow/green color. (c) Front view of the sink
area with voxles superimposed. (d) Top-down view of the entire voxel representation. (e) Close-up view of the trash bins and nearby floor

with voxels superimposed. (f) A front view of the refrigerator area.

reconstruction, collision detection for AR applications, and
our contributions. Section 3 details our multi-scale voxel
hashing algorithm. Section 4 presents our implementation
and experiments. Concluding remarks and discussion on
limitations and future work are provided in Section 5.

2. Related Work

Our work uses point clouds generated by monocular
SLAM algorithm as input. In addition, our method borrows
ideas from 3D reconstruction, especially online reconstruc-
tion algorithms. However, the objective is not to reconstruct
a detailed model of real objects. Finally, we enable collision
detection in AR applications. In this section, we discuss re-
lated work in monocular SLAM, 3D reconstruction using
point cloud data, and collision detection in AR.

2.1. Monocular SLAM

Monocular SLAM is the problem of localization and
mapping of the environment using a single camera. It has
many applications in robot navigation, mobile entertain-
ment, e-commerce, etc. Early work solves the monocular
SLAM problem by using filtering techniques to jointly es-
timate 3D map point locations and camera poses [8]. Key-

frame based approaches achieve higher accuracy than filter-
ing methods by performing more computationally intensive
Bundle Adjustment (BA) optimization. Among many key-
frame based approaches, PTAM is the most prominent one
[13]. For first time it introduced the idea of running track-
ing and mapping in parallel threads and achieved impres-
sive results for tabletop AR applications. Another excellent
and complete SLAM system is ORB-SLAM [19], which
is capable of performing localization, mapping, loop clos-
ing, and relocalization for large environments in real time.
ORB-SLAM uses ORB features [23] to perform feature de-
tection and tracking. Both PTAM and ORB-SLAM are
feature-based. They apply optimization over feature points
in the scene that are detected by feature detectors. On the
contrary, LSD-SLAM applies direct optimization over im-
age pixels to achieve similar results in real time [10]. All
the above SLAM approaches use visual sensor only; thus
they cannot obtain metric scale reconstruction of the en-
vironment. Recently, CNN-SLAM fuses dense depth esti-
mation form Convolutional Neural Networks (CNNs) and
sparse depth from direct monocular SLAM [24]. CNN-
SLAM also mitigates the scale ambiguity problem because
absolute scale of the objects can be learned from examples.

1619

The scale ambiguity can also be solved by VIO meth-
ods, which incorporate inertial sensors into the optimiza-
tion formulation. By integrating the acceleration measure-
ments from IMUs, camera translation between frames can
be roughly estimated and further optimized using visual in-
formation. Earlier work in VIO includes Extended Kalman
Filtering based [16] and keyframe-based [5] approaches.
A recent work that can be implemented on smart phones
is VINS-MONO [22]. By incorporating both visual mea-
surements and IMU measurements in a joint optimization
framework, VINS-MONO not only can perform real time
tracking and mapping, but also achieves metric reconstruc-
tion of the scene. More recently, the releases of Apple’s
ARK:it [2] and Google’s ARCore [| 1] allow commercial ap-
plication development on iOS and Android systems.

2.2. 3D Reconstruction

Our approach also borrows ideas from research work in
3D reconstruction, especially online reconstruction. Un-
like offline methods, online approaches aim to fuse range
data incrementally into a consistent 3D representation. One
approach is to use a point-based representation for the 3D
geometry that ignores connectivity information. The point
cloud captured by 3D sensors can be registered together
with the already reconstructed 3D model. Loop closure is
addressed to make sure reconstruction errors do not accu-
mulate. This type of approach has been applied to small
scale objects [25] and large scale indoor environments [12].
The point-based representation is memory intensive and
does not allow for easy collision computation. In such
cases, additional space partition data structure (e.g., octree)
might be needed.

An alternative approach uses a volume-based represen-
tation. The seminal work by Curless and Levoy [7] con-
verts depth samples into signed distance field and stores
the values in a regular voxel grid. Surfaces can then
be extracted from the volumetric data using isosurfacing
method. KinectFusion [20] extends the volumetric ap-
proach to achieve real-time 3D reconstruction using Kinect
sensor. NieBner et al. [21] adopt a spatial hashing scheme
to access and update surface data in real time. Their system
allows 3D reconstruction at large and fine scale.

2.3. Collision Detection in AR

Collision detection for Augmented Reality has been
studied for more than 20 years. In his work, Aliaga [!]
implemented collision detection and response between vir-
tual objects and real objects by manually creating a digital
model for the real environment. Collision is detected be-
tween the digital model of the environment and virtual ob-
jects. Breen et al. [5] tried to solve this problem by register-
ing the camera image with a known 3D model of the envi-
ronment and by using depth estimation from stereo camera

pair. These methods do not work with monocular SLAM
system where the geometry of the environment is unknown.
Decker et al. [9] proposed a method to detect collision in
the free-viewpoint video setting. However, they use multi-
ple calibrated cameras. Using monocular camera, Lee et al.
[14] proposed an image-based method to detect collision
between a user’s hand and virtual objects; but collision in
3D space is not addressed. To the best knowledge of the au-
thors, ours is the first method that implements 3D collision
detection for Augmented Reality applications.

2.4. Our Contributions

Building on top of SLAM systems, our approach is ca-
pable of processing the 3D sparse point cloud captured by
such systems. Our approach also enables collision detec-
tion and avoidance, which has a significant impact on the
realism of an AR application. In addition, our method can
work with other types of range scanners if the pose of the
scanning device can be tracked in real time, either using an
external device or using a range-based SLAM algorithm.
The fine models created by 3D reconstruction methods can
be used for collision detection and avoidance; however, a
detailed 3D reconstruction is not only computationally ex-
pensive but also unnecessary. We choose to represent the
3D environment using a set of multi-scale voxels for mo-
bile AR applications.

Our contributions are:

1. An efficient 3D representation using sparse point sets
generated by VIO systems as input.

2. A multi-scale bottom-up merging scheme that effec-
tively merges voxels together and reduces memory
footprint.

3. An easy-to-implement collision detection and avoid-
ance approach for mobile AR applications.

3. Our Approach

We extend the voxel hashing scheme and apply that to
the sparse point cloud data generated by a VIO system; al-
lowing for easy and fast collision detection and avoidance
between digital objects and real objects in AR applications.

For sparse point data, using a regular grid for storage
is not effective because most of the voxels will be marked
as empty. A hierarchical data structure will alleviate this
problem, but it is still computationally expensive. More-
over, isosurfacing from sparse volumetric data is impracti-
cal. We use a spatial voxel hashing scheme similar to the
one used in [21]: a hash key is computed for each point us-
ing its integer coordinates and voxel data is then stored in
a hash table. With such a hashing mechanism, the number
of voxels still increases with the number of input 3D points.
When an area of the scene contains rich textures, there will

1620

be many entries in the hash table. This limits the capabil-
ity of performing certain tasks such as collision avoidance.
Each small voxel has to be tested against the digital ob-
ject to detect collision. To solve this problem, we propose
a multi-scale bottom-up merging procedure that can effec-
tively merge voxels together to reduce memory footprint.

3.1. Voxel Hashing

For each point, we map the integer components of the
point’s 3D world coordinates to a hash value using the for-
mula [21]:

H(z,y,2) = (xxpr @y*p2®zxp3z)modn (1)

where p1, po, and ps3 are large prime numbers, n is the
number of slots in the hash table, and & is exclusive OR op-
erator. If the integer components of coordinates have lim-
ited number of digits, we multiply the coordinates by a scal-
ing integer S. For example, in ARKit, coordinates are spec-
ified in meters; therefore, measurements have 0 or 1 digit of
integer. We use S = 100 to scale the world coordinates of
3D points. After rounding, points with the same integer co-
ordinates are represented implicitly by a voxel, whose size
is 1cm®. When multiple voxels map to the same hash key
value, hash table collision happens. To handle this, at each
hash table slot, we store a linked list of voxel entries. When-
ever a new voxel entry is created, it is inserted to the end of
the list at the corresponding hash table slot.

Each voxel entry contains the integer coordinates
(x,y, z), which correspond to the coordinates of the vertex
that is closest to the origin. Each voxel also stores a den-
sity value d, which equals to how many points are bounded
by this voxel. The density value d can be used to filter out
voxels that contain a small number of points (e.g. d < 50)
during collision computation; thus removing possible out-
liers produced by VIO system.

3.2. Multi-scale Voxel Representation

The minimum size of a voxel m,, can be controlled by
the scaling integer S. For example, S = 100 corresponds to
m, = lcm, while S = 10 corresponds to m,, = 10cm. A
small S value leads to large voxel size and a large S value
leads to small voxel size. If the m,, is too small, we run into
the risk of large memory footprint and higher computational
cost for collision detection and avoidance. If m,, is too big,
the resulting 3D representation might be over simplified and
not tight enough. To mitigate this problem, we introduce a
multi-scale voxel hashing representation.

The key idea is to include a level value [at each voxel.
This allows us to store voxels of different sizes in the hash
table. For an input 3D point, we first compute its hash key
using Equation. 1. Then we perform a linear search on the
list of voxel entries indexed by the hash value and check if

the point is already encompassed by any voxel. If a voxel
is not found, we create a new voxel at the smallest scale
for this point. In the voxel, we store the integer coordinates
(z,y, z) and its scale level [= 0.

Once the voxel is added to the hash map, we use a re-
cursive procedure to merge neighboring voxels into higher
level voxels. A straightforward way is to merge uniformly
along three axes. If all 8 voxels that form a voxel at the
next level are all present in the hash map, we remove the
8 voxels and insert a new voxel at the higher level into the
hash map (Fig. 2a). The density of the new voxel is the sum
of all densities from the 8 smaller voxels. This procedure
is repeated until no more voxels can be merged or a pre-
defined maximum level of voxel is reached. For any voxel,
the 7 buddy voxels that form a voxel at the next level can be
easily located from the hash map using integer division and
multiplication.

In reality, this method is not efficient because it requires
all 8 voxels to be present before we can merge them. This is
especially not practical for surface data where the interior of

° VTZ: °
° x ° °

(] (]
£ O,
o] . °
(<] be (2] ©
° ° °
© °
voxels: voxels:
{0,0,0,0,2} {0,1,0,0,2} {0,0,0,1,12}
{1,1,0,0,1} {1,0,0,0,1}
{0,0,1,0,1} {0,1,1,0,1}
{1,1,1,0,2} {1,0,1,0,2}
(a
(0] o o o
) 9 0 (0]
o — 0o
O| o (0] P
O (o]
voxels: voxels:
{0,0,0,0,0,0,24{0,1,0,0,0,0,2 10,0,0,1,1,0,6}
{1,1,0,0,0,0,1}{1,0,0,0,0,0,1 10,0,1,0,0,0,1}
{0,0,1,0,0,0,1}{1,0,1,0,0,0,1 11,0,1,0,0.0,1}

(b)

Figure 2. Multi-scale voxel merging. (a) Uniform merging along
three axes. Each voxel is stored as a 5-tuple: {z,y, z, [, d}, which
represents coordinates, scale of the voxel, and density. (b) Non-
uniform merging. Each voxel is a 7-tuple: {z,y, z,ls,1y, 1., d},
which represents coordinates, scale along each of the three dimen-
sions, and density.

1621

the scene is not visible. To solve this problem, we use a dif-
ferent scale level for each of the three dimensions: I, [, .
After a new voxel is inserted into the hash table, we merge
the 4 voxels that form a voxel at the next level on 2 out of
the 3 dimensions if possible (Fig. 2b). For example, if 4
voxels that form a larger voxel with X, Y dimension at level
1 but Z dimension at level 0, we proceed to merge these 4
voxels and insert a new voxel with [, = 1,1, = 1,1, = 0.
In case there are more than one options of merging (e.g., the
bottom 4 voxels can also be merged in Fig. 2b), we simply
choose one and ignore the others. Since this can only hap-
pen at the intersection of two planes, it will not have a large
impact on the performance. Planar structures that are ap-
proximately axis-aligned can be effectively represented by
our approach. The 3 buddy voxels can also be located from
the hash map easily.

We can also allow merging two voxels along one axis. In
this way, a thin long structure can be represented using our
approach. In experiments, we found that it does not improve
the performance much.

Optionally, we can adjust the criterion for merging vox-
els to allow for more flexibility. For example, when 3 out of
4 voxels that form a voxel at the next level are present in the
hash table, we create a new voxel and remove the 3 voxels
from the data structure.

3.3. Align Voxels with Room Orientation

One limitation of our voxel representation is that the vox-
els are axis-aligned; i.e., they are aligned with the coordi-
nate axes of the space; and these axes are not necessarily
aligned with room orientation. They depend on the initial
orientation of the mobile device when VIO system boot-
straps camera tracking. The merging process looks for pla-
nar structures along the three axes; therefore if the voxels
are not aligned with the room orientation, the bottom-up
merging process cannot effectively reduce the total number
of voxels.

To solve this problem, we use vertical plane detection to
estimate the orientation of a room. In our AR application,
we guide the user to scan the part of the scene with strong
presence of vertical surfaces. Then, from the reconstructed
3D points, we use RANSAC to robustly estimate a plane
that is perpendicular to the ground plane. The ground plane
orientation can be estimated by motion sensing hardware
on a mobile phone. When the number of inliers of the ver-
tical plane is larger than a threshold, we use the normal of
the plane as the new X -axis and transform all captured 3D
points into the new coordinate system. A simple rotation
is sufficient because the Y-axis always points to the oppo-
site direction of gravity as detected by the motion sensing
hardware in a VIO system like ARKit or ARCore.

3.4. Collision Detection

Collision detection can be efficiently computed using our
multi-scale voxel representation. A digital object can be
represented by a bounding box, a set of bounding boxes, a
bounding cylinder, or even a set of polygons or voxels. At
real time, the geometry is compared against all the multi-
scale voxels. Because the voxels are all box-shaped, col-
lision can be efficiently detected. For example, to detect
collision between two boxes, we only need to check if two
boxes overlap at all three dimensions, each requires 2 com-
parisons. This results in only 3 * 2 = 6 comparisons. In our
implementation, for robustness, a collision is detected only
when the number of collided voxels with the digital object
is larger than a threshold (e.g., 10).

In typical ARKit or ARCore applications, a horizontal
support plane (ground or table surface) is first determined.
Then a digital object is placed on the support plane for view-
ing and interaction. During collision detection, we omit
those voxels which are close enough to the object support
plane; otherwise, feature points from this plane will lead to
unintended collision with the digital object.

4. Experimental Results

To validate our approach, we implemented our algorithm
in C++ and an iOS application using ARKit and Object C.
We tested our application on iPhone 8. The VIO algorithm
of ARK:it runs at 60 fps and produces dozens to hundreds
of 3D points per frame depending on the complexity of the
scene. Our algorithm processes these 3D points and inserts
them into multi-scale voxel hash data structure in real time.

We tested our approach on 4 different scenes including
an office kitchen, a storage room, a table, and a conference
room. We also captured a sequence of point clouds and im-
ages for each scene to process offline. Inter-point distance
varies for different scenes. When a scene is closer to the
camera, the reconstructed points are closer to each other;
thus requiring smaller voxels to better approximate the ge-
ometry of the scene. We estimate the scene depth from a
sequence of initial frames and use the depth to determine
the minimal voxel size m,. In our system, we use the fol-
lowing empirically determined thresholds:

2cem; D < 0.75m
4dem; 0.7bm < D < 1m 2)
8cem; D > 1m

my, =

where D is the initial scene depth.

In each case, our method can efficiently process the in-
coming 3D points generated by ARKit and convert them
into multi-scale voxels in real time. Table 1 shows the re-
sults. We list capture time, number of total 3D points re-
constructed by ARKit, number of voxels reconstructed by

1622

Scene

| Kitchen | Storage Room | Table | Conference Room |

Capture Time (sec) 22.8 64.9 62.6 36.3
Number of 3D Points | 276,137 594,096 465,637 40,796
Number of Voxels 4,026 7,808 853 387

Min. Voxel Size (cm) 4 4 4 8
Compression Ratio 82.3 91.3 655.1 126.5
Memory (kB) 39.3 76.25 8.33 3.78
Table 1. Results of our approach applied to different scenes.
| Total Capture Time | 30s | 60s | 120s | 240s |
Number of 3D Points | 107,730 | 172,649 | 315,339 | 544,110
Number of Voxels 2,215 2,885 3,749 4,542

Table 2. Increasing capture time on the Kitchen scene.

| Kitchen | Storage Room | Table | Conference Room |

\ Scene
Single Scale Representation | 6,278
Multi-Scale Representation 4,026
Reduction 35.9%

13,569 1,251 631
7,808 853 387
42.5% 31.8% 38.7%

Table 3. Compare number of reconstructed voxels using multi-scale and single scale schemes.

e
x
S

>

-]

=

Figure 3. Multi-scale voxel representation for the storage room scene. (a) Complete view of the storage room with voxel representation
superimposed. (b) A different view of the left side of the room. (c) A different view of the right side of the room.

our algorithm, and minimal voxel size used by our algo-
rithm. We also listed compression ratio, which is the ratio
between storage required for all 3D points (float point co-
ordinates) to the storage required for multi-scale voxel data
structure. Each voxel entry requires 3 bytes for integer coor-
dinates (x,y, z), 3 bytes for I, [, [scales, and 4 bytes for
density. For less complex scenes, such as Table and Con-
ference Room, the compression ratio is much larger than
complex scenes like Kitchen and Storage Room. It is worth
noting that VIO systems like ARKit do not provide inter-
frame correspondence information to developers; therefore,
the 3D points are largely redundant, and the total number of
points is much larger than the actual features in the scene.

Fig. 1 shows a panorama of the office kitchen scene and
the reconstructed voxel structure from a few different view-
points. Fig. 3 shows several pictures captured by an iPhone
running our AR application and with reconstructed voxels
superimposed on the view. Fig. 4 shows a picture of the ta-
ble top scene (top) and the same scene with our multi-scale
voxel representation superimposed (bottom). As illustrated,
our approach can build a 3D representation of the scene in
real time.

Our approach scales well with increasing number of 3D
points when the AR application runs for longer period of
time. To show this, we increase the running time from
30 seconds to 240 seconds and record the total number of

1623

Figure 4. Multi-scale voxel representation for the table top scene.
a) Top image shows a photo of the scene. b) The bottom image
shows voxel representation.

points generated by ARKit and number of reconstructed
voxels for the Kitchen scene (Table 2). The minimal voxel
size was set to be 8cm. While the number of points in-
creases approximately linearly with capture time, the num-
ber of reconstructed voxels grows at a much slower rate.

To test the effectiveness of our bottom-up merging
scheme, we apply our voxel hashing algorithm with and
without multi-scale processing. The results are shown in
Table 3, where we list the number of reconstructed voxels
using single scale (first row) and multi-scale (second row)
schemes. Our multi-scale scheme reduces total memory
footprint consistently by 30% to 40%.

We implemented collision avoidance in our AR applica-
tion. When a user interacts with the digital object during
AR view, we detect collision in real time using the overlap-
ping bounding box approach described in Section 3.4 and
stop the movement of the digital object if potential collision
is detected.

Fig. 5 shows collision detection results using our ap-
proach. We “move” the virtual objects towards the obsta-
cles and show the rendering results from the mobile phone.
On the left images, we superimpose the voxel representa-
tion to illustrate that the collision is well detected using the
voxels. The video accompanying this paper shows collision
detection and avoidance implemented on iOS device using
ARKit.

(b)

Figure 5. Collision detection and avoidance using our approach.
(a) Collision between virtual table and real objects in the storage
room with voxel representation superimposed (left) and without
(right). (b) Collision between virtual coffee cup and real objects
on the table.

5. Conclusion and Future Work

In this paper, we present an efficient algorithm that can
process 3D sparse point sets generated by a mobile VIO
system (e.g., ARKit and ARCore). Our approach is capable
of transforming the 3D point cloud data into a multi-scale
voxel hash structure with real-time performance. Our data
structure requires a small memory footprint, scales well
with increasing capturing time, and supports efficient colli-
sion detection for mobile Augmented Reality applications.
Moreover, our approach does not require point correspon-
dence between frames. This allows our method to work
with ARKit and ARCore, where such correspondence data
is proprietary and not accessible to developers.

One of the limitations is that we assume a static scene.
Thus our method can not detect collision between virtual
objects and moving real objects. This is because the struc-
ture of moving objects cannot be reliably recovered by a
monocular SLAM algorithm. Another limitation is that our
method relies on the feature points detected by feature de-
tectors; thus our method does not work with texture-less
surfaces within the scene.

In the future, we would like to improve our approach in
several aspects. Right now, the minimal voxel size is deter-
mined using estimated scene depth from an initial sequence
of frames. In the future, we want to explore dynamically
adjusting the minimal voxel size based on the current scene

1624

depth. Second, the proposed algorithm uses plane detec-
tion to estimate the orientation of the room so that voxels
are aligned with the major vertical surfaces in the scene. In
the future, we want to explore the possibility of adding ori-
entation to the voxels to better approximate surfaces with
different orientations. Finally, we would like to explore the
possibility of using image data to better infer 3D surface in-
formation. For example, superpixel can be used to recover
piecewise-planar surfaces [4]. Another possibility is to re-
construct more 3D points for weakly-textured areas using
an advanced feature descriptor [18].

Acknowledgement

The authors would like to thank the reviewers for their
insightful comments and detailed reviews. The authors
would also like to thank JD’s AR/VR product development
team for inspiring discussions.

References

[1] D. G. Aliaga. Virtual and real object collisions in a merged
environment. Proc. Virtual Reality Software and Technology
'94, pages 287298, 1994. 3

Apple Inc. Arkit - apple developer, 2018.
developer.apple.com/arkit/. 3

C. Arth, R. Grasset, L. Gruber, T. Langlotz, A. Mulloni, and
D. Wagner. The history of mobile augmented reality. arXiv
preprint arXiv:1505.01319, 2015. 1

A. Bodis-Szomortd, H. Riemenschneider, and L. V. Gool.
Fast, approximate piecewise-planar modeling based on
sparse structure-from-motion and superpixels. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 469-476, June 2014. 8

D. E. Breen, R. T. Whitaker, E. Rose, and M. Tuceryan. In-
teractive occlusion and automatic object placement for aug-
mented reality. Computer Graphics Forum, 15(3):11-22,
1996. 3

D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui. Mobile
augmented reality survey: From where we are to where we
go. IEEFE Access, 5:6917-6950, 2017. 1

B. Curless and M. Levoy. A volumetric method for build-
ing complex models from range images. In Proceedings of
the 23rd Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH 96, pages 303312, New
York, NY, USA, 1996. ACM. 3

A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. [EEE
Transactions on Pattern Analysis and Machine Intelligence,
29(6):1052-1067, June 2007. 2

B. D. Decker, T. Mertens, and P. Bekaert. Interactive
collision detection for free-viewpoint video. In GRAPP
2007, Proceedings of the Second International Conference
on Computer Graphics Theory and Applications, Barcelona,
Spain, March 8-11, 2007, Volume AS/IE, pages 114-120,
2007. 3

[2] “https://

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

1625

J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-
scale direct monocular SLAM. In European Conference on
Computer Vision (ECCV), September 2014. 2

Google Inc. Arcore overview, 2018. “https://
developers.google.com/ar/discover/. 3

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-
D mapping: Using Kinect-style depth cameras for dense 3D
modeling of indoor environments. The International Journal
of Robotics Research, 31(5):647-663, 2012. 3

G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In 2007 6th IEEE and ACM Interna-
tional Symposium on Mixed and Augmented Reality, pages
225-234, Nov 2007. 2

D. Lee, S. G. Lee, W. M. Kim, and Y. J. Lee. Sphere-to-
sphere collision estimation of virtual objects to arbitrarily-
shaped real objects for augmented reality. Electronics Let-
ters, 46(13):915-916, June 2010. 3

S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Fur-
gale. Keyframe-based visual-inertial odometry using nonlin-
ear optimization. 34, 02 2014. 3

M. Li and A. I. Mourikis. High-precision, consistent EKF-
based visual-inertial odometry. Int. J. Rob. Res., 32(6):690—
711, May 2013. 3

H. Ling. Augmented reality in reality. [EEE MultiMedia,
24(3):10-15,2017. 1

G. Lu, L. Nie, S. Sorensen, and C. Kambhamettu. Large-
scale tracking for images with few textures. IEEE Transac-
tions on Multimedia, 19(9):2117-2128, Sept 2017. 8

R. Mur-Artal, J. M. M. Montiel, and J. D. Tards. ORB-
SLAM: A versatile and accurate monocular SLAM system.
IEEE Transactions on Robotics, 31(5):1147-1163, Oct 2015.
2

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and
A. Fitzgibbon. KinectFusion: Real-time dense surface map-
ping and tracking. In 2011 10th IEEE International Sympo-
sium on Mixed and Augmented Reality, pages 127-136, Oct
2011. 3

M. NieBner, M. Zollhofer, S. Izadi, and M. Stamminger.
Real-time 3D reconstruction at scale using voxel hashing.
ACM Trans. Graph., 32(6):169:1-169:11, Nov. 2013. 3,4
T. Qin, P. Li, and S. Shen. VINS-Mono: A robust and versa-
tile monocular visual-inertial state estimator. arXiv preprint
arXiv:1708.03852, 2017. 3

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:
An efficient alternative to SIFT or SURF. 1In 2011 Inter-
national Conference on Computer Vision, pages 2564-2571,
Nov 2011. 2

K. Tateno, F. Tombari, I. Laina, and N. Navab. CNN-SLAM:
Real-time dense monocular SLAM with learned depth pre-
diction. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6565-6574, July 2017.
2

T. Weise, T. Wismer, B. Leibe, and L. V. Gool. In-hand
scanning with online loop closure. In 2009 IEEE 12th Inter-
national Conference on Computer Vision Workshops, ICCV
Workshops, pages 1630-1637, Sept 2009. 3

https://developer.apple.com/arkit/
https://developer.apple.com/arkit/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/

