
Multi-scale Voxel Hashing and Efficient 3D Representation for Mobile

Augmented Reality

Yi Xu Yuzhang Wu Hui Zhou

JD.COM Silicon Valley Research Center, JD.COM American Technologies Corporation

Mountain View, CA, USA

{yi.xu,yuzhang.wu,hui.zhou}@jd.com

Abstract

In recent years, Visual-Inertial Odometry (VIO) tech-

nologies have been making great strides in both research

community and industry. With the development of ARKit

and ARCore, mobile Augmented Reality (AR) applications

have become popular. However, collision detection and

avoidance is largely un-addressed with these applications.

In this paper, we present an efficient multi-scale voxel hash-

ing algorithm for representing a 3D environment using a set

of multi-scale voxels. The input to our algorithm is the 3D

point cloud generated by a VIO system (e.g., ARKit). We

show that our method can process the 3D points and con-

vert them into multi-scale 3D representation in real time,

while maintaining a small memory footprint. The 3D repre-

sentation can be used to efficiently detect collision between

digital objects and real objects in an environment in AR ap-

plications.

1. Introduction

Mobile AR technologies use a mobile phone’s camera

and its display to provide live view of the surrounding phys-

ical environment, which is then “augmented” by computer-

generated elements (e.g., digital objects) [3, 6, 17]. A key

component of mobile AR is monocular Simultaneous Lo-

calization and Mapping (SLAM), which constructs and up-

dates a map of an unknown environment while simultane-

ously keeping track of the camera pose.

Without additional knowledge of the scene geometry,

monocular SLAM approach usually relies on structure-

from-motion (SfM) to bootstrap camera tracking. SfM

methods reconstruct an initial structure of the scene and re-

cover camera pose at the same time. However, these re-

constructions are up to an arbitrary scale. With the recent

advancement of sensor fusion technology, Visual-Inertial

Odometry (VIO) becomes mature enough for commercial

use. Two most prominent examples are Apple’s ARKit and

Google’s ARCore platforms. By fusing visual and inertial

sensor information, metric scale of the environment can be

estimated. With accurate camera tracking and scale estima-

tion, ARKit and ARCore allow seamless blending of digital

objects into the physical environment. There are already

many mobile AR applications running on these two plat-

forms in different fields (e-commerce, gaming, education,

etc.) that leverage such capability.

However, one important issue that has not been ad-

dressed by these systems is collision detection and avoid-

ance between digital objects and real physical objects in the

environment. Without such function, once digital objects

are placed in the physical environment, they can be moved

around freely in the space mapped from the real physical

environment. This can cause digital objects and real ob-

jects occupy the same physical space; leading to unrealistic

perception. Conventional approaches for collision detec-

tion and avoidance do not meet the need for mobile AR ap-

plications as 1) the computation and memory constraint of

mobile phone as well as the real-time requirement for mo-

bile AR application are both strict; 2) most AR applications,

which run on third party proprietary AR platforms such as

ARKit or ARCore, cannot access the complete 3D recon-

struction information from the AR platforms.

To solve this problem in an efficient way on mobile de-

vices, we developed a multi-scale voxel hashing algorithm

(Fig. 1). Our method takes the 3D points generated by a

monocular SLAM system as input and uses a hash map to

store the data into voxels. Nearby points might be repre-

sented by a common voxel. We perform bottom-up merging

of voxels in order to reduce total memory footprint. More-

over, since the voxel hashing scheme implicitly removes re-

dundant 3D points, point correspondence between frames

is not required to identify repeating points. This allows our

method to work with ARKit and ARCore, where such cor-

respondence data is proprietary and not accessible to devel-

opers.

The rest of the paper is organized as follows. Section

2 discusses the related work in monocular SLAM and 3D

1618

Figure 1. Multi-scale voxel representation for point cloud data generated by ARKit. (a) A panorama of an office kitchen scene. (b) Side-

view of the sink area with voxels superimposed on the scene and rendered with random red/yellow/green color. (c) Front view of the sink

area with voxles superimposed. (d) Top-down view of the entire voxel representation. (e) Close-up view of the trash bins and nearby floor

with voxels superimposed. (f) A front view of the refrigerator area.

reconstruction, collision detection for AR applications, and

our contributions. Section 3 details our multi-scale voxel

hashing algorithm. Section 4 presents our implementation

and experiments. Concluding remarks and discussion on

limitations and future work are provided in Section 5.

2. Related Work

Our work uses point clouds generated by monocular

SLAM algorithm as input. In addition, our method borrows

ideas from 3D reconstruction, especially online reconstruc-

tion algorithms. However, the objective is not to reconstruct

a detailed model of real objects. Finally, we enable collision

detection in AR applications. In this section, we discuss re-

lated work in monocular SLAM, 3D reconstruction using

point cloud data, and collision detection in AR.

2.1. Monocular SLAM

Monocular SLAM is the problem of localization and

mapping of the environment using a single camera. It has

many applications in robot navigation, mobile entertain-

ment, e-commerce, etc. Early work solves the monocular

SLAM problem by using filtering techniques to jointly es-

timate 3D map point locations and camera poses [8]. Key-

frame based approaches achieve higher accuracy than filter-

ing methods by performing more computationally intensive

Bundle Adjustment (BA) optimization. Among many key-

frame based approaches, PTAM is the most prominent one

[13]. For first time it introduced the idea of running track-

ing and mapping in parallel threads and achieved impres-

sive results for tabletop AR applications. Another excellent

and complete SLAM system is ORB-SLAM [19], which

is capable of performing localization, mapping, loop clos-

ing, and relocalization for large environments in real time.

ORB-SLAM uses ORB features [23] to perform feature de-

tection and tracking. Both PTAM and ORB-SLAM are

feature-based. They apply optimization over feature points

in the scene that are detected by feature detectors. On the

contrary, LSD-SLAM applies direct optimization over im-

age pixels to achieve similar results in real time [10]. All

the above SLAM approaches use visual sensor only; thus

they cannot obtain metric scale reconstruction of the en-

vironment. Recently, CNN-SLAM fuses dense depth esti-

mation form Convolutional Neural Networks (CNNs) and

sparse depth from direct monocular SLAM [24]. CNN-

SLAM also mitigates the scale ambiguity problem because

absolute scale of the objects can be learned from examples.

1619

The scale ambiguity can also be solved by VIO meth-

ods, which incorporate inertial sensors into the optimiza-

tion formulation. By integrating the acceleration measure-

ments from IMUs, camera translation between frames can

be roughly estimated and further optimized using visual in-

formation. Earlier work in VIO includes Extended Kalman

Filtering based [16] and keyframe-based [15] approaches.

A recent work that can be implemented on smart phones

is VINS-MONO [22]. By incorporating both visual mea-

surements and IMU measurements in a joint optimization

framework, VINS-MONO not only can perform real time

tracking and mapping, but also achieves metric reconstruc-

tion of the scene. More recently, the releases of Apple’s

ARKit [2] and Google’s ARCore [11] allow commercial ap-

plication development on iOS and Android systems.

2.2. 3D Reconstruction

Our approach also borrows ideas from research work in

3D reconstruction, especially online reconstruction. Un-

like offline methods, online approaches aim to fuse range

data incrementally into a consistent 3D representation. One

approach is to use a point-based representation for the 3D

geometry that ignores connectivity information. The point

cloud captured by 3D sensors can be registered together

with the already reconstructed 3D model. Loop closure is

addressed to make sure reconstruction errors do not accu-

mulate. This type of approach has been applied to small

scale objects [25] and large scale indoor environments [12].

The point-based representation is memory intensive and

does not allow for easy collision computation. In such

cases, additional space partition data structure (e.g., octree)

might be needed.

An alternative approach uses a volume-based represen-

tation. The seminal work by Curless and Levoy [7] con-

verts depth samples into signed distance field and stores

the values in a regular voxel grid. Surfaces can then

be extracted from the volumetric data using isosurfacing

method. KinectFusion [20] extends the volumetric ap-

proach to achieve real-time 3D reconstruction using Kinect

sensor. Nießner et al. [21] adopt a spatial hashing scheme

to access and update surface data in real time. Their system

allows 3D reconstruction at large and fine scale.

2.3. Collision Detection in AR

Collision detection for Augmented Reality has been

studied for more than 20 years. In his work, Aliaga [1]

implemented collision detection and response between vir-

tual objects and real objects by manually creating a digital

model for the real environment. Collision is detected be-

tween the digital model of the environment and virtual ob-

jects. Breen et al. [5] tried to solve this problem by register-

ing the camera image with a known 3D model of the envi-

ronment and by using depth estimation from stereo camera

pair. These methods do not work with monocular SLAM

system where the geometry of the environment is unknown.

Decker et al. [9] proposed a method to detect collision in

the free-viewpoint video setting. However, they use multi-

ple calibrated cameras. Using monocular camera, Lee et al.

[14] proposed an image-based method to detect collision

between a user’s hand and virtual objects; but collision in

3D space is not addressed. To the best knowledge of the au-

thors, ours is the first method that implements 3D collision

detection for Augmented Reality applications.

2.4. Our Contributions

Building on top of SLAM systems, our approach is ca-

pable of processing the 3D sparse point cloud captured by

such systems. Our approach also enables collision detec-

tion and avoidance, which has a significant impact on the

realism of an AR application. In addition, our method can

work with other types of range scanners if the pose of the

scanning device can be tracked in real time, either using an

external device or using a range-based SLAM algorithm.

The fine models created by 3D reconstruction methods can

be used for collision detection and avoidance; however, a

detailed 3D reconstruction is not only computationally ex-

pensive but also unnecessary. We choose to represent the

3D environment using a set of multi-scale voxels for mo-

bile AR applications.

Our contributions are:

1. An efficient 3D representation using sparse point sets

generated by VIO systems as input.

2. A multi-scale bottom-up merging scheme that effec-

tively merges voxels together and reduces memory

footprint.

3. An easy-to-implement collision detection and avoid-

ance approach for mobile AR applications.

3. Our Approach

We extend the voxel hashing scheme and apply that to

the sparse point cloud data generated by a VIO system; al-

lowing for easy and fast collision detection and avoidance

between digital objects and real objects in AR applications.

For sparse point data, using a regular grid for storage

is not effective because most of the voxels will be marked

as empty. A hierarchical data structure will alleviate this

problem, but it is still computationally expensive. More-

over, isosurfacing from sparse volumetric data is impracti-

cal. We use a spatial voxel hashing scheme similar to the

one used in [21]: a hash key is computed for each point us-

ing its integer coordinates and voxel data is then stored in

a hash table. With such a hashing mechanism, the number

of voxels still increases with the number of input 3D points.

When an area of the scene contains rich textures, there will

1620

be many entries in the hash table. This limits the capabil-

ity of performing certain tasks such as collision avoidance.

Each small voxel has to be tested against the digital ob-

ject to detect collision. To solve this problem, we propose

a multi-scale bottom-up merging procedure that can effec-

tively merge voxels together to reduce memory footprint.

3.1. Voxel Hashing

For each point, we map the integer components of the

point’s 3D world coordinates to a hash value using the for-

mula [21]:

H(x, y, z) = (x ∗ p1 ⊕ y ∗ p2 ⊕ z ∗ p3) mod n (1)

where p1, p2, and p3 are large prime numbers, n is the

number of slots in the hash table, and ⊕ is exclusive OR op-

erator. If the integer components of coordinates have lim-

ited number of digits, we multiply the coordinates by a scal-

ing integer S. For example, in ARKit, coordinates are spec-

ified in meters; therefore, measurements have 0 or 1 digit of

integer. We use S = 100 to scale the world coordinates of

3D points. After rounding, points with the same integer co-

ordinates are represented implicitly by a voxel, whose size

is 1cm3. When multiple voxels map to the same hash key

value, hash table collision happens. To handle this, at each

hash table slot, we store a linked list of voxel entries. When-

ever a new voxel entry is created, it is inserted to the end of

the list at the corresponding hash table slot.

Each voxel entry contains the integer coordinates

(x, y, z), which correspond to the coordinates of the vertex

that is closest to the origin. Each voxel also stores a den-

sity value d, which equals to how many points are bounded

by this voxel. The density value d can be used to filter out

voxels that contain a small number of points (e.g. d < 50)

during collision computation; thus removing possible out-

liers produced by VIO system.

3.2. Multi­scale Voxel Representation

The minimum size of a voxel mv can be controlled by

the scaling integer S. For example, S = 100 corresponds to

mv = 1cm, while S = 10 corresponds to mv = 10cm. A

small S value leads to large voxel size and a large S value

leads to small voxel size. If the mv is too small, we run into

the risk of large memory footprint and higher computational

cost for collision detection and avoidance. If mv is too big,

the resulting 3D representation might be over simplified and

not tight enough. To mitigate this problem, we introduce a

multi-scale voxel hashing representation.

The key idea is to include a level value l at each voxel.

This allows us to store voxels of different sizes in the hash

table. For an input 3D point, we first compute its hash key

using Equation. 1. Then we perform a linear search on the

list of voxel entries indexed by the hash value and check if

the point is already encompassed by any voxel. If a voxel

is not found, we create a new voxel at the smallest scale

for this point. In the voxel, we store the integer coordinates

(x, y, z) and its scale level l = 0.

Once the voxel is added to the hash map, we use a re-

cursive procedure to merge neighboring voxels into higher

level voxels. A straightforward way is to merge uniformly

along three axes. If all 8 voxels that form a voxel at the

next level are all present in the hash map, we remove the

8 voxels and insert a new voxel at the higher level into the

hash map (Fig. 2a). The density of the new voxel is the sum

of all densities from the 8 smaller voxels. This procedure

is repeated until no more voxels can be merged or a pre-

defined maximum level of voxel is reached. For any voxel,

the 7 buddy voxels that form a voxel at the next level can be

easily located from the hash map using integer division and

multiplication.

In reality, this method is not efficient because it requires

all 8 voxels to be present before we can merge them. This is

especially not practical for surface data where the interior of

voxels:
{0,0,0,0,0,0,2} {0,1,0,0,0,0,2}
{1,1,0,0,0,0,1} {1,0,0,0,0,0,1}
{0,0,1,0,0,0,1} {1,0,1,0,0,0,1}

voxels:
{0,0,0,0,2} {0,1,0,0,2}
{1,1,0,0,1} {1,0,0,0,1}
{0,0,1,0,1} {0,1,1,0,1}
{1,1,1,0,2} {1,0,1,0,2}

voxels:
{0,0,0,1,12}

y

x

z

voxels:
{0,0,0,1,1,0,6}
{0,0,1,0,0,0,1}
{1,0,1,0,0,0,1}

(a)

(b)

Figure 2. Multi-scale voxel merging. (a) Uniform merging along

three axes. Each voxel is stored as a 5-tuple: {x, y, z, l, d}, which

represents coordinates, scale of the voxel, and density. (b) Non-

uniform merging. Each voxel is a 7-tuple: {x, y, z, lx, ly, lz, d},

which represents coordinates, scale along each of the three dimen-

sions, and density.

1621

the scene is not visible. To solve this problem, we use a dif-

ferent scale level for each of the three dimensions: lx, ly , lz .

After a new voxel is inserted into the hash table, we merge

the 4 voxels that form a voxel at the next level on 2 out of

the 3 dimensions if possible (Fig. 2b). For example, if 4

voxels that form a larger voxel with X, Y dimension at level

1 but Z dimension at level 0, we proceed to merge these 4

voxels and insert a new voxel with lx = 1, ly = 1, lz = 0.

In case there are more than one options of merging (e.g., the

bottom 4 voxels can also be merged in Fig. 2b), we simply

choose one and ignore the others. Since this can only hap-

pen at the intersection of two planes, it will not have a large

impact on the performance. Planar structures that are ap-

proximately axis-aligned can be effectively represented by

our approach. The 3 buddy voxels can also be located from

the hash map easily.

We can also allow merging two voxels along one axis. In

this way, a thin long structure can be represented using our

approach. In experiments, we found that it does not improve

the performance much.

Optionally, we can adjust the criterion for merging vox-

els to allow for more flexibility. For example, when 3 out of

4 voxels that form a voxel at the next level are present in the

hash table, we create a new voxel and remove the 3 voxels

from the data structure.

3.3. Align Voxels with Room Orientation

One limitation of our voxel representation is that the vox-

els are axis-aligned; i.e., they are aligned with the coordi-

nate axes of the space; and these axes are not necessarily

aligned with room orientation. They depend on the initial

orientation of the mobile device when VIO system boot-

straps camera tracking. The merging process looks for pla-

nar structures along the three axes; therefore if the voxels

are not aligned with the room orientation, the bottom-up

merging process cannot effectively reduce the total number

of voxels.

To solve this problem, we use vertical plane detection to

estimate the orientation of a room. In our AR application,

we guide the user to scan the part of the scene with strong

presence of vertical surfaces. Then, from the reconstructed

3D points, we use RANSAC to robustly estimate a plane

that is perpendicular to the ground plane. The ground plane

orientation can be estimated by motion sensing hardware

on a mobile phone. When the number of inliers of the ver-

tical plane is larger than a threshold, we use the normal of

the plane as the new X-axis and transform all captured 3D

points into the new coordinate system. A simple rotation

is sufficient because the Y -axis always points to the oppo-

site direction of gravity as detected by the motion sensing

hardware in a VIO system like ARKit or ARCore.

3.4. Collision Detection

Collision detection can be efficiently computed using our

multi-scale voxel representation. A digital object can be

represented by a bounding box, a set of bounding boxes, a

bounding cylinder, or even a set of polygons or voxels. At

real time, the geometry is compared against all the multi-

scale voxels. Because the voxels are all box-shaped, col-

lision can be efficiently detected. For example, to detect

collision between two boxes, we only need to check if two

boxes overlap at all three dimensions, each requires 2 com-

parisons. This results in only 3 ∗ 2 = 6 comparisons. In our

implementation, for robustness, a collision is detected only

when the number of collided voxels with the digital object

is larger than a threshold (e.g., 10).

In typical ARKit or ARCore applications, a horizontal

support plane (ground or table surface) is first determined.

Then a digital object is placed on the support plane for view-

ing and interaction. During collision detection, we omit

those voxels which are close enough to the object support

plane; otherwise, feature points from this plane will lead to

unintended collision with the digital object.

4. Experimental Results

To validate our approach, we implemented our algorithm

in C++ and an iOS application using ARKit and Object C.

We tested our application on iPhone 8. The VIO algorithm

of ARKit runs at 60 fps and produces dozens to hundreds

of 3D points per frame depending on the complexity of the

scene. Our algorithm processes these 3D points and inserts

them into multi-scale voxel hash data structure in real time.

We tested our approach on 4 different scenes including

an office kitchen, a storage room, a table, and a conference

room. We also captured a sequence of point clouds and im-

ages for each scene to process offline. Inter-point distance

varies for different scenes. When a scene is closer to the

camera, the reconstructed points are closer to each other;

thus requiring smaller voxels to better approximate the ge-

ometry of the scene. We estimate the scene depth from a

sequence of initial frames and use the depth to determine

the minimal voxel size mv . In our system, we use the fol-

lowing empirically determined thresholds:

mv =







2 cm; D < 0.75m
4 cm; 0.75m ≤ D < 1m
8 cm; D ≥ 1m

(2)

where D is the initial scene depth.

In each case, our method can efficiently process the in-

coming 3D points generated by ARKit and convert them

into multi-scale voxels in real time. Table 1 shows the re-

sults. We list capture time, number of total 3D points re-

constructed by ARKit, number of voxels reconstructed by

1622

Scene Kitchen Storage Room Table Conference Room

Capture Time (sec) 22.8 64.9 62.6 36.3

Number of 3D Points 276,137 594,096 465,637 40,796

Number of Voxels 4,026 7,808 853 387

Min. Voxel Size (cm) 4 4 4 8

Compression Ratio 82.3 91.3 655.1 126.5

Memory (kB) 39.3 76.25 8.33 3.78

Table 1. Results of our approach applied to different scenes.

Total Capture Time 30s 60s 120s 240s

Number of 3D Points 107,730 172,649 315,339 544,110

Number of Voxels 2,215 2,885 3,749 4,542

Table 2. Increasing capture time on the Kitchen scene.

Scene Kitchen Storage Room Table Conference Room

Single Scale Representation 6,278 13,569 1,251 631

Multi-Scale Representation 4,026 7,808 853 387

Reduction 35.9% 42.5% 31.8% 38.7%

Table 3. Compare number of reconstructed voxels using multi-scale and single scale schemes.

Figure 3. Multi-scale voxel representation for the storage room scene. (a) Complete view of the storage room with voxel representation

superimposed. (b) A different view of the left side of the room. (c) A different view of the right side of the room.

our algorithm, and minimal voxel size used by our algo-

rithm. We also listed compression ratio, which is the ratio

between storage required for all 3D points (float point co-

ordinates) to the storage required for multi-scale voxel data

structure. Each voxel entry requires 3 bytes for integer coor-

dinates (x, y, z), 3 bytes for lx, ly , lz scales, and 4 bytes for

density. For less complex scenes, such as Table and Con-

ference Room, the compression ratio is much larger than

complex scenes like Kitchen and Storage Room. It is worth

noting that VIO systems like ARKit do not provide inter-

frame correspondence information to developers; therefore,

the 3D points are largely redundant, and the total number of

points is much larger than the actual features in the scene.

Fig. 1 shows a panorama of the office kitchen scene and

the reconstructed voxel structure from a few different view-

points. Fig. 3 shows several pictures captured by an iPhone

running our AR application and with reconstructed voxels

superimposed on the view. Fig. 4 shows a picture of the ta-

ble top scene (top) and the same scene with our multi-scale

voxel representation superimposed (bottom). As illustrated,

our approach can build a 3D representation of the scene in

real time.

Our approach scales well with increasing number of 3D

points when the AR application runs for longer period of

time. To show this, we increase the running time from

30 seconds to 240 seconds and record the total number of

1623

Figure 4. Multi-scale voxel representation for the table top scene.

a) Top image shows a photo of the scene. b) The bottom image

shows voxel representation.

points generated by ARKit and number of reconstructed

voxels for the Kitchen scene (Table 2). The minimal voxel

size was set to be 8cm. While the number of points in-

creases approximately linearly with capture time, the num-

ber of reconstructed voxels grows at a much slower rate.

To test the effectiveness of our bottom-up merging

scheme, we apply our voxel hashing algorithm with and

without multi-scale processing. The results are shown in

Table 3, where we list the number of reconstructed voxels

using single scale (first row) and multi-scale (second row)

schemes. Our multi-scale scheme reduces total memory

footprint consistently by 30% to 40%.

We implemented collision avoidance in our AR applica-

tion. When a user interacts with the digital object during

AR view, we detect collision in real time using the overlap-

ping bounding box approach described in Section 3.4 and

stop the movement of the digital object if potential collision

is detected.

Fig. 5 shows collision detection results using our ap-

proach. We “move” the virtual objects towards the obsta-

cles and show the rendering results from the mobile phone.

On the left images, we superimpose the voxel representa-

tion to illustrate that the collision is well detected using the

voxels. The video accompanying this paper shows collision

detection and avoidance implemented on iOS device using

ARKit.

Figure 5. Collision detection and avoidance using our approach.

(a) Collision between virtual table and real objects in the storage

room with voxel representation superimposed (left) and without

(right). (b) Collision between virtual coffee cup and real objects

on the table.

5. Conclusion and Future Work

In this paper, we present an efficient algorithm that can

process 3D sparse point sets generated by a mobile VIO

system (e.g., ARKit and ARCore). Our approach is capable

of transforming the 3D point cloud data into a multi-scale

voxel hash structure with real-time performance. Our data

structure requires a small memory footprint, scales well

with increasing capturing time, and supports efficient colli-

sion detection for mobile Augmented Reality applications.

Moreover, our approach does not require point correspon-

dence between frames. This allows our method to work

with ARKit and ARCore, where such correspondence data

is proprietary and not accessible to developers.

One of the limitations is that we assume a static scene.

Thus our method can not detect collision between virtual

objects and moving real objects. This is because the struc-

ture of moving objects cannot be reliably recovered by a

monocular SLAM algorithm. Another limitation is that our

method relies on the feature points detected by feature de-

tectors; thus our method does not work with texture-less

surfaces within the scene.

In the future, we would like to improve our approach in

several aspects. Right now, the minimal voxel size is deter-

mined using estimated scene depth from an initial sequence

of frames. In the future, we want to explore dynamically

adjusting the minimal voxel size based on the current scene

1624

depth. Second, the proposed algorithm uses plane detec-

tion to estimate the orientation of the room so that voxels

are aligned with the major vertical surfaces in the scene. In

the future, we want to explore the possibility of adding ori-

entation to the voxels to better approximate surfaces with

different orientations. Finally, we would like to explore the

possibility of using image data to better infer 3D surface in-

formation. For example, superpixel can be used to recover

piecewise-planar surfaces [4]. Another possibility is to re-

construct more 3D points for weakly-textured areas using

an advanced feature descriptor [18].

Acknowledgement

The authors would like to thank the reviewers for their

insightful comments and detailed reviews. The authors

would also like to thank JD’s AR/VR product development

team for inspiring discussions.

References

[1] D. G. Aliaga. Virtual and real object collisions in a merged

environment. Proc. Virtual Reality Software and Technology

’94, pages 287–298, 1994. 3

[2] Apple Inc. Arkit - apple developer, 2018. ”https://

developer.apple.com/arkit/. 3

[3] C. Arth, R. Grasset, L. Gruber, T. Langlotz, A. Mulloni, and

D. Wagner. The history of mobile augmented reality. arXiv

preprint arXiv:1505.01319, 2015. 1

[4] A. Bódis-Szomorú, H. Riemenschneider, and L. V. Gool.

Fast, approximate piecewise-planar modeling based on

sparse structure-from-motion and superpixels. In 2014 IEEE

Conference on Computer Vision and Pattern Recognition,

pages 469–476, June 2014. 8

[5] D. E. Breen, R. T. Whitaker, E. Rose, and M. Tuceryan. In-

teractive occlusion and automatic object placement for aug-

mented reality. Computer Graphics Forum, 15(3):11–22,

1996. 3

[6] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui. Mobile

augmented reality survey: From where we are to where we

go. IEEE Access, 5:6917–6950, 2017. 1

[7] B. Curless and M. Levoy. A volumetric method for build-

ing complex models from range images. In Proceedings of

the 23rd Annual Conference on Computer Graphics and In-

teractive Techniques, SIGGRAPH ’96, pages 303–312, New

York, NY, USA, 1996. ACM. 3

[8] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.

MonoSLAM: Real-time single camera SLAM. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

29(6):1052–1067, June 2007. 2

[9] B. D. Decker, T. Mertens, and P. Bekaert. Interactive

collision detection for free-viewpoint video. In GRAPP

2007, Proceedings of the Second International Conference

on Computer Graphics Theory and Applications, Barcelona,

Spain, March 8-11, 2007, Volume AS/IE, pages 114–120,

2007. 3

[10] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-

scale direct monocular SLAM. In European Conference on

Computer Vision (ECCV), September 2014. 2

[11] Google Inc. Arcore overview, 2018. ”https://

developers.google.com/ar/discover/. 3

[12] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-

D mapping: Using Kinect-style depth cameras for dense 3D

modeling of indoor environments. The International Journal

of Robotics Research, 31(5):647–663, 2012. 3

[13] G. Klein and D. Murray. Parallel tracking and mapping for

small AR workspaces. In 2007 6th IEEE and ACM Interna-

tional Symposium on Mixed and Augmented Reality, pages

225–234, Nov 2007. 2

[14] D. Lee, S. G. Lee, W. M. Kim, and Y. J. Lee. Sphere-to-

sphere collision estimation of virtual objects to arbitrarily-

shaped real objects for augmented reality. Electronics Let-

ters, 46(13):915–916, June 2010. 3

[15] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Fur-

gale. Keyframe-based visual-inertial odometry using nonlin-

ear optimization. 34, 02 2014. 3

[16] M. Li and A. I. Mourikis. High-precision, consistent EKF-

based visual-inertial odometry. Int. J. Rob. Res., 32(6):690–

711, May 2013. 3

[17] H. Ling. Augmented reality in reality. IEEE MultiMedia,

24(3):10–15, 2017. 1

[18] G. Lu, L. Nie, S. Sorensen, and C. Kambhamettu. Large-

scale tracking for images with few textures. IEEE Transac-

tions on Multimedia, 19(9):2117–2128, Sept 2017. 8

[19] R. Mur-Artal, J. M. M. Montiel, and J. D. Tards. ORB-

SLAM: A versatile and accurate monocular SLAM system.

IEEE Transactions on Robotics, 31(5):1147–1163, Oct 2015.

2

[20] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and

A. Fitzgibbon. KinectFusion: Real-time dense surface map-

ping and tracking. In 2011 10th IEEE International Sympo-

sium on Mixed and Augmented Reality, pages 127–136, Oct

2011. 3

[21] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger.

Real-time 3D reconstruction at scale using voxel hashing.

ACM Trans. Graph., 32(6):169:1–169:11, Nov. 2013. 3, 4

[22] T. Qin, P. Li, and S. Shen. VINS-Mono: A robust and versa-

tile monocular visual-inertial state estimator. arXiv preprint

arXiv:1708.03852, 2017. 3

[23] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:

An efficient alternative to SIFT or SURF. In 2011 Inter-

national Conference on Computer Vision, pages 2564–2571,

Nov 2011. 2

[24] K. Tateno, F. Tombari, I. Laina, and N. Navab. CNN-SLAM:

Real-time dense monocular SLAM with learned depth pre-

diction. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 6565–6574, July 2017.

2

[25] T. Weise, T. Wismer, B. Leibe, and L. V. Gool. In-hand

scanning with online loop closure. In 2009 IEEE 12th Inter-

national Conference on Computer Vision Workshops, ICCV

Workshops, pages 1630–1637, Sept 2009. 3

1625

https://developer.apple.com/arkit/
https://developer.apple.com/arkit/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/

