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Abstract

Digital images are one of the primary modern media

for information interchange. However, digital images are

vulnerable to interception and manipulation due to the

wide availability of image editing software tools. Filtering

forgery detection and splicing detection are two of the most

important problems in digital image forensics. In particu-

lar, the primary challenge for the filtering forgery detection

problem is that typically the techniques effective for non-

linear filtering (e.g. median filtering) detection are quite

ineffective for linear filtering detection, and vice versa.

In this paper, we have used Discrete Cosine Transform

Residual features to train a Support Vector Machine clas-

sifier, and have demonstrated its effectiveness for both lin-

ear and non-linear filtering (specifically, Median Filtering)

detection and filter classification, as well as re-compression

based splicing detection in JPEG images. We have also the-

oretically justified the choice of the abovementioned feature

set for both type of forgeries. Our technique outperforms

the state-of-the-art forensic techniques for filtering detec-

tion, filter classification and re-compression based splicing

detection, when applied on a set of standard benchmark im-

ages.

1. Introduction

Digital multimedia forensics is closely related to several

biometric applications in motivation and usage of compu-

tational tools, where the authenticity and fidelity of mul-

timedia contents need to be verified [1]. In today’s me-

Figure 1. Example of biometric image tampering: (a) Original im-

age; (b) Median filtered image; (c) Face spliced image.

dia saturated world, digital images are the most popular

form of multimedia for information exchange. But due to

easy availability of highly sophisticated and easy-to-use im-

age processing software (often free), these multimedia con-

tents are highly vulnerable to interception and manipula-

tion. Hence, image forgery detection is one of the most

active research areas in digital forensics.

In the literature on digital image forensics, there exist

much work on copy-move and copy-paste forgery detec-

tion and localization approaches [2]. However, compara-

tively less work has been done for image filtering forgery

detection. Moreover, these works also lack proper math-

ematical justification for the choice of features for image

classification. Generally, forgeries are followed by an en-

hancement technique to make the forgery more convincing

and less detectable. The enhancement techniques might in-

clude noise reduction, filtering, contrast enhancement, de-

blurring, edge sharpening, etc.; but among these techniques
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filtering is the most common and widely used. Hence,

detection of whether an image had undergone such filter-

ing enhancement is important for forensic analysis, and

complements the content forgery detection techniques (e.g.

those that detect copy-move forgery). Another very com-

mon form of image forgeries is splicing, where some parts

of an image is forged by replacing them with parts from

different image sources. JPEG images when undergoing

such forgeries requires to be re–saved. The tampered im-

age when re–saved as a JPEG file usually undergoes re–

compression, resulting in the periodic effects on the re–

compressed DCT coefficients [3]. Fig. 1 shows examples

of median-filtered image and face splicing forgery, which

are threats to the security of generic biometric authentica-

tion systems.

Recently, filtering forgery detection, especially me-

dian filtering detection has gained attention of the re-

searchers [4–6]. It has been found that forensic techniques

that are otherwise effective in detecting linear operations

(such as sampling or scaling) on images [6], are often un-

able to detect non-linear filtering (such as median filter-

ing) satisfactorily. In [4], Kirchner et al. used Subtrac-

tive Pixel Adjacency Matrix (SPAM) features in the first-

order difference domain to detect median filtering for both

uncompressed and JPEG images. Zhang et al. [5] utilized

high-order local ternary pattern features for median filter-

ing detection, exploiting the fact that median filtering pro-

duces regions of constant or nearly constant intensity val-

ues. Autoregressive model based median filtering detection

has been proposed by Kang et al. [6]. Recently, more ef-

fective combined Global Probability and Local Correlation

Features (GLF) [7], linear and non-linear descriptors [8]

were proposed, especially to detect median filtering; how-

ever, these techniques are not quite effective for linear fil-

tering detection.

On the other hand, linear filtering and compression de-

tection forensic techniques [9, 10] perform poorly with re-

spect to median filtering detection in particular, and non-

linear filtering detection in general. Therefore, effective

detection of linear as well as non-linear filtering by the

same technique is relatively rare in the literature. Ravi

et al. [11, 12] used modified Transition Probability Matrix

(TPM) feature to detect the linear as well as non-linear fil-

tering in both uncompressed and JPEG compressed images.

However, the work lacked rigorous justification of effective-

ness of the feature for both linear and non-linear filtering

detection, as non-linear filtering is practically difficult to

model analytically. Also, the effectiveness of the proposed

features for detection of other types of attacks was not ex-

plored.

For image splicing detection, several techniques have

been proposed so far. Shi et al. [13] proposed statistical fea-

tures based on 1-D and 2-D moments, and transition prob-

ability features based on Markov chain in the DCT domain

for image splicing detection. Huang et al. [14] used Markov

features in DCT and DWT domains to identify splicing im-

ages. Fu et al. [15] exploited the Hilbert-Huang Transform

(HHT) to generate the features needed for classification of

forged and unforged images. The presence of the periodic

effects on the re–compressed DCT coefficients can also be

used to verify if the image has undergone tampering. Lin et

al. in [3, 16] detected tampered images by examining the

Double Quantization (DQ) effect on the DCT coefficients.

In [17], the authors analyzed the experimental performance

of the algorithm proposed in [3], on several variants of the

CASIA TIDE (v.2.0) image dataset [18]. In [19], Markov

random process was used to model the differences between

the DCT coefficient and its connected elements. Fridrich

et al. [20] proposed a method based on Support Vector Ma-

chine (SVM) classifiers with feature vectors formed by his-

tograms of low-frequency DCT coefficients. In [21], distri-

butions of DCT coefficents in the forged and unforged re-

gion were used as mixture model. By estimating the param-

eters of the mixture model, likelihood map for each DCT

block of being doubly compressed was computed. But in

general, these works lack proper justification for the choice

of features.

In this paper, we have used Discrete Cosine Trans-

form Residual (DCTR) features, originally proposed by

Fridrich et al. [22] for steganalysis, for linear and non-

linear (median) filtering detection and classification as well

as re-compression based splicing detection in JPEG images.

Robertson et al. [23] have shown that quantization noise

in DCT compressed images is in general correlated. The

main insight behind the technique is that the correla-

tion of the quantization noise is perturbed while per-

forming any filtering and compression operation. DCTR

features exploit the first order statistics of the quantization

noise residual obtained by the decompressed JPEG image,

using 64 kernels of the Discrete Cosine Transform. Ravi et

al. [11] had also used a similar concept to design modified

TPM features, and the technique reported performs better

than both the existing linear and non-linear (median) fil-

tering detection techniques in the literature. However, in

our work, we demonstrate that the proposed DCTR based

filtering detection technique outperforms the scheme pro-

posed in [11]. We have addressed both filtering detection

as well as filter classification in the paper. Moreover, we

have demonstrated that these features are also effective in

splicing forgery detection, based on recompression of the

forged image. We have demonstrated the effectiveness of

the scheme for benchmark images from the Dresden, CA-

SIA TIDE and UCID image databases. The rest of the paper

is organized as follows. The proposed filtering detection

framework and theoretical justification for it are described

in Sec. 2. Experimental results to establish the efficacy of
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the proposed scheme are presented in Sec. 3. Conclusions

are drawn Sec. 4, with directions for our future research ef-

forts.

2. Forgery Detection: Methodology and Theo-

retical Justification

2.1. DCTR Feature Extraction

To generate the DCTR features, the original image in

spatial domain is convolved with the 64 DCT basis patterns,

each of size 8× 8, to get 64 new undecimated DCT planes,

i.e., DCT residuals. The final features are generated as his-

tograms of the DCT residuals. The steps for DCTR feature

extraction from an image are given below [22, 24]:

• The JPEG image is decompressed to spatial domain

without quantizing the pixel values to {0, · · · , 255} to

avoid any loss of information.

• The DCT basis patterns of size 8 × 8 are generated as

B
(k,l) =

(

B
(k,l)
mn

)

, 0 ≤ m,n, k, l ≤ 7:

B(k,l)
mn =

wkwl

4
cos

πk (2m+ 1)

16
cos

πl (2n+ 1)

16
(1)

where w0 = 1√
2

, wi = 1 for i > 0.

• The decompressed JPEG image X is convolved with

each of the 64 DCT basis patterns B(k,l), to generate a

set of 64 undecimated DCT, each of which is denoted

by U
(k,l) for the (k, l)-th DCT basis pattern as:

U
(k,l) = X ∗B(k,l), 0 ≤ k, l ≤ 7 (2)

• According to the 64 DCT modes (a, b), 0 ≤ a, b ≤
7, corresponding to each DCT basis pattern in each

8 × 8 DCT block, the filtered undecimated DCT im-

age U
(k,l) is subsampled by a step-size of 8 to get 64

sub-images U
(k,l)
a,b , as shown in Fig. 2.

• For each sub-image U
(k,l)
(a,b), the histogram feature is ex-

tracted as:

h
(k,l)
a,b (x) =

1

|U
(k,l)
a,b |

∑

u∈U
(k,l)
a,b

[QT (|u|/q) = x] , (3)

where QT is a quantizer with integer centroids

{0, 1, · · · , T}, q denotes the quantization step, and [P ]
is the Iverson Bracket, which is equal to ‘0’ when the

statement P is false, and ‘1’ when P is true. Here, q is

dependent on the JPEG quality factor also [22].

• All the histogram features of the 64 sub-images U
(k,l)
a,b

are merged and combined to obtain the histogram fea-

ture h
(k,l) of the filtered undecimated DCT image

Figure 2. Subsampling procedure for DCTR feature extraction.

U
(k,l). This merging operation aids in dimensional-

ity reduction because of statistical correlation between

the histogram features of the sub-images, since images

have similar statistical characteristics in symmetrical

orientation. For example, since U
(k,l) = X ∗ B

(k,l),

and the sum of the elements of B(k,l) is zero (these are

DCT modes), for natural images X, the distribution of

u ∈ U
(k,l)
(a,b) will be approximately symmetrical, and

centered at zero for all a, b.

• For each filtered image, sixty-four separate (T + 1)-
dimensional histogram feature sets could be obtained

when the threshold for histogram is set to T . Then,

these histogram features can be merged to form one

histogram feature set with dimension 25×(T+1) using

symmetry properties [22]. Finally, for all the 64 sub-

images total feature dimension would be 64×25×(T+
1). Authors in [22] used DCTR feature dimension to

be 8000 as a good compromise between performance

and detectability for efficient steganalysis taking T =
4.

The primary advantage of the DCTR feature set is the

relatively low computational complexity, and ability to pro-

vide better detection accuracy (for JPEG steganalysis) at

relatively less feature dimension [22]. In this work, we have

used the same feature set for filtering detection, filter clas-

sification and re-compression based splicing detection, as

this feature involves first order statistics of quantized noise

residuals.

2.2. Justification for Choice of Feature

In this section, we justify the effectiveness of DCTR fea-

tures for both filtering and splicing forgery detection.

2.3. Filtering Forgery Detection using DCTR Fea­
tures

We now theoretically justify the effectiveness of the

DCTR features for filtering forgery detection. In our math-

ematical analysis, for ease of understanding and for a sim-

pler notation, we would use an 1-D signal while presenting

the operations. However, exactly similar mathematical ar-

guments would hold for an 2-D signal like an image. Ravi
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Figure 3. Power spectral density of the Lena image: (a) Original (Unfiltered); (b) Median filtered; (c) Gaussian filtered; (d) Laplacian

filtered, and, (e) Average filtered.

et al. [12] tried to give a theoretical explanation for the bi-

nary classification problem of detecting whether an image

is filtered or not, with an assumption that natural images

follow the Gaussian Mixture Model (GMM) or the Markov

Random Field (MRF) model. However, they do not jus-

tify theoretically the multi-class classification problem of

detecting which type of filtering an image has undergone.

In this paper, we have used DCTR features for both the bi-

nary classification and the multiple classification problem

and observed that it outperforms the state-of-the-art TPM

features. We will justify the efficacy of the DCTR feature

for linear as well as non-linear (median) filtering.

The neighbouring pixel intensity differences in an im-

age are captured by means of convolution with the 64

DCT basis functions through the generated DCTR features.

Each class of image filtering operation imparts different im-

pact on neighbouring intensity differences. For example,

median filtering preserves edges and median filtered im-

ages exhibit regions of constant or nearly constant inten-

sities [25]. Therefore, neighbouring intensity differences

for median filtered images would likely to be very small

values. Lowpass filtering is used for smoothing; hence, its

corresponding neighbouring pixel intensity differences are

also expected to be small quantities. On the other hand,

highpass filters are used for sharpening and edge detection,

which suggests that the corresponding neighbouring inten-

sity differences for such filter should be relatively large

values. Previously, Zhang et al. [5] used high-order local

ternary patterns to find the traces for median filtering detec-

tion. Ravi et al. [11], [12] used transition probability based

features to exploit the neighbouring intensity differences.

However, we have observed via experimental results that

DCT basis patterns more effectively exploits the neighbour-

ing intensity differences through DCTR features.

2.3.1 Linear Filtering Model

Any linear filtering can be expressed as the convolution of

the input image with a filter kernel [25]. Suppose, input im-

age signal x is filtered with filter kernel l producing filtered

image y. Then,

y = x ∗ l (4)

DCT basis functions contain several lowpass and high-

pass filters. A linear filter can be expressed as linear com-

bination of these basis functions [25]. Now, suppose we

extract the DCTR features from the filtered image y by con-

volving DCT basis function l′, the resulting output is:

y′ = y ∗ l′ = x ∗ l ∗ l′ = x ∗A(l) if l′ = l (5)

where A(l) represents the autocorrelation function of fil-

ter l. Now, if we take the Fourier Transform on both sides

of Eq. (5), then it reduces to,

Y ′(k) ↔ X(k) · S(l) (6)

where k denotes variable in transform domain, S(l) de-

notes the power spectral density of filter l, Y ′(k) and X(k)
denotes the Fourier Transform of y′ and x respectively. This

utilizes the well known convolution multiplication prop-

erty [25] of Fourier Transform and also that autocorrelation

function and power spectral density are Fourier Transform

pairs [25]. Since the DCT basis functions are symmetrical

in nature, convolution with each basis pattern is similar to

correlation with the 180◦ rotated version of that basis pat-

tern. Thus, during DCTR feature extraction, the correla-

tion profile of the filtered image with each of the DCT basis

function is evaluated. The machine learning based model

building selects exactly those components of the DCT ba-

sis function space which approximates the linear filter the

image have been filtered with.

Fig. 3 shows the colormap plots of the power spectral

densities of the original and filtered versions of the Lena

image. As evident, the power spectral density of lowpass

(Gaussian) and highpass (Laplacian) filtered images are dis-

tinctively different, and hence the DCTR feature charac-

teristics obtained from the statistics of Y ′(k) are expected

to be distinctive for different types of filters, as suggested

by Eq.(6). However, this analysis is not readily applicable

for non-linear filtering, as non-linear filtering cannot be ex-

pressed using linear convolution.

2.3.2 Non-linear Filtering Model

Non-linear filters are difficult to model as these filters do not

often have explicit analytical forms. Among non-linear fil-

ters, median filters are most widely applied; hence we con-

centrate on modeling this type of non-linear filter.
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Assuming {xi} be a stationary sequence with sample

size n, marginal distribution function as F (x) and density

function to be f(x). Now, median of the sequence, yi can

be approximately represented by the Bahadur representa-

tion [26] as:

yi = Median(xi−v, · · · , xi, · · · , xi+v)

≈ m+ 1
2f(m)n

v
∑

p=−v

sign(xi+p −m) (7)

where v = (n − 1)/2 and m is chosen such that F (m) =
0.5. Generally, the expression holds for large sample size n;

however it is equally applicable for small values of n also.

Now, an approximation formula for the covariance func-

tion of the median filtered sequence can be obtained by

computing the covariance function for the moving average

on the right hand side of Eq. (7):

ry (τ) ≈
1

nf2(m)

n−1
∑

j=−(n−1)

(

1−
|j|

n

)

cj+τ (8)

where ck = Pr (x0 ≤ m,xk ≤ m)− 1
4 . For large n, Eq. (8)

can be further approximated by,

ry (τ) ≈ a ·

(

1−
|τ |

n

)+

(9)

where a is a constant and (b)+ = max(b, 0). The power

spectral density Sy(k) is the Discrete Fourier Transform

(DFT) of ry(τ). Therefore,

Sy (k) =

n
∑

τ=−n

ry (τ) · exp(−j2πkτ)

≈

n
∑

τ=−n

a ·

(

1−
|τ |

n

)+

· exp(−j2πkτ)

= a

[

1 + 2 ·
n
∑

τ=1

(

1−
τ

n

)

· cos(2πkτ)

]

= a
[

sin2(πkn)
n·sin2(πk)

]

= a · n · sinc2(πkn)
sinc2(πk)

(10)

where sinc(x) = sin(x)
x

is the sinc function, and the closed

form result in the last step is obtained from [27]. A plot of

ratio of these two sinc2() functions itself resembles another

periodic sinc2() function (as can be easily verified using a

plotting software). This can also be observed in the power

spectral density of the median filtered image, consisting of

repeated patterns with multiple peaks (resembling sinc2()
function) in its frequency response, as shown in the col-

ormap in Fig. 3(b). Hence, we conclude that the DCTR fea-

tures can distinguish median filtering also along with other

linear filters, which is also evident from Fig. 3.

Figure 4. Example histogram of DCT coefficients in (a) single-

compressed JPEG image; (b) and (c) double-compressed JPEG

image. The case shown in (b) with periodically missing values

happens when the first compression quality factor is not less than

the second quality factor, and case (c) with periodic peaks and

valleys happens when the first compression quality factor is less

than the second quality factor. The shaded rectangles represent

one period of the histograms.

2.4. Splicing Forgery Detection based Image Re­
compression

In this section, we demonstrate that the DCTR features

are also very effective in splicing forgery detection, based

on the impact of image re-compression on the DCTR fea-

tures. We consider the situation where the spliced image is

re-saved in JPEG format, i.e., re-compression happens after

splicing. Since, the DCTR features capture the quantization

noise residuals, intuitively it is evident that such features

should be capable of distinguishing re-compressed images

from uncompressed images. We justify this observation

both theoretically and experimentally. We will consider the

following general steps for splicing forgery [3]: (a) decom-

pression of the JPEG image; (b) replacement of a part of

the image from another source image (may be JPEG com-

pressed or not), and, (c) finally, saving (re-compressing) the

tampered image in JPEG format. Consequently, in the fi-

nal forged JPEG image, the tampered regions have been

quantized once, whereas the non-tampered regions have

been quantized twice [3]. Therefore, the probability dis-

tribution function of the DCT coefficients of the non-

tampered and tampered image should be distinguish-

able. It has been established previously [3] that the double-

quantized histogram of DCT coefficients, which are repre-

sentative of their probability density function (pdf), have pe-

riodically missing values, or consists of periodic peaks and

valleys, as shown in Fig. 4. Next we demonstrate that the

pdf of the DCT coefficients of the uncompressed image is

distinguishable with respect to the pdf of the re-compressed

DCT coefficient.

As before, for simplicity we describe the analysis for an

1-D signal, but it is valid for any 2-D signal like an image.

It is well-known that the distribution of the unquantized AC

DCT coefficients can be modeled as a Laplacian distribu-

tion [23] of the form:

f(x) =
λ

2
exp (−λ|x|) (11)
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where λ is a parameter. Quantization is a non-linear pro-

cess. A statistical analysis of quantization process, pre-

sented in [28], reveals that the quantization process can be

modeled as addition of independently and uniformly dis-

tributed random noise, with distribution parameter depen-

dent on the quantization interval, to the quantized random

variable. Addition of independent random variables im-

plies convolution of their individual pdfs to get the pdf of

the sum [29]. Therefore, the probability distribution of the

quantized output (l) is the convolution of the input (x) pdf

and the pdf the uniformly distributed noise (n):

fl = fx ∗ fn (12)

Similarly, double quantization can also be modeled as

addition of two uniformly (but with different distribution

parameters) distributed independent random variables de-

noting the noise, with the input random variable, (as shown

in Fig. 5) resulting in the pdf:

fl′ = fx ∗ fn ∗ fn′ (13)

The pdf of the uniformly distributed noise for the single-

quantized case (with quantization interval q1) and the

double-quantized case (with quantization interval q1, fol-

lowed by quantization interval q2), are denoted as fn and

fn′ respectively, and expressed as [28]:

fn(x) =

{

1
q1
, if − q1

2 < x ≤ q1
2

0 otherwise
(14)

and,

fn′(x) =

{

1
q2
, if − q2

2 < x ≤ q2
2

0 otherwise
(15)

According to the image tampering model [3], in the tam-

pered image, the tampered regions are quantized once and

the untampered regions are quantized twice. Therefore, the

pdf of the DCT coefficient of the tampered image (ft) could

be modeled as:

ft = w1fl+w2fl′ = w1 · fx ∗fn+w2 · fx ∗fn ∗fn′ (16)

where w1 and w2 are weights that represent the relative

strengths of the single-quantized (tampered region) and

double-quantized (non-tampered region) signal components

respectively, in the tampered image. Thus, the pdf of

the tampered image DCT coefficients follow a Lapla-

cian mixture model as shown in Eq. (16), in contrast

to those of the untampered image which follow an ordi-

nary Laplacian distribution. Therefore, it is evident that

the DCT coefficient distributions are distinguishable for un-

tampered and tampered image, which can also be seen from

Fig.4. Note that the quantization interval of the DCT co-

efficents are dependent on the quality factor of JPEG im-

ages [30]; hence, the analysis presented above can be easily

Figure 5. Double quantization model.

Table 1. Filters Used For Experiment

Filter Type

(NL/L)
Kernel Size Parameter Value

Median Filter (NL) 3× 3 -

Gaussian Filter (L) 3× 3 σ = 0.5
Average Filter (L) 3× 3 -

Laplacian Filter (L) 3× 3 α = 0.1

Table 2. Filtering Detection Accuracy Comparison

Scheme
Filter Detection Accuracy

Median

Filter

Gaussian

Filter

Laplacian

Filter

Average

Filter

GLF feature

based approach [7]
95.9% 63.1% 100% 99.0%

TPM feature

based approach [11]
99.7% 82.5% 100% 99.9%

Proposed DCTR

feature approach
100% 98.5% 100% 100%

adapted in terms of the JPEG image quality factor instead

of the quantization intervals.

In the next section, we validate the theoretical arguments

presented above with experimental results.

3. Experimental Results

3.1. Experimental Setup

We have experimented with 500 pristine JPEG image

taken by camera model Sony H50 from the Dresden Image

Database [31]. Subsequently, several linear and non-linear

filtering operations as listed (along with their relevant pa-

rameters) in Table 1 were applied to that set of images to

generate the filtered images. Our forensic experiments deal

with both the filtering detection as well as filter classifica-

tion problem. For re-compression based splicing detection,

we evaluated on the CASIA tampered image detection eval-

uation database (CASIA TIDE v2.0) [18]. To illustrate the

effectiveness of the proposed method over JPEG forgeries

involving diverse compression ratios, we manually con-

ducted the splicing attack on UCID Image Database [32].

All image processing and feature extraction operations were

implemented using Matlab (v. 2015a). For machine learn-

ing based model building and validation, we used the Weka

Machine Learning Toolbox [33].
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Table 3. Filter Classification Accuracy Comparison

Scheme
Filtering Classification

Accuracy

GLF feature approach [7] 80.36%

TPM feature approach [11] 89.4%

Our DCTR feature approach 99.32%

Table 4. Confusion Matrix For Filter Classification
Classific.

Accuracy

True Filter

Unfiltered
Median

Filter

Gaussian

Filter

Laplacian

Filter

Average

Filter

Id
en

ti
fi

ed
F

il
te

r Unfiltered 99% 0% 1% 0% 0%

Median

Filter
0% 100% 0% 0% 0%

Gaussian

Filter
2.4% 0% 97.6% 0% 0%

Laplacian

Filter
0% 0% 0% 100% 0%

Average

Filter
0% 0% 0% 0% 100%

3.2. Experiment 1: Filtering Detection

The first experiment was carried out to detect whether a

given image is filtered or not. For each of the filter men-

tioned in Table 1, 500 pristine JPEG images from the Dres-

den Image Database were filtered with that particular fil-

ter to generate a dataset of 1000 images, comprising of

500 non-filtered and 500 filtered images, to be used for bi-

nary classification of filtering detection. We use polynomial

kernel based binary classification Support Vector Machine

(SVM) classifier, and grid search was performed to deter-

mine the parameters that give better average accuracy using

10-fold cross-validation.

The performance of the state-of-the-art GLF feature

based median filtering detection technique [7] degrades sig-

nificantly for linear filtering detection, as shown in Table 2.

However, our proposed technique outperforms [7] for both

linear and median filtering detection, as evident from Ta-

ble 2. Comparison for filtering detection with the state-of-

the-art TPM feature based approach in [11] using single it-

eration is shown in Table 2, which reveals that our DCTR

feature based filtering detection approach also outperforms

the approach in [11] for each of the filters considered.

3.3. Experiment 2: Filter Classification

The more challenging task is to identify the type of filter

applied. For that purpose, the same set of 500 pristine JPEG

images from the Dresden Image Database was filtered with

Median, Gaussian, Laplacian and Average filters as men-

tioned in Table 1, to generate five classes of images, namely:

Unfiltered, Median-filtered, Gaussian-filtered, Laplacian-

filtered and Average-filtered. Hence, the dataset for filter

classification contains 2500 images with 500 images for

each of the five classes. Then, the DCTR features are ex-

tracted from the images and used to train a multi-class SVM

classifier. To avoid overfitting we have used 10-fold cross-

validation in Weka.

Table 5. Splicing Detection Accuracy Comparison on CASIA

Dataset

Scheme
Splicing Detection

Accuracy

Markov DCT and DWT feaures [14] 89.76%

Lin et el. [17] 91.34%

Our DCTR feature approach 98.06%

Table 6. Splicing Detection Accuracy on Manually Tampered

UCID Database
P

P
P
P

P
P
P

QF1

QF2
50 60 70 80 90

50

Proposed 86.03% 99.25% 100% 100% 100%

[21] 93.4% 92.1% 88.2% 87.6% 90.5%

[19] - 100% 100% 100% 100%

60

Proposed 99.85% 96.32% 100% 100% 100%

[21] 82.5% 84.4% 84.6% 84.8% 84.4%

[19] 99% - 100% 100% 100%

70

Proposed 100% 100% 98.06% 100% 99.9%

[21] 86.7% 86.3% 85.6% 86.6% 86.2%

[19] 100% 97% - 100% 100%

80

Proposed 100% 100% 99.83% 97.48% 100%

[21] 89.3% 88.6% 88.6% 89.3% 88.7%

[19] 100% 99% 100% - 100%

90

Proposed 99.6% 99.35% 100% 100% 99.07%

[21] 68.4% 77% 72.7% 73.6% 70.8%

[19] 100% 100% 99% 100% -

Comparison for filter classification with the state-of-the-

art GLF [7] and TPM feature based approach [11] using

single iteration is shown in Table 3, which ensures that our

DCTR feature based approach comfortably outperforms the

approach in [7] and [11] for filter classification. The cor-

responding confusion matrix for filter classification for our

approach is shown in Table 4. Hence, we infer the superior-

ity of our approach to state-of-the-art individual linear [9]

filterimg detection technique (since [11] ouperforms [9],

and our proposed technique outperforms [11]), and median

filtering [7] detection technique. It also outperforms the rel-

atively recent generalized linear and median filtering detec-

tion and classification technique [11].

3.4. Experiment 3: Splicing Detection

The CASIA image dataset consists of 7491 authentic and

5123 tampered color images in JPEG, BMP, or TIFF for-

mats. The images in this database are of different sizes,

varying from 240×160 to 900×600 pixels. All experiments

were conducted under the same experimental conditions as

described in Section 3.2, where polynomial kernel based bi-

nary classification SVM classifier was used. Experimental

results obtained on the CASIA Tampered Image Detection

Evaluation (CASIA-TIDE) database (v 2.0) are shown in

Table 5. For comparison, we tested the performance of the

state-of-the-art methods [14, 17] on this dataset too. As ev-

ident from Table 5, our DCTR feature based splicing detec-

tion method outperforms the state–of–the–art methods with

high detection accuracy results.

We further evaluate the performance of the proposed

technigue on the UCID image database [32], containing
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1338 uncompressed colour images (TIFF format) with size

512 × 384 or 384 × 512 pixels. JPEG compression of the

UCID images at compression ratio QF1 was performed us-

ing the imwrite() library function of MATLAB. Then,

selected regions of the JPEG test images were forged us-

ing MATLAB scripts for our experiments, in the following

way. An m × n region of the image was extracted, where

1 ≤ m,n < 512 and re-saved in JPEG format. The ex-

tracted region was later transplanted back to the same loca-

tion of the original image, and the resultant tampered image

was re-saved with a second quality factor QF2. The size

of the tampered region was 10%, 30% or 50% of the image

size. The tampered images were then analyzed for forgery

detection, and experimental results are tabulated in Table 6.

We have compared our detection accuracy results with those

presented in [19,21]. The experimental results achieved for

different (QF1, QF2) combinations are shown in Table 6.

The proposed scheme outperforms the state-of-the-art tech-

nique [21] for all cases QF1 < QF2, QF1 = QF2 and

QF1 > QF2, with detection accuracy close to 100%, as

evident from Table 6. As compared to [19], our proposed

technique achieves equally high detection accuracy. How-

ever, for the case QF1 = QF2, our technique outperforms

that of [19], as is evident from Table 6.

4. Conclusion

We have proposed a DCTR feature based approach for

both filtering forgery detection and classification as well

as re-compression based splicing detection with SVM clas-

sifier. Effectiveness of DCTR features were theoretically

justified for linear and non-linear (median) filtering detec-

tion and classification problems, along with re-compression

based splicing detection. Experimentally, the efficacy of

the proposed technique and its superiority over state-of-the-

art techniques was also verified for several types of linear

filtering, median filtering and splicing detection for differ-

ent standard benchmark dataset. Our future research efforts

would be directed towards exploring the applicability of the

proposed technique for other image formats and also an uni-

fied forgery detection technique, effective for multiple im-

age forgeries.

References

[1] A. K. Jain and A. Ross, “Bridging the gap: from biometrics to forensics,” Phil.

Trans. R. Soc. B, vol. 370, no. 1674, p. 20140254, 2015. 1

[2] M. K. Johnson and H. Farid, “Exposing digital forgeries through chromatic

aberration,” in Proceedings of the 8th workshop on Multimedia and security.

ACM, 2006, pp. 48–55. 1

[3] Z. Lin, J. He, X. Tang, and C.-K. Tang, “Fast, automatic and fine-grained tam-

pered jpeg image detection via dct coefficient analysis,” Pattern Recognition,

vol. 42, no. 11, pp. 2492–2501, 2009. 2, 5, 6

[4] M. Kirchner and J. Fridrich, “On detection of median filtering in digital im-

ages,” in IS&T/SPIE Electronic Imaging. International Society for Optics and

Photonics, 2010, pp. 754 110–754 110. 2

[5] Y. Zhang, S. Li, S. Wang, and Y. Q. Shi, “Revealing the traces of median fil-

tering using high-order local ternary patterns,” IEEE Signal Processing Letters,

vol. 21, no. 3, pp. 275–279, 2014. 2, 4

[6] X. Kang, M. C. Stamm, A. Peng, and K. R. Liu, “Robust median filtering foren-

sics using an autoregressive model,” IEEE Transactions on Information Foren-

sics and Security, vol. 8, no. 9, pp. 1456–1468, 2013. 2

[7] C. Chen, J. Ni, and J. Huang, “Blind detection of median filtering in digital

images: A difference domain based approach,” IEEE Transactions on Image

Processing, vol. 22, no. 12, pp. 4699–4710, 2013. 2, 6, 7

[8] Z. Shen, J. Ni, and C. Chen, “Blind detection of median filtering using linear

and nonlinear descriptors,” Multimedia Tools and Applications, vol. 75, no. 4,

pp. 2327–2346, 2016. 2

[9] V. Conotter, P. Comesaña, and F. Pérez-González, “Forensic analysis of full-
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