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Abstract

Traditional camera-based indoor localization systems

use visual information to resolve the position of an object

or person. This approach, however, may not be acceptable

in privacy-sensitive scenarios since high-resolution images

may reveal room and occupant details to eavesdroppers. In

this paper, we address privacy concerns by replacing cam-

eras with a small network of extremely low resolution color

sensors. To make the system robust to ambient lighting fluc-

tuations, we modulate an array of LED light sources to ac-

tively control the illumination while recording the light re-

ceived by the sensors. We quantitatively validate the per-

formance of our localization approach through simulations

and real testbed experiments. We quantify the impact of

sensor noise and changes in ambient illumination on local-

ization accuracy. Finally, we demonstrate the superior per-

formance of localization via active illumination compared

to passive illumination where LEDs produce constant light.

1. Introduction

A smart room, which can react to occupants’ needs,

will likely become a common occurrence in our lifetimes.

With advanced sensors, processors and state-of-the-art al-

gorithms, smart rooms are expected to save energy [3]

and provide productivity, comfort and health benefits. In-

door localization of occupants is a key component of future

smart-room applications that interact with occupants based

on their locations.

Traditional vision-based indoor localization systems us-

ing fixed cameras [6, 17, 23, 25, 32, 36] are reliable and

provide accurate location estimates. However, they are not

suitable for venues where privacy is expected since videos

can reveal details about occupants, their activities and the

room itself [11]. Various techniques have been proposed to

eliminate these privacy concerns. A popular way is to cover,

replace or transform sensitive parts of camera images. This

includes image cartooning globally [9] or locally, within

sensitive objects [12], as well as using generative adversar-

ial networks for image obfuscation [27] and human body

and face de-identification [5]. While such methods work

quite well, they are all based on post-processing and thus

cannot prevent eavesdroppers from hacking directly into the

camera to obtain the original images.

Therefore, indoor localization systems have been de-

veloped that do not use cameras. Some systems require

occupants to wear an electronic device, such as a tag

[14, 24, 26, 33], but this is intrusive and system perfor-

mance can be affected by device placement [20]. Device-

free localization systems, on the other hand, exploit signals

that are affected by human activity, such as WLAN signals

[18, 22, 35], ultra-wideband radio signals [10, 21, 34], air-

flow disruption [19], infrared rays [2, 13], audible sound

[15], and ultrasound [28, 30]. These systems often suffer

from environmental noise and signal reflections, and also

may require re-calibration for each usage-scenario.

Another solution to address privacy concerns is to use

extremely low resolution (eLR) sensors for they capture

very limited visual information. Therefore, even if hacked,

they are useless to eavesdroppers. A side benefit is re-

duced data communication and processing. eLR color sen-

sors have been successfully used for activity recognition [8]

and head pose estimation [7] at resolutions as low as 3 × 3
pixels. A network of single-pixel, time-of-flight (ToF) sen-

sors mounted on a ceiling has been successful in occupant

tracking and coarse pose estimation in both simulated and

real-world experiments [16, 4]. A network of single-pixel

color sensors has also been used for occupant localization

in a real testbed [29], but without active scene illumination.

However, such systems are expected to be highly sensitive

to ambient light fluctuations. This sensitivity issue was par-

tially addressed by Wang et al. for coarse-grained (as op-

posed to fine-grained) occupancy estimation using an array

of modulated LED light sources and single-pixel color sen-

sors [31]. Building upon this approach, we recently pro-

posed two principled indoor localization algorithms using

light transport analysis and validated their effectiveness in
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MATLAB simulations, but we did not provide quantitative

validation on a real testbed [37].

In this paper, we further advance privacy-preserving in-

door localization by making the following contributions:

1. We provide the first quantitative real-world testbed val-

idation of indoor localization based on active illumi-

nation with an array of modulated LED sources and

single-pixel color sensors.

2. Ours is also the first work to demonstrate (via both

simulations and on a real-world testbed) that an ac-

tive illumination based indoor localization approach is

quantitatively more accurate and robust to noise and

ambient illumination variations than one based on pas-

sive illumination.

3. We improve our previous localization algorithm [37]

by incorporating a new regularization prior in the ob-

jective function to dramatically reduce (by at least a

factor of 4) the average localization error (see Table 5).

4. Our simulation models are more realistic than the ide-

alized MATLAB model used in [37] that ignores noise

and illumination changes. Our MATLAB simulations

account for these non-idealities. We also provide simu-

lation results using Unity3D which captures real-world

illumination more accurately than a MATLAB model.

We note that our system can accurately estimate the cen-

troid of an object in an indoor environment, but not other

properties like shape, size, color making it privacy-friendly.

This paper is organized as follows. Section 2 introduces

our localization algorithms for both illumination scenarios.

Section 3 describes our experimental setup and results in

simulated and real-world experiments. Section 4 discusses

these results and points to future challenges.

2. Methodology

2.1. Light Reflection Model

We briefly introduce Wang et al.’s light reflection model

[31], which forms the basis of our localization algorithms.

Given the properties of light sources and light sensors in

a room, this model relates sensor readings to the reflection

properties of surfaces (see Fig. 1). The model is derived

under the following assumptions:

1. The light sources and light sensors are mounted on the

ceiling and face downwards; their areas are negligible

compared to the area of the ceiling.

2. The light reflected by the floor is dominant; all the

other reflected light can be ignored.

3. There is no direct light from any source to any sensor.

4. The floor and object are both Lambertian and flat (ob-

ject heights can be ignored relative to the room height).

Figure 1. Light reflection model [31].

Assume that the incoming luminous (photon) flux per unit

area at floor location (x, y) is I(x, y). Clearly, I(x, y) is the

sum of luminous fluxes from all light sources:

I(x, y) =

Nf∑

j=1

Ij(x, y) (1)

where Ij(x, y) is the flux from source number j and Nf

is the number of light sources (fixtures). For a downward-

facing, point light source, we have

Ij(x, y) = f(j) · Imax · q(βj) ·
cosβj

4πD2
j

(2)

where f(j) is the relative intensity of source number j

scaled to lie in range [0, 1], Imax is the maximum intensity of

the light source, βj and Dj are as shown in Fig. 1, and q(·)
is the light intensity distribution function that describes the

relative intensity of the light from the source at each angle.

An example of a q(·) function is shown in Fig. 2.
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Figure 2. Example of a light intensity distribution function q(·).

The luminous flux captured by lensless sensor number i

(i.e., sensor i’s reading) is:

s(i) = b(i) +

∫ W

0

∫ L

0

I(x, y)α(x, y) cos2 θi
4π(H2 + l2i )

Sdxdy (3)

where α(x, y) is the floor albedo at location (x, y), S is the

area of the sensor, b(i) is the ambient light that arrives at

sensor i, and W , L and H are the width, length and height

of the room, respectively. Note that θi and li in Fig. 1 are

functions of x and y.

To develop our localization algorithms, we make the

simplifying assumption that the change in albedo ∆α on
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the floor due to the appearance of an object is a small, com-

pact, connected region P . Then, if b(i) remains constant,

the change in the reading of sensor i caused by the object

appearance is:

∆s(i) =

∫

P

I(x, y)∆α(x, y) cos2 θi
4π(H2 + l2i )

Sdxdy. (4)

We consider two types of room illumination: passive and

active. A passive illumination system collects data from the

scene under fixed light emitted by all light sources. The sys-

tem has no control over light sources. By contrast, an active

illumination system can modulate each light source at a de-

sired frequency1 while simultaneously collecting data from

the sensors. By analyzing the light transported from each

source to each sensor we can estimate an object’s location

on the floor due to albedo change. For each sensing method,

we propose a model-based algorithm to localize a single ob-

ject. Both of our algorithms localize the change between the

current state (e.g., room occupied by an object) and an ini-

tial state (e.g., empty room) and therefore require one set of

measurements for each state.

We note that our modeling assumptions, stated at the be-

ginning of this section, are used only to derive our local-

ization algorithms. They may not hold exactly in practice

and indeed they do not in our physical testbed. Still, as we

will see, our active localization algorithm performs consis-

tently very well in our testbed indicating its robustness to

deviations from the stated assumptions. Our empirical re-

sults validate the practical utility of our modeling assump-

tions despite their imperfections, which are acknowledged

and discussed in Section 4.

2.2. Localization via Passive Illumination

In order to develop a localization algorithm based on pas-

sive illumination, we make the following assumptions in ad-

dition to those listed in Section 2.1:

1. The intensities of all light sources and ambient light

are the same in the empty and occupied room states.

2. The object size is negligible compared to the floor size.

Under the above assumptions, the integral in (4) reduces to:

∆s(i) =
I(x0, y0)∆α(x0, y0) cos

2 θi

4π(H2 + l2i (x0, y0))
· S · S0 (5)

where (x0, y0) is the location of object’s center, S0 is the

area of region P , and S0 ≪W ×L. For sensors number i1
and i2, the ratio of the captured changes δs is

∆s(i1)

∆s(i2)
=

(H2 + l2i2) cos
2 θi1

(H2 + l2i1) cos
2 θi2

=
(H2 + l2i2)

2

(H2 + l2i1)
2

(6)

1In practice, the modulation frequency needs to be high enough to avoid

the perception of flicker by occupants.

so that the relationship between li1 and li2 simplifies to:

H2 + l2i1
H2 + l2i2

=

√
∆s(i2)

∆s(i1)
(7)

If we substitute the coordinates of both sensors and

(x0, y0) into equation (7) to replace li1 and li2 , then it can

be re-written as a quadratic equation in x0 and y0:

ai1i2x
2
0 + bi1i2x0 + ci1i2y

2
0 + di1i2y0 = ui1i2 (8)

where ai1i2 , bi1i2 , ci1i2 , di1i2 and ui1i2 are coefficients de-

rived from equation (7) that depend on sensor coordinates.

In a room with Ns sensors, we can write Ns − 1 non-

redundant quadratic equations corresponding to the sensor

pairs (i1, i2) = (1, 2), (1, 3), . . . , (1, Ns). Collecting coef-

ficients from equations (8) for all sensor pairs as follows:

M =




a12 b12 c12 d12
a13 b13 c13 d13

...
...

...
...

a1Ns
b1Ns

c1Ns
d1Ns


 , u =




u12

u13

...

u1Ns


 . (9)

we can find the object location (x0, y0), that is encoded in

vector v = [x2
0, x0, y

2
0 , y0]

T , by solving Mv = u. Since

this set of equations may not be satisfied exactly due to

noise and modeling imperfections, we apply constrained

least-squares minimization to find v as follows:

argmin
v

‖Mv − u‖
2
l2

s.t. v ≥ 0,v ≤ [W 2,W,L2, L]T .

(10)

The 2-nd and 4-th entries of the solution vector, provide an

estimate of the object location (x̂0, ŷ0). The cost function is

strictly convex and has unique global minimum when ma-

trix M has full column rank (Ns ≥ 5). The pseudo-code

for this algorithm appears in Algorithm 1.

Algorithm 1: Localization via Passive Illumination

Input : Vectors of sensor readings: s0 for empty

room and s for occupied room, room

dimensions W , L and H , sensor

coordinates (xi, yi, H) for i = 1, . . . , Ns

Output: Estimated location (x̂0, ŷ0)
1 Let ∆s← s− s0;

2 Calculate coefficients ai1i2 , bi1i2 , ci1i2 , di1i2 , ui1i2

for (i1, i2) = (1, 2), (1, 3), . . . , (1, Ns) in (8);

3 Construct matrix M and vector u as in (9);

4 Use quadratic programming to find the optimal

solution v
∗ to minimization (10);

5 Estimated location: (x̂0, ŷ0)← (v∗2 , v
∗
4).
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2.3. Localization via Active Illumination

Using the light reflection model from Section 2.1 (with

no additional assumptions), we derive our localization al-

gorithm based on active illumination. This algorithm is a

refinement of our previous localized ridge regression algo-

rithm [37].

Let s be an Ns×1 vector of sensor readings, f an Nf×1
vector of relative source intensities, and b a vector of am-

bient light levels at each sensor. We know from equations

(1–3), that the relationship between s and f is linear:

s = Af + b (11)

where A is the Ns × Nf light transport matrix [31]. The

light transport matrix describes the relationship between ev-

ery light source and every sensor. It is clear from equation

(3) that matrix A is determined by room geometry, material

properties and source and sensor locations, but it is not af-

fected by ambient light. To estimate A, one can add a set

of linearly independent perturbations ∆f to any base light

f0, measure the corresponding changes ∆s from the sen-

sors, and then solve for A [31]. We assume that the change

in ambient light b over the duration of one set of measure-

ments is small enough that it can be treated as constant over

that duration.

Suppose that we obtain two light transport matrices, A0

for the initial (empty room) state and A for the current state,

and compute their difference E = A − A0. Then, by the

light reflection model (3), we can write:

E(i, j) =

∫ W

0

∫ L

0

C(i, j;x, y)∆α(x, y) dxdy (12)

where C(i, j;x, y) is the unit contribution of source j to the

reading of sensor i via location (x, y). If we discretize the

floor plan on a grid with spacing δ, then we can re-write the

discretized approximation to this equation in matrix form:

e = δ2C∆α, (13)

where vector e contains lexicographically-scanned ele-

ments of matrix E, ∆α is a vector of albedo changes at

all locations (x, y) on the discretized floor grid, and C is

a matrix of unit contributions whose rows correspond to

(i, j) fixture-sensor pairs and columns correspond to loca-

tions (x, y).
Similarly to our previous method [37], we use a two-

step approach to solve for ∆α with an important difference,

which results in significantly improved localization accu-

racy. While they used a heuristic confidence map proposed

by Wang et al. [31] as the first step, we take a principled

approach based on ridge regression. In particular, we mini-

mize the following cost function:

min
∆α0

∥∥e− δ2C∆α0

∥∥2
l2
+ σδ2‖∆α0‖

2
l2 (14)

where σ is a weight of the l2 penalty term controlling the

smoothness of the albedo change estimate. The optimal

∆α
∗
0 for (14) is a coarse estimate of the actual albedo

change. We next threshold |∆α
∗
0| normalized by its maxi-

mum magnitude to obtain a set of locations

Q =

{
(x, y) :

|∆α
∗
0(x, y)|

max(x,y) |∆α
∗
0(x, y)|

≥ τ

}
(15)

where the change in albedo is relatively large. These are

likely to correspond to the area where the object appeared.

Then, in the second step, we solve the ridge regression prob-

lem again, but the solution is now restricted to a subset of

locations in Q.

min
∆α

∥∥e− δ2C∆α

∥∥2
l2
+ σδ2‖∆α‖

2
l2

s.t. ∆α(x, y) = 0, ∀(x, y) 6∈ Q
(16)

Both minimizations (14) and (16) have a closed-form so-

lution. After obtaining the optimal ∆α
∗ from (16), we use

the centroid of the |∆α
∗| map as the estimated object lo-

cation. The pseudo-code for this algorithm appears in Al-

gorithm 2 below. Since σ and τ can affect the algorithm’s

performance, we use grid search to find the best set of pa-

rameters yielding the minimum average localization error.

Algorithm 2: Localization via Active Illumination

Input : Light transport matrices: A0 for empty room and

A for occupied room, room dimensions W , L

and H , all light source and sensor coordinates

Output: Estimated location (x̂0, ŷ0)
1 Calculate unit contribution matrix C where

C(i, j;x, y) = const ·
q(βj) cos βj cos2 θi

D2

j
·(H2+l2

i
)

for

i ∈ {1, . . . , Ns}, j ∈ {1, . . . , Nf}, x ∈ [0, L],
y ∈ [0,W ] with spacing δ;

2 Let e be the vector form of E = A−A0;

3 Calculate the optimal solution ∆α
∗

0 for problem (14)

without any constraint;

4 Threshold |∆α
∗

0| using τ to get the point setQ;

5 Calculate the optimal solution ∆α
∗ for problem (16) with

∆α constrained insideQ;

6 Estimated location: (x̂0, ŷ0)← centroid of |∆α
∗|.

3. Experimental Results

We have tested the performance of our localization algo-

rithms in both simulated and real-world experiments. We

performed simulations in MATLAB and Unity3D, a video

game development environment. For our real-world exper-

iments, we have built a small-scale testbed using a network

of synchronized small LED light sources and single-pixel

color sensors. We compare the performance of the proposed

algorithms with our previous localized ridge regression al-

gorithm [37] for 6 different object sizes. We also test our al-

gorithms under illumination change between the empty and
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occupied room states, and also in the presence of noise in

sensor readings. Detailed information about our experimen-

tal setup, testbed, and results can be found on our project’s

web page [1].

3.1. Experiment Setup

In both the simulation and testbed experiments, the room

has size W=122.5cm, L=223.8cm and H=70.5cm and 9

identical source-sensor modules are placed on the ceiling

on a 3×3 grid (Fig. 3). Each module contains an LED light

source and a single-pixel light sensor.

0 50 100 150 200
x (cm)

0

20

40

60

80

100

120 Sources
Sensors

Figure 3. Layout of source-sensor modules on the ceiling.

We used flat (negligible height) rectangular objects of 6

different sizes (Table 1). Our object size choices are quite

realistic at room-scale. For example, if we scale the testbed

area 8 fold to a room of dimensions about 3.5×6m, then our

smallest object (1x) will be about the size of a small plate

(14cm diameter) and our largest object (64x) will be about

the size of a table (70×140cm). We placed the objects on

the floor so that their sides are parallel to those of the room.

Table 1. Dimensions of rectangular objects used in experiments.

Relative Size Width (cm) Length (cm)

64x 25.8 51.1
32x 25.8 25.5
16x 12.9 26.0
8x 12.9 13.0
4x 6.4 12.9
1x 3.2 6.4

In localization with active illumination, we obtained the

light transport matrix A by following the steps detailed in

Fig. 4. In localization with passive illumination, we turned

on all 9 light sources to their maximum intensity and kept

them unchanged. We kept the ambient light constant in all

simulations and performed the testbed experiments at night

with fluorescent lights as the only ambient light source.

3.2. Simulation Experiments

To validate our active and passive illumination algo-

rithms, we simulated the room with light sources and sen-

sors in both MATLAB and Unity3D, a game development

environment that can simulate realistic scenes.

Figure 4. Steps followed to obtain the light transport matrix A.

(a) Simulation of a light source

with object placed on the floor

(b) Top view

of the scene

Figure 5. Illustration of a Unity3D scene used in experiments.

In MATLAB simulation, we generated the floor albedo

maps α(x, y) for empty and occupied states, and then cal-

culated the sensor readings in each state using equations (1),

(2) and (3). The MATLAB simulations are idealized since the

sensor readings match the light reflection model perfectly

with no inconsistencies.

To the best of our knowledge, Unity3D’s built-in point

light source does not allow different intensities in different

directions. Therefore, to simulate a light source with a q(·)
function, we placed the point light source at the center of a

spherical cover. The cover is semi-transparent and blocks

parts of the light from the source. We set the transparency

of the cover at different angles differently in order to match

the q(·) function. To simulate a light sensor, we placed

Unity3D’s virtual camera on the ceiling looking downward.

The sensor reading is a weighted average of the camera’s

pixel values, where the weight is each pixel’s solid angle to

the center of the camera lens. To simulate sunlight (as part

of ambient illumination), we used a directional light source

which produces parallel rays. An illustration of a Unity3D

scene of the room is shown in Fig. 5. The Unity3D model is

only used to collect data while the localization algorithms

are implemented in MATLAB.

In both MATLAB and Unity3D, we uniformly set the

albedo of the floor to 0.5 and of the object to 0. We placed
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the center of the object at 20 different locations equally-

spaced on a 5 × 4 grid. We evaluated our algorithm’s per-

formance in terms of localization error defined as the Eu-

clidean distance between the true and estimated locations.

We compare the performance of our active and passive il-

lumination algorithms with that of our previous algorithm

[37]. The parameter σ of our previous algorithm and the

set of parameters (σ, τ) of our active-illumination algorithm

were chosen to minimize the average localization error us-

ing grid search.

First, we evaluated the performance of the three algo-

rithms for different object sizes, in both simulation envi-

ronments, without noise. The mean and standard deviation

of the localization errors are shown in Table 2. We note

that in MATLAB simulations, our new active illumination

algorithm outperforms our previous algorithm [37] for all

object sizes, and it performs better for larger objects. Our

passive illumination algorithm works better for smaller ob-

jects, which is consistent with the negligible object size as-

sumption (assumption 2 in Section 2.2) used to derive this

algorithm. The Unity3D results exhibit a similar trend.

Fig. 6 shows an example of ground-truth location, albedo

change map (∆α), and object locations estimated by our

previous algorithm [37] and by the proposed active illumi-

nation algorithm, both simulated in MATLAB using a 64x

object. The proposed algorithm performs better in estimat-

ing the object’s location and the range of albedo change (as

the object’s albedo is lower than that of the background, ∆α

should be negative).

We also tested the robustness of both passive and ac-

tive illumination algorithms under illumination change in

Unity3D. An illumination change refers to the change of

ambient light level b (11) between the empty and occu-

pied room states. We performed tests using the 64x object,

and turned on/off the simulated sun light to mimic day and

Table 2. Mean± standard deviation of localization errors for three

algorithms and each object size in MATLAB and Unity3D simula-

tions with ambient illumination off. The smallest average local-

ization errors are in bold.

Object Prev. work Passive Active

Size [37] (cm) (cm) (cm)

M
A
T
L
A
B

64x 3.48± 1.91 3.52± 2.10 0.04± 0.04
32x 3.44± 1.80 0.85± 0.61 0.06± 0.07
16x 3.72± 2.84 0.97± 0.60 0.16± 0.10
8x 4.15± 2.78 0.23± 0.16 0.22± 0.13
4x 4.40± 3.03 0.25± 0.16 0.40± 0.28
1x 4.66± 3.30 0.06± 0.03 0.58± 0.36

U
n

it
y

3
D

64x 3.98± 1.99 3.18± 1.74 0.41± 0.38
32x 6.09± 2.09 0.28± 0.17 1.03± 0.81
16x 6.24± 2.22 0.93± 0.61 1.05± 0.72
8x 6.15± 3.66 0.66± 0.52 1.38± 1.12
4x 6.22± 2.26 0.40± 0.33 1.38± 1.10
1x 6.62± 2.66 0.51± 0.45 1.57± 1.18

(a) Our previous algorithm [37]

(b) Proposed algorithm

Figure 6. Example of ground-truth location, albedo change map

and object location estimated by our previous algorithm [37] and

the proposed active-illumination algorithm. The blue rectangle

shows the boundary of the 64x object. Locations where ∆α is pos-

itive are colored red and where ∆α is negative are colored green.

night. The results are shown in Table 3. In the last two rows,

when there is an illumination change, the performance of

the passive illumination algorithm gets significantly worse,

while the active illumination algorithm still performs well.

This was to be expected since the passive illumination algo-

rithm assumes that the only change in the sensor readings is

caused by the object; it cannot handle illumination changes.

Furthermore, we tested the effect of sensor noise on

the performance of our algorithms. We assumed that the

noise corrupting each sensor reading is an independent and

identically-distributed, zero-mean Gaussian. In MATLAB

simulation, we added noise to all sensor readings in both the

empty and occupied room states. We used the 16x object,

and we varied the standard deviation of noise from 10−4 to

Table 3. Mean ± standard deviation of localization errors for two

proposed algorithms in Unity3D simulation with different ambient

lighting combinations using the 64x object.

Ambient Lighting
Passive

(cm)

Active

(cm)
Empty Occupied

Room Room

Day Day 2.81± 1.33 0.41± 0.38
Night Night 3.18± 1.74 0.41± 0.39
Day Night 45.12± 19.72 0.38± 0.29

Night Day 66.89± 28.26 0.46± 0.39
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10−3 in 10−4 increments.2 Fig. 7 shows the mean and stan-

dard deviation of localization errors for passive and active

illumination algorithms as a function of the standard devia-

tion of noise. Clearly, the passive illumination based local-

ization error is almost an order of magnitude larger than the

error for active illumination.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Standard deviation of Gaussian noise 10-3

0

10

20

30

40

50

60

70

80 Passive Illumination
Active Illumination

Figure 7. Localization error for the proposed algorithms with re-

spect to the standard deviation of Gaussian noise. The solid lines

show mean localization errors, while the dashed lines correspond

to error bars indicating the standard deviation of errors. Each value

is calculated by combining results from 3 repetitions of the exper-

iment. For each noise level, the parameters σ and τ for the active

illumination algorithm are optimized with grid search using a sep-

arate set of measurements.

3.3. Testbed Experiments

To test our approach in a real-world setting, we built

a room mock-up using a white rectangular foam board as

the floor and a 3× 3 array of ceiling-mounted light source-

sensor modules. Each module consists of a Particle Photon

board controlling an LED and a single-pixel light sensor.

We estimated the q(·) function (Fig. 2) by averaging sev-

eral measurements of our LEDs. We note that the sensors

have no lens and measure photon flux not radiance. This is

a small-scale proof-of-concept testbed to quantitatively val-

idate the feasibility of active-illumination based indoor lo-

calization. Although idealized (no walls/furniture, floor and

objects have uniform albedo), it is a much-needed first step

before developing a full-scale smart-room testbed. While

this is not an accurate representation of complex real-world

scenarios, it does capture real-world non-idealities such as

sensor noise, non-Lambertian surfaces, indirect light, and

fluorescent light flicker and provides insights into the local-

ization accuracy relative to testbed dimensions.

During data collection, the LEDs turn on all 4 channels

(red, green, blue and white) at maximum intensity in a pre-

set order and the single-pixel sensors record readings from

the white channel only (red, green and blue channel read-

210−3 represents about 6.84% of the maximum change in any sensor’s

reading between empty and occupied room states.

Table 4. Mean± standard deviation of localization errors for three

algorithms and four object sizes in the real testbed with fluorescent

light off. The smallest average localization errors are in bold.

Object Previous work Passive Active

Size [37] (cm) (cm) (cm)

64x 7.80± 5.11 49.19± 26.88 3.40± 1.56
32x 10.16± 5.68 47.91± 24.34 4.13± 2.48
16x 11.29± 5.49 49.79± 23.13 4.41± 2.50
8x 27.75± 27.22 56.23± 22.45 5.99± 3.93

Table 5. Mean ± standard deviation of localization errors of the

proposed algorithms in MATLAB simulation with Gaussian noise

added to match testbed conditions. Results are for the 16x object

and are based on 3 simulation runs.

Simulation run Passive (cm) Active (cm)

1 54.02± 22.43 6.61± 4.24
2 53.83± 21.92 5.33± 3.17
3 49.96± 24.55 5.71± 2.54

ings are ignored). When a sensor records, it takes 4 consec-

utive readings which are then averaged together to reduce

noise. This process yields 81 noise-reduced sensor readings

in the active illumination data collection processes, and, re-

spectively, 9 readings in the passive illumination case.

Similarly to the simulation experiments, we compare the

performance of the algorithms in the testbed for different

object sizes (from 8x to 64x) at all 20 locations. We did

not use the 1x and 4x objects because their sensor reading

changes are too small and get buried in noise. We recorded

data in a completely dark room with no ambient illumina-

tion (fluorescent lights off).

As shown in Table 4, our new active-illumination al-

gorithm outperforms our previous algorithm [37] in the

testbed. However, our passive illumination algorithm has

poor performance compared to both active illumination al-

gorithms. As Fig. 7 suggests, this is likely due to the higher

sensitivity of the passive illumination algorithm to sensor

noise. In order to verify this hypothesis, we first measured

the standard deviation of the readings of each sensor from

the testbed data. We then added Gaussian noise (having the

same relative standard deviations as in the testbed) to the

readings of the corresponding sensors in the MATLAB sim-

ulation. The localization errors are shown in Table 5. We

see that the performance of passive and active illumination

algorithms in MATLAB simulation under noise is similar to

their performance in the testbed. This suggests that noise is

the main reason why passive illumination performs poorly.

Finally, we tested the robustness of both algorithms un-

der illumination change for the 64x object. We applied dif-

ferent ambient lighting combinations for the empty and oc-

cupied room states (fluorescent lights on or off). As can be

seen in Table 6, the performance of the active illumination

algorithm remains good under illumination change, which
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Table 6. Mean ± standard deviation of localization errors for the

proposed algorithms with different ambient lighting combinations

in the testbed (64x object). ”Bright” or ”Dark” means the fluores-

cent light is on or off, respectively.

Ambient Lighting
Passive

(cm)

Active

(cm)
Empty Occupied

Room Room

Bright Bright 42.43± 25.38 8.19± 7.29
Dark Dark 49.19± 26.88 3.40± 1.56

Bright Dark 54.76± 19.76 4.21± 2.30
Dark Bright 61.92± 21.55 7.36± 7.49

is consistent with the simulations. The passive illumina-

tion algorithm, however, performs only slightly worse than

without illumination changes. This is not unexpected since

its performance without illumination changes was already

poor (Table 4).

4. Discussion

4.1. Effect of Object Size

In both simulated and real-testbed experiments, our ac-

tive illumination based localization algorithm outperforms

our previous algorithm [37] for all object sizes (Tables 2 and

4). The new active illumination algorithm performs better

for larger objects but slightly worse for smaller ones. This

is because the l2 penalty term in the cost function smooths

the ∆α map and therefore favors large objects. On the con-

trary, the passive illumination algorithm performs better for

smaller objects in the simulation because the algorithm as-

sumes that the object size is negligible compared to the floor

size. Also, we note that the passive illumination algorithm

outperforms the active illumination algorithm for small ob-

jects like 4x and 1x in MATLAB, and for all objects except

the 64x one in Unity3D. Ideally, active illumination based

localization should have smaller error than passive illumina-

tion based localization for all object sizes since it has more

information. This suggests that our active illumination al-

gorithm is sub-optimal and is not making the best use of

all the information available to it. It could potentially be

improved and this is part of our ongoing work.

4.2. Effect of Illumination Change

The experimental results in Tables 3 and 6 suggest that

the active illumination algorithm is robust under illumina-

tion change while the passive illumination algorithm is not.

This is consistent with the assumptions used to derive each

algorithm. The passive illumination algorithm assumes that

the change in the sensor reading is only due to the arrival of

an object and does not account for the possibility of illumi-

nation change between the empty and occupied room states.

The active illumination algorithm, however, only needs to

compute the change in the light transport matrix between

the empty and occupied room states. The light transport

matrix is determined by room geometry, sensor and source

placements and floor albedo distribution, and is unaffected

by ambient light. The estimation of a light transport ma-

trix too is unaffected by ambient light since it is based on

measuring the change in sensor readings due to light mod-

ulation. The only crucial assumption needed for this to suc-

ceed is that the ambient light remains constant during the

process of measuring a single light transport matrix. This is

easily ensured by the short modulation-response time.

4.3. Effect of Noise

The results in Fig. 7 and Table 5 suggest that the

passive-illumination algorithm is more sensitive to noise

than the active-illumination algorithm. In passive illumi-

nation, equation (6) is based on the ratio of changes in the

sensor readings. The sensor reading changes can be small,

depending on the object size and location; taking a ratio

of changes can magnify the error. In active illumination,

the parameter σ can be adjusted to adapt to noise. We ob-

served in our MATLAB simulations that the best σ is larger

when the noise standard deviation is larger. By adding more

weight to the l2 penalty term, the active illumination al-

gorithm makes the optimal ∆α
∗ smoother and adapts to a

higher level of noise.

4.4. Privacy Preservation

By replacing high-resolution cameras with single-pixel

color sensors, our indoor localization system preserves the

visual privacy of occupants while providing utility (location

information). Qualitatively, the albedo change map (Fig. 6)

does not appear to have enough information to reliably es-

timate object shape, size, color, or texture. This needs to be

quantified and is part of our future work.

5. Conclusions and Outlook

A key message of this work is that active illumina-

tion based indoor localization provides a number of bene-

fits including visual privacy, smaller localization error, and

robustness to noise and illumination changes. This was

demonstrated via simulations and a small-scale proof-of-

concept testbed that captured, to a limited extent, certain

real-world complexities such as non-Lambertian surfaces,

indirect light, and fluorescent light flicker. Our study fo-

cused on a single, static, flat rectangular object, but our ap-

proach can be extended to well-separated multiple slowly-

moving objects using background subtraction applied to

light transport matrices. Also, in our ongoing work, we

plan to expand our testbed to room scale and generalize

our algorithmic framework to handle complex three dimen-

sional objects. As an alternative to model-based methods

that we have explored here, we are also investigating adap-

tive data-driven methods for both passive and active illumi-

nation which do not require prior knowledge of the room

geometry, source/sensor locations, and their characteristics.

1700



References

[1] Privacy-preserving localization via active scene illumi-

nation. http://vip.bu.edu/projects/vsns/

privacy-smartroom/active-illumination/.

Last accessed: April 15, 2018. 5

[2] Ambiplex. http://www.ambiplex.com/, 2011. Last

accessed: November 29, 2017. 1

[3] S. Afshari, T.-K. Woodstock, M. Imam, S. Mishra, A. C.

Sanderson, and R. J. Radke. Short paper:: The smart con-

ference room: an integrated system testbed for efficient,

occupancy-aware lighting control. In Proceedings of the 2nd

ACM International Conference on Embedded Systems for

Energy-Efficient Built Environments, pages 245–248. ACM,

2015. 1

[4] I. Bhattacharya and R. J. Radke. Arrays of single pixel

time-of-flight sensors for privacy preserving tracking and

coarse pose estimation. In Applications of Computer Vi-

sion (WACV), 2016 IEEE Winter Conference on, pages 1–9.

IEEE, 2016. 1

[5] K. Brkic, I. Sikiric, T. Hrkac, and Z. Kalafatic. I know that

person: Generative full body and face de-identification of

people in images. CVPRW, 1(2):4, 2017. 1

[6] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer.

Easyliving: Technologies for intelligent environments. In

International Symposium on Handheld and Ubiquitous Com-

puting, pages 12–29. Springer, 2000. 1

[7] J. Chen, J. Wu, K. Richter, J. Konrad, and P. Ishwar. Esti-

mating head pose orientation using extremely low resolution

images. In Image Analysis and Interpretation (SSIAI), 2016

IEEE Southwest Symposium on, pages 65–68. IEEE, 2016. 1

[8] J. Dai, J. Wu, B. Saghafi, J. Konrad, and P. Ishwar. Towards

privacy-preserving activity recognition using extremely low

temporal and spatial resolution cameras. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 68–76, 2015. 1
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